Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
Food Res Int ; 187: 114422, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763672

RESUMO

Tons of orange by-products (OBPs) are generated during industrial orange processing. Currently, OBPs management is challenging due to their high amounts, physico-chemical characteristics (high water content, low pH, presence of essential oils) and seasonal nature of the production. Whereas agro-industrial OBPs can be highly valuable due to their abundant sources of bioactive compounds, which can add value to novel bakery products (e.g. bread, biscuits, cakes). This review covers the most recent research issues linked to the use of OBPs in bakery products, with a focus on available stabilization methods and on the main challenges to designing improved products. The application of OBPs improved the nutritional quality of bakery products, offering interesting sustainability benefits but also critical challenges. The valorization of OBPs may open new routes for the development of new natural ingredients for the food industry and lower food processing waste.


Assuntos
Citrus sinensis , Resíduos Industriais , Citrus sinensis/química , Resíduos Industriais/análise , Manipulação de Alimentos/métodos , Indústria Alimentícia , Pão/análise , Valor Nutritivo , Reciclagem , Indústria de Processamento de Alimentos
2.
Waste Manag ; 182: 225-236, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677140

RESUMO

This article explores the impact of thermally treated asbestos-cement waste (ACWT) on metakaolin-based geopolymers, using liquid sodium silicate (LSS) and liquid potassium silicate (LKS) as alkali activators. Through statistical mixture design, various formulations were tested for rheological parameters, mineralogical composition, efflorescence mass, electrical conductivity, compressive strength, and CO2 emissions. Formulations with sodium silicate exhibited higher yield stress compared to those with potassium silicate, while flash setting occurred in LKS-activated mixtures with high ACWT content. Alkali activator content significantly affected mechanical strength and leachate electrical conductivity. CO2 emissions were higher for LKS-activated formulations but lower for those with more ACWT. Finally, by incorporating ACWT, it was possible to optimize the formulations, resulting in high compressive strength, reduced free ions, and reduced negative environmental impact.


Assuntos
Amianto , Dióxido de Carbono , Materiais de Construção , Silicatos , Dióxido de Carbono/análise , Silicatos/química , Materiais de Construção/análise , Amianto/análise , Força Compressiva , Resíduos Industriais/análise , Condutividade Elétrica , Temperatura Alta
3.
Chemosphere ; 358: 142140, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688348

RESUMO

Carbon-encapsulated iron oxide nanoparticles (CE-nFe) have been obtained from an industrial waste (oil mill wastewater-OMW, as a carbonaceous source), and using iron sulfate as metallic precursor. In an initial step, the hydrochar obtained has been thermally activated under an inert atmosphere at three different temperatures (600 °C, 800 °C and 1000 °C). The thermal treatment promotes the development of core-shell nanoparticles, with an inner core of α-Fe/Fe3O4, surrounded by a well-defined graphite shell. Temperatures above 800 °C are needed to promote the graphitization of the carbonaceous species, a process promoted by iron nanoparticles through the dissolution, diffusion and growth of the carbon nanostructures on the outer shell. Breakthrough column tests show that CE-nFe exhibit an exceptional performance for H2S removal with a breakthrough capacity larger than 0.5-0.6 g H2S/gcatalyst after 3 days experiment. Experimental results anticipate the crucial role of humidity and oxygen in the adsorption/catalytic performance. Compared to some commercial samples, these results constitute a three-fold increase in the catalytic performance under similar experimental conditions.


Assuntos
Carbono , Sulfeto de Hidrogênio , Resíduos Industriais , Carbono/química , Resíduos Industriais/análise , Sulfeto de Hidrogênio/química , Adsorção , Catálise , Ferro/química , Águas Residuárias/química , Nanopartículas/química , Compostos Férricos/química
4.
Waste Manag ; 182: 11-20, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626501

RESUMO

Recycling aluminium in a rotary furnace with salt-fluxes allows recovering valuable alloys from hard-to-recycle waste/side-streams such as packaging, dross and incinerator bottom ash. However, this recycling route generates large amounts of salt-slag/salt-cake hazardous wastes which can pose critical environmental risks if landfilled. To tackle this issue, the metallurgical industry has developed processes to valorise the salt-slag residues into recyclable salts and aluminium concentrates, while producing by-products such as ammonium sulphate and non-metallic compounds (NMCs), with applications in the construction or chemical industries. This study aims to assess through LCA the environmental impacts of recycling aluminium in rotary furnaces for both salt-slag management routes: valorisation or landfill. It was found that this recycling process brings forth considerable net environmental profits, which increase for all the considered impact categories if the salt-slag is valorised. The main benefits arise from the production of secondary cast aluminium alloys, which is not unexpected due to the high energy intensity of aluminium primary production. However, the LCA results also identify other hotspots which play a significant role, and which should be considered for the optimisation of the process based on its environmental performance, such as the production of by-products, the consumption of energy/fuels and the avoidance of landfilling waste. Additionally, the assessment shows that the indicators for mineral resource scarcity, human carcinogenic toxicity and terrestrial ecotoxicity are particularly benefited by the salt-slag valorisation. Finally, a sensitivity analysis illustrates the criticality of the metal yield assumptions when calculating the global warming potential of aluminium recycling routes.


Assuntos
Alumínio , Incineração , Reciclagem , Incineração/métodos , Reciclagem/métodos , Alumínio/química , Alumínio/análise , Meio Ambiente , Resíduos Industriais/análise , Metalurgia
5.
Waste Manag ; 180: 36-46, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503032

RESUMO

As a by-product of the steelmaking industry, the large-volume production and accumulation of steel converter slag cause environmental issues such as land occupation and dust pollution. Since metal salts of unsaturated carboxylic acid can be used to reinforce rubber, this study explores the innovative application of in-situ modified steel slag, mainly comprising metal oxides, with methacrylic acid (MAA) as a rubber filler partially replacing carbon black. By etching the surface of steel slag particles with MAA, their surface roughness was increased, and the chemical bonding of metal methacrylate salt was introduced to enhance their interaction with the molecular chain of natural rubber (NR). The results showed that using the steel slag filler effectively shortened the vulcanization molding cycle of NR composites. The MAA in-situ modification effectively improved the interaction between steel slag and NR molecular chains. Meanwhile, the physical and mechanical properties, fatigue properties, and dynamic mechanical properties of the experimental group with MAA in-situ modified steel slag (MAA-in-situ-m-SS) were significantly enhanced compared with those of NR composites partially filled with unmodified slag. With the dosage of 7.5 phr or 10 phr, the above properties matched or even exceeded those of NR composites purely filled with carbon black. More importantly, partially replacing carbon black with modified steel slag reduced fossil fuel consumption and greenhouse gas emission from carbon black production. This study pioneered an effective path for the resourceful utilization of steel slag and the green development of the steelmaking and rubber industries.


Assuntos
Borracha , Resíduos Sólidos , Aço/química , Fuligem , Resíduos Industriais/análise , Metais , Metacrilatos
6.
Environ Res ; 250: 118508, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395333

RESUMO

Industrial processes and municipal wastes largely contribute to the fluctuations in iron (Fe) content in soils. Fe, when present in unfavorable amount, causes harmful effects on human, flora, and fauna. The present study is an attempt to evaluate the composition of Fe in surface soils from paper mill and municipal landfill sites and assess their potential ecological and human health risks. Geochemical fractionation was conducted to explore the chemical bonding of Fe across different fractions, i.e., water-soluble (F1) to residual (F6). Different contamination factors and pollution indices were evaluated to comprehend Fe contamination extent across the study area. Results indicated the preference for less mobile forms in the paper mill and landfill, with 26.66% and 43.46% of Fe associated with the Fe-Mn oxide bound fraction (F4), and 57.22% and 24.78% in the residual fraction (F6). Maximum mobility factor (MF) of 30.65% was observed in the paper mill, and 80.37% in the landfill. The enrichment factor (EF) varied within the range of 20 < EF < 40, signifying a high level of enrichment in the soil. The individual contamination factor (ICF) ranged from 0 to >6, highlighting low to high contamination. Adults were found to be more vulnerable towards Fe associated health risks compared to children. The Hazard Quotient (HQ) index showed the highest risk potential pathways as dermal contact > ingestion > inhalation. The study offers insights into potential Fe contamination risks in comparable environments, underscoring the crucial role of thorough soil assessments in shaping land use and waste management policies.


Assuntos
Ferro , Papel , Poluentes do Solo , Instalações de Eliminação de Resíduos , Ferro/análise , Poluentes do Solo/análise , Humanos , Medição de Risco , Monitoramento Ambiental , Resíduos Industriais/análise , Fracionamento Químico , Solo/química , Adulto , Criança
7.
Environ Sci Pollut Res Int ; 31(13): 19795-19814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367113

RESUMO

Mill scale (MS) is considered to be a significant metallurgical waste, but there is no economical method yet to utilize its metal content. In this study, which covers various processes in several stages, the solution of iron in MS, which is the Iron and Steel Industry (I&SI) waste, as FeCl3 (MS-FeCl3) in the thermoreactor in the presence of HCl, was investigated. In the next step, the conditions for using this solution as a coagulant in the treatment of I&SI wastewater were investigated using the jar test. The results of the treated water sample were compared by chemical oxygen demand (COD), total suspended solids (TSS), color, and turbidity analyses using commercial aluminum sulfate (Al2(SO4)3) and FeCl3 (C-FeCl3). Additionally, heavy metal analyses were conducted, and the treatment performance of three coagulants was presented. Accordingly, while 2.0 mg/L anionic polyelectrolyte was consumed at a dosage of 4.05 mg/L Al2(SO4)3 at pH 7.0, 0.25 mg/L anionic polyelectrolyte was consumed at a dosage of 1.29 mg/L at pH 5.0 in the C-FeCl3 and MS-FeCl3 studies. Also, Fe, Cr, Mn, Ni, Zn, Cd, Hg, and Pb removal efficiencies were over 93.56% for all three coagulant usage cases. The results showed that the wastewater treatment performance of MS-FeCl3 by the recycling of MS, which is an I&SI waste, was at the same level as C-FeCl3. Thus, thanks to recycling, waste scale can be used as an alternative to commercial products for green production.


Assuntos
Cloretos , Compostos Férricos , Poluentes Químicos da Água , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Ferro/análise , Resíduos Industriais/análise , Polieletrólitos , Floculação , Poluentes Químicos da Água/análise
8.
Int J Biol Macromol ; 261(Pt 2): 129922, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309403

RESUMO

Ecological retanning agent is an effective way to solve the pollution source of leather manufacturing industry. In this study, the gelatin from chrome-containing leather shavings in the leather industry was used to realize sustainable leather post-tanning. The gelatin hydrolysate (GH) coordinated with Zr4+ or Al3+ to prepare eco-friendly retanning agents GH-Zr and GH-Al. The successful coordination between GH and metal ions was characterized by FTIR and XPS. The retanning agents were characterized by FTIR curve-fitting and circular dichroism spectroscopy. The results showed that the conformation of the secondary structure of the polypeptide became ordered and stable after coordinating with the metal ions. The particle size and weight average molecular weight of the retanning agents were ~1700 nm and ~2100, respectively, measured by nanoparticle size analyzer and gel permeation chromatography (GPC). The retanning agents were applied to retanning of chrome tanned leather and glutaraldehyde tanned leather. The abundant free amino from retanning agents can consume the free formaldehyde. Meanwhile, retanning agents can effectively improve the multiple binding sites, resulting in favorable thickening rate (>110 %) and excellent dye and fatliquor absorption rate with ~99.91 % and ~93.18 %. Thus, this strategy can provide a viable choice for solid leather waste and sustainable development of the leather industry.


Assuntos
Gelatina , Curtume , Alumínio/análise , Zircônio , Íons/análise , Resíduos Industriais/análise
9.
Environ Res ; 248: 118282, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295974

RESUMO

The escalating consumer demand for crabs results in a growing amount of waste, including shells, claws, and other non-edible parts. The resulting crab shell waste (CSW) is disposed of via incineration or landfills which causes environmental pollution. CSW represents a potential biological resource that can be transformed into valuable resources via pyrolysis technique. In this study, microwave pyrolysis of CSW using self-purging, vacuum, and steam activation techniques was examined to determine the biochar production yield and its performance in treating palm oil mill effluent (POME). The biochar produced through microwave pyrolysis exhibits yields ranging from 50 to 61 wt%, showing a hard texture, low volatile matter content (≤34.1 wt%), and high fixed carbon content (≥58.3 wt%). The KOH-activated biochar demonstrated a surface area of up to 177 m2/g that is predominantly composed of mesopores, providing a good amount of adsorption sites for use as adsorbent. The biochar activated with steam removed 8.3 mg/g of BOD and 42 mg/g of COD from POME. The results demonstrate that microwave pyrolysis of CSW is a promising technology to produce high-quality biochar as an adsorbent for POME treatment.


Assuntos
Braquiúros , Carvão Vegetal , Animais , Óleo de Palmeira , Micro-Ondas , Pirólise , Vapor , Resíduos Industriais/análise
10.
Environ Sci Pollut Res Int ; 31(10): 15078-15090, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286931

RESUMO

Green and low-carbon materialization for dredged sediment (DS) is limited due to its low pozzolanic activity. In this study, a novel DS-based non-sintered lightweight aggregate (LWA) is developed by steel slag (SS) and fly ash (FA) activation. Process optimization is performed by the response surfaces, and the basic properties and characterization of the optimal product are investigated. Results indicated that the optimized design ceramic aggregate (ODCA) was prepared as follows: raw pellets comprising of 59.2% DS, 5% SS, 35.8% FA, 5% MK, 5% H2O2, and 2‰ foam stabilizer were activated by alkali activator (1.5 weight ratio of 14 M NaOH to water glass) and then cured at 80 °C and 95% humidity for 24 h. The basic and environmental performances of ODCA were in accordance with standards, whose bulk density was as low as 665.8 kg/m3, the high cylinder compressive strength was 6.143 MPa, and leaching concentrations of heavy metals were controllable. The regulation mechanism of LWA performances could be summarized as follows. SS and FA additives played the role for the mechanical strength enhancement and passivation of heavy metals, which promoted the formation of sillimanite, chabazite, and C-S-H / C-S-A-H gels in ODCA. The bulk density of ODCA was greatly reduced by H2O2 addition, where ODCA had an open-pore structure with a median pore size of 4969.75 nm. Note that C-S-H/C-S-A-H were the key hydration products to give ODCA light density and high mechanical strength, simultaneously.


Assuntos
Cinza de Carvão , Misturas Complexas , Metais Pesados , Cinza de Carvão/química , Resíduos Industriais/análise , Aço , Peróxido de Hidrogênio , Metais Pesados/química
11.
Environ Pollut ; 342: 123099, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070640

RESUMO

Palm oil mill effluent (POME) is regarded as deleterious to the environment, primarily owing to the substantial volume of waste it produces during palm oil extraction. In terms of contaminant composition, POME surpasses the pollutant content typically found in standard municipal sewage, therefore releasing it without treatment into water bodies would do irreparable damage to the environment. Main palm oil mills are normally located in the proximity of natural rivers in order to take advantage of the cheap and abundant water source. The same rivers are also used as a water source for many villages situated along the river banks. As such, it is imperative to degrade POME before its disposal into the water bodies for obvious reasons. The treatment methods used so far include the biological processes such as open ponding/land application, which consist of aerobic as well as anaerobic ponds, physicochemical treatment including membrane technology, adsorption and coagulation are successful for the mitigation of contaminants. As the above methods require large working area and it takes more time for contaminant degradation, and in consideration of the strict environmental policies as well as palm oil being the most sort of vegetable oil in several countries, numerous researchers have concentrated on the emerging technologies such as advanced oxidation processes (AOPs) to remediate POME. Methods such as the photocatalysis, Fenton process, sonocatalysis, sonophotocatalysis, ozonation have attained special importance for the degradation of POME because of their efficiency in complete mineralization of organic pollutants in situ. This review outlines the AOP technologies currently available for the mineralization of POME with importance given to sonophotocatalysis and ozonation as these treatment process removes the need to transfer the pollutant while possibly degrading the organic matter sufficiently to be used in other industry like fertilizer manufacturing.


Assuntos
Poluentes Ambientais , Ozônio , Óleo de Palmeira , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos , Óleos de Plantas/química , Água
12.
Environ Pollut ; 343: 123126, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38092336

RESUMO

The metal vanadium has superior physical and chemical properties and has a wide range of applications in many fields of modern industry. The increasing demand for vanadium worldwide has led to the need to guarantee sustainable vanadium production. The smelting process of vanadium and titanium magnetite produces vanadium-bearing steel slag, a key material for vanadium extraction. Herein, vanadium production, consumption, and steel slag properties are discussed. A detailed review of methods for extracting vanadium from vanadium-bearing steel slag is presented, including the most commonly used roasting and leaching method, and direct leaching, bioleaching and enhanced leaching methods are also described. Finally, the rules and regulations of steel slag management are introduced. In general, it is necessary to further develop environmentally friendly vanadium extraction methods and technologies from vanadium containing solid wastes. This study provides research directions for the technology of vanadium extraction from steel slag.


Assuntos
Resíduos Industriais , Vanádio , Vanádio/análise , Resíduos Industriais/análise , Aço , Reciclagem , Titânio
13.
Environ Res ; 242: 117736, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007083

RESUMO

Environmental contamination is a global challenge that impacts every aspect of ecosystem. The contaminants from anthropogenic or industrial trash continually recirculate into the environment, agricultural land, plants, livestock, and ultimately into humans by way of the food chain. After an increase in human and farmland animal deaths from illnesses due to contaminated drinking water, toxic metal water poisoning has remained a global concern. Diverse environmental and enforcement organisations have attempted to regulate the activities that serve as precursors to these heavy metals which have been proven ineffective. These unnecessary metals have severely hampered most biological processes. The presence of hazardous metals, which are harmful at extremely high levels and have a negative effect on the health of living bodies generally degrades the nutritional value of water. In order to evaluate the heavy metals (Cu, Ni, and Fe) toxicity of groundwater in pri-urban areas, the current study was conducted that have been considered as advance solution to tackle climate change which influence coastal ecosystem. Additionally, the impacts of soil and plant (spinach and brassica) contamination from groundwater were evaluated. The heavy metals were examined in the soil and groundwater samples (Pb, Fe and Ni). While Fe concentrations in water samples were found to be high as 1.978 mg/L as compared to Ni and Cu values low. According to WHO guidelines, the mean value of Fe exceeds the limit value. Similarly, Cu had a higher mean value (0.7 mg/L) in soil samples than other metals (Ni and Fe). In comparison to Ni and Cu, the Fe concentrations in spinach and brassica plants samples are greater, at 17.2 mg/L and 3.22 mg/L, respectively. The possible effects of metal poisoning of groundwater and plants on human health have been assessed using the Hazard Quotient (HQ), Evaluated Daily Intake (EDI), and Incremental Life Time Cancer Risk formulas (ILTCR). When drinking Ni-contaminated water, humans are more at risk of developing cancer (0.0031) than Fe and Cu. Metal concentrations in water and brassica showed substantially more scattered behaviour on the plot and no meaningful relationship, although PCA and masked matrix correlation showed a fair association between Ni and Cu in brassica (r2: 0.46) and Fe and Ni in spinach (r2: 0.31). According to the study's findings, it is anticipated that special management and groundwater monitoring will be needed in the examined area to reduce the health risks related to drinking water that has been contaminated with metals.


Assuntos
Água Potável , Metais Pesados , Neoplasias , Poluentes do Solo , Animais , Humanos , Monitoramento Ambiental/métodos , Ecossistema , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Resíduos Industriais/análise , Solo , Medição de Risco
14.
J Environ Manage ; 351: 119773, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113789

RESUMO

In this work, industrial Kambara reactor desulphurization slag (KR slag) was indirectly carbonated. The effects of leaching time, leaching temperature, leaching agent types, and leaching agent concentration on the leaching ratio of calcium from KR slag were investigated. Subsequently, precipitated calcium carbonate (PCC) was synthesized by bubbling CO2 gas (flow rate of 15 mL/min) into 400 mL leaching solutions at 40 °C for 120 min with magnetic stirring at 300 rpm. It is found that calcium in KR slag can be selectively extracted using a diluted solution of ammonium acetate (CH3COONH4) or ammonium chloride (NH4Cl), while ammonium sulfate ((NH4)2SO4) solution is not suitable as leaching agent due to the formation of slightly soluble calcium sulfate (CaSO4). The leaching ratio of calcium is improved by extending the leaching time or increasing the leaching solvent concentration. However, leaching temperature has little effect on calcium extraction. After carbonating the NH4Cl- and CH3COONH4-leachate for 120 min, calcite and vaterite type PCC with a purity of 99% is synthesized. Each gram of KR slag can produce 0.794 g and 0.803 g PCC using NH4Cl and CH3COONH4 leaching agents respectively. Calculations show that 349.6 kg CO2 is captured by per ton of KR slag. The CO2 capture capacity of KR slag is significantly higher compared with previously studied materials.


Assuntos
Carbonato de Cálcio , Dióxido de Carbono , Resíduos Industriais/análise , Cálcio , Carbonatos , Aço
15.
J Environ Manage ; 351: 119835, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141347

RESUMO

Steel slag is a by-product of steelmaking which has emerged as a potential CO2 sequestration material due to its high reactivity and abundance. This research investigates the use of steel slag waste for the direct capture of carbon from air and its storage through mineral carbonation. Two abundant wastes, blast-furnace slag (BFS) and ladle slag (LS), were tested for their carbon sequestration potential, and the effects of operational parameters such as reaction time between CO2 and slag waste, temperature, liquid-solid ratio, and pressure on CO2 sequestration were determined. Quantitative and qualitative results reveal that much higher CO2 sequestration was achieved using LS compared to BFS after exposure to CO2 for 1 day at room temperature. By increasing the exposure time to four days, levels of CO2 sequestration increased gradually from 2.71% to 4.19% and 23.46%-28.21% for BFS and LS respectively. Increasing the temperature from 20 ± 2 °C to 90 ± 2 °C positively influenced CO2 sequestration in BFS, resulting in an enhancement from 3.45% to 13.21%. However, the impact on LS was insignificant, with sequestration levels rising from 27.72% to 29.90%. Moreover, better CO2 sequestration was observed for BFS than LS when the liquid-to-solid ratio increased from 3:1 to 4:1, whereupon the sequestration potential reached approximately 15% for BFS and 30% for LS at 90 ± 2 °C. Meanwhile, higher pressure reduced the sequestration potential of slag. The results of this study suggest that there is potential for scaling up the process to industrial applications and contributing to the reduction of CO2 emissions in the steelmaking industry.


Assuntos
Resíduos Industriais , Aço , Resíduos Industriais/análise , Sequestro de Carbono , Dióxido de Carbono , Minerais , Carbonatos
16.
Chemosphere ; 346: 140512, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879373

RESUMO

The augmentation of biogas production can be achieved by incorporating metallic nanoparticles as additives within anaerobic digestion. The objective of this current study is to examine the synthesis of Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles using the co-precipitation technique and assess its impact on anaerobic digestion using palm oil mill effluent (POME) as carbon source. The structural morphology and size of the synthesised trimetallic nanoparticles were analysed using a range of characterization techniques, such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX) . The average size of Fe-Ni-Zn and Fe-Co-Zn were 19-25.5 nm and 19.1-30.5 nm respectively. Further, investigation focused on examining the diverse concentrations of trimetallic nanoparticles, ranging from 0 to 50 mgL-1. The biogas production increased by 55.55% and 60.11% with Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles at 40 mgL-1 and 20 mgL-1, respectively. Moreover, the lowest biogas of 11.11% and 38.11% were found with 10 mgL-1 of Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles. The findings of this study indicated that the trimetallic nanoparticles exhibited interactions with anaerobes, thereby enhancing the degradation process of palm oil mill effluent (POME) and biogas production. The study underscores the potential efficacy of trimetallic nanoparticles as a viable supplement for the promotion of sustainable biogas generation.


Assuntos
Nanopartículas Metálicas , Óleos de Plantas , Óleo de Palmeira , Anaerobiose , Biocombustíveis/análise , Resíduos Industriais/análise
17.
Environ Monit Assess ; 196(1): 25, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064017

RESUMO

The present research consists of studying the characterization and treatment of the olive mill wastewater (OMWW) resulting from the olive industries of the region of Loukkos, Morocco. According to the national plan for green Morocco, the annual volumes of OMWW discharges increase with the expansion of the areas of olive plantations compared to agricultural activities. The study of the organic, mineral, and microbiological composition of the obtained OMWW showed that they are rich in microbiological (FMAT, Let M., and B.L.), mineral (total Kjeldhal nitrogen, orthophosphate, total phosphorus, sodium, potassium, calcium, copper, iron, zinc, manganese, and lead ions), and organic (COD, BOD5, and polyphenols) micropollutants with very high percentages that are higher than the standards in force. The treatment used in this study is the combined process of aerated lagooning/adsorption using powdered activated carbon after optimization of the experimental parameters (mass concentration of activated carbon (AC) and agitation rapidity (Ar)) by experiment design method. The obtained physicochemical parameters, such as pH, total suspended solids (TSS), chemical oxygen demand (COD), rate of discoloration, and polyphenol content of raw OMWW, were 4.87, 0.63, 80.3, 0.8, and 1.45 g/l, respectively. The results of these parameters for the treated OMWW were obtained in the order of 6.10, 0.22, 28, 0.28, and 0.44 g/l for pH, TSS, COD, discoloration rate, and polyphenol content, respectively. These results show that the proposed treatment significantly reduced acidity, TSS, COD, discoloration rate, and polyphenol contents, with a performance of about 25.26, 65, 65.13, 65, and 69.65%, respectively. This indicates that there is significant performance in the processing of exploited OMWW.


Assuntos
Olea , Águas Residuárias , Adsorção , Marrocos , Carvão Vegetal , Monitoramento Ambiental , Polifenóis , Minerais , Resíduos Industriais/análise , Azeite de Oliva , Eliminação de Resíduos Líquidos
18.
J Oleo Sci ; 72(12): 1113-1123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044135

RESUMO

The extraction of olive oil produces annually huge quantities of Olive Mill Wastewater (OMW) that are considered as a source of pollution due to their high concentration in organic matter. This study aims to valorize Olive mill wastewater and investigates the effect of the extraction method and solvents on the contents and profiling of phenolic compounds and their antioxidant potential. It was revealed that the liquid-liquid method using ethyl acetate is the most effective followed by the maceration using chloroform/methanol (1:1), their polyphenol contents are respectively at 1.17 g GAE/L of OMW and 1.07 g GAE/L of OMW. In addition, the antioxidant activity was studied using ABTS test. It has shown that the methanolic extract has the best antioxidant activity at 15.75 mg/L. Moreover, we noticed a negative correlation between the phenolic compounds' concentration and their antioxidant activity which indicates that the phenolic profile may not be the same in the different extracts that's why a primary identification of the phenolic profile using UHPLC-MS was monitored and the results showed different chromatographic profiles between the samples.


Assuntos
Olea , Águas Residuárias , Olea/química , Cromatografia Líquida , Antioxidantes , Espectrometria de Massas em Tandem , Fenóis/análise , Azeite de Oliva/análise , Resíduos Industriais/análise
19.
Environ Sci Pollut Res Int ; 30(50): 109481-109499, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37924176

RESUMO

This research was undertaken to optimize the phenolic compound removal from Olive Mill Wastewater (OMW) by sawdust and red clay as natural adsorbents. Fractional factorial experimental design at 25-1 was used in order to optimize the experimental conditions for high removal efficiency. Statistics ANOVA analysis, Fisher's test, and Student's test suggested that the adsorbent dose has the most significant influence on polyphenol removal for both adsorbents. The maximum removal of polyphenols by sawdust reached 49.6% at 60 °C by using 60 g/L of adsorbent dose, pH 2, reaction time of 24 h, and agitation speed of 80 rpm. Whereas, for red clay, 48.08% of polyphenols removal was observed under the same conditions for sawdust except the temperature of 25 °C instead of 60 °C. In addition, the thermodynamic parameters suggested spontaneous process for both adsorbents, endothermic for the sawdust and exothermic for red clay. Furthermore, the phytotoxicity effect of OMW on durum wheat (Triticum turgidum L. var. durum) and white bean (Phaseolus vulgaris L.) seed germination was investigated. The obtained results showed that the untreated OMW inhibited the seed germination of T. turgidum and P. vulgaris seeds. OMW treatment with red clay followed by dilution (95% water) resulted in 87 and 30% germination of P. vulgaris and T. turgidum, respectively. While, the treatment of OMW with sawdust and dilution at 95% resulted in 51 and 26% germination of P. vulgaris and T. turgidum, respectively.


Assuntos
Olea , Phaseolus , Humanos , Olea/química , Triticum , Germinação , Argila , Sementes/química , Resíduos Industriais/análise , Polifenóis/farmacologia , Águas Residuárias
20.
PeerJ ; 11: e15852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780384

RESUMO

The alarming pace of environmental degradation necessitates the treatment of wastewater from the oil industry in order to ensure the long-term sustainability of human civilization. Electrocoagulation has emerged as a promising method for optimizing the removal of chemical oxygen demand (COD) from wastewater obtained from oil refineries. Therefore, in this study, electrocoagulation was experimentally investigated, and a single-factorial approach was employed to identify the optimal conditions, taking into account various parameters such as current density, pH, COD concentration, electrode surface area, and NaCl concentration. The experimental findings revealed that the most favorable conditions for COD removal were determined to be 24 mA/cm2 for current density, pH 8, a COD concentration of 500 mg/l, an electrode surface area of 25.26 cm2, and a NaCl concentration of 0.5 g/l. Correlation equations were proposed to describe the relationship between COD removal and the aforementioned parameters, and double-factorial models were examined to analyze the impact of COD removal over time. The most favorable outcomes were observed after a reaction time of 20 min. Furthermore, an artificial neural network model was developed based on the experimental data to predict COD removal from wastewater generated by the oil industry. The model exhibited a mean absolute error (MAE) of 1.12% and a coefficient of determination (R2) of 0.99, indicating its high accuracy. These findings suggest that machine learning-based models have the potential to effectively predict COD removal and may even serve as viable alternatives to traditional experimental and numerical techniques.


Assuntos
Águas Residuárias , Purificação da Água , Humanos , Análise da Demanda Biológica de Oxigênio , Cloreto de Sódio , Resíduos Industriais/análise , Concentração de Íons de Hidrogênio , Eletrocoagulação/métodos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA