Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.575
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artif Cells Nanomed Biotechnol ; 52(1): 270-277, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38696132

RESUMO

Spherical gold/polyacrylic acid (Au/PAA) polymer-inorganic Janus nanoparticles (JNPs) with simultaneous therapeutic and targeting functions were fabricated. The obtained Au/PAA JNPs were further selectively functionalized with folic acid (FA) and thiol PEG amine (SH-PEG-NH2) on Au sides to provide superior biocompatibility and active targeting, while the other PAA sides were loaded with 5-aminolevulinic acid (5-ALA) to serve as a photosensitizer (PS) for photodynamic therapeutic (PDT) effects on MCF-7 cancer cells. The PS loading of 5-ALA was found to be 83% with an average hydrodynamic size and z-potential of 146 ± 0.8 nm and -6.40 mV respectively for FA-Au/PAA-ALA JNPs. The in vitro PDT study of the JNPs on MCF-7 breast cancer cells under 636 nm laser irradiation indicated the cell viability of 24.7% ± 0.5 for FA-Au/PAA-ALA JNPs at the IC50 value of 0.125 mM. In this regard, the actively targeted FA-Au/PAA-ALA JNPs treatment holds great potential for tumour therapy with high cancer cell-killing efficacy.


Assuntos
Ácido Aminolevulínico , Neoplasias da Mama , Ouro , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacologia , Ouro/química , Ouro/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Resinas Acrílicas/química , Feminino , Ácido Fólico/química , Sobrevivência Celular/efeitos dos fármacos
2.
Langmuir ; 40(20): 10589-10599, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728854

RESUMO

Optically transparent glass with antifogging and antibacterial properties is in high demand for endoscopes, goggles, and medical display equipment. However, many of the previously reported coatings have limitations in terms of long-term antifogging and efficient antibacterial properties, environmental friendliness, and versatility. In this study, inspired by catfish and sphagnum moss, a novel photoelectronic synergy antifogging and antibacterial coating was prepared by cross-linking polyethylenimine-modified titanium dioxide (PEI-TiO2), polyvinylpyrrolidone (PVP), and poly(acrylic acid) (PAA). The as-prepared coating could remain fog-free under hot steam for more than 40 min. The experimental results indicate that the long-term antifogging properties are due to the water absorption and spreading characteristics. Moreover, the organic-inorganic hybrid of PEI and TiO2 was first applied to enhance the antibacterial performance. The Staphylococcus aureus and the Escherichia coli growth inhibition rates of the as-prepared coating reached 97 and 96% respectively. A photoelectronic synergy antifogging and antibacterial mechanism based on the positive electrical and photocatalytic properties of PEI-TiO2 was proposed. This investigation provides insight into designing multifunctional bioinspired surface materials to realize antifogging and antibacterial that can be applied to medicine and daily lives.


Assuntos
Antibacterianos , Escherichia coli , Staphylococcus aureus , Titânio , Antibacterianos/farmacologia , Antibacterianos/química , Titânio/química , Titânio/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Polietilenoimina/química , Polietilenoimina/farmacologia , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Testes de Sensibilidade Microbiana , Povidona/química , Propriedades de Superfície
3.
J Orthop Surg Res ; 19(1): 274, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698396

RESUMO

OBJECTIVE: There are few effective osteoarthritis (OA) therapies. A novel injectable polyacrylamide hydrogel (iPAAG) previously demonstrated efficacy and safety up to week 26 in an open-label study of knee OA. Here we report longer-term effectiveness and safety data. METHODS: This multi-centre, open-label study included patients with symptomatic and radiographic knee OA. Primary outcome was WOMAC pain (0-100 scale) at 13 weeks, and patients continued to 26 weeks before entering a further 26-week extension phase. Secondary efficacy outcomes included WOMAC stiffness and function subscales, Patient Global Assessment (PGA) and proportion of OMERACT-OARSI responders. Safety outcomes were adverse events (AEs). RESULTS: 49 participants (31 women, mean age 70) received an ultrasound-guided, intra-articular injection of 6 ml iPAAG; 46 completed the extension phase to 52 weeks. There was a significant reduction in the WOMAC pain score from baseline to 52 weeks (- 17.7 points (95% CI - 23.1; - 12.4); p < 0.0001). Similar sustained improvements were observed for WOMAC stiffness (11.0 points; 95% CI - 17.0; - 4.9), physical function (18.0 points; 95% CI - 19.1; - 10.6), and PGA (16.3 points; 95% CI - 23.1; - 9.4). At 52 weeks 62.2% of patients were OMERACT-OARSI responders. From 26 to 52 weeks, 8 adverse effects (AE), including 1 serious AE (cerebrovascular accident) were reported in 5 subjects. None of the new adverse events were thought to be device related. CONCLUSION: This open-label study suggests persistent benefits and safety of iPAAG through 52 weeks after a single injection. TRIAL REGISTRATION: Clinicaltrials.gov NCT04179552.


Assuntos
Resinas Acrílicas , Osteoartrite do Joelho , Humanos , Feminino , Osteoartrite do Joelho/tratamento farmacológico , Resinas Acrílicas/administração & dosagem , Masculino , Idoso , Pessoa de Meia-Idade , Resultado do Tratamento , Seguimentos , Injeções Intra-Articulares , Fatores de Tempo , Hidrogéis/administração & dosagem , Idoso de 80 Anos ou mais
4.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792086

RESUMO

Photodynamic therapy (PDT) is a non-invasive anticancer treatment that uses special photosensitizer molecules (PS) to generate singlet oxygen and other reactive oxygen species (ROS) in a tissue under excitation with red or infrared light. Though the method has been known for decades, it has become more popular recently with the development of new efficient organic dyes and LED light sources. Here we introduce a ternary nanocomposite: water-soluble star-like polymer/gold nanoparticles (AuNP)/temoporfin PS, which can be considered as a third-generation PDT system. AuNPs were synthesized in situ inside the polymer molecules, and the latter were then loaded with PS molecules in an aqueous solution. The applied method of synthesis allows precise control of the size and architecture of polymer nanoparticles as well as the concentration of the components. Dynamic light scattering confirmed the formation of isolated particles (120 nm diameter) with AuNPs and PS molecules incorporated inside the polymer shell. Absorption and photoluminescence spectroscopies revealed optimal concentrations of the components that can simultaneously reduce the side effects of dark toxicity and enhance singlet oxygen generation to increase cancer cell mortality. Here, we report on the optical properties of the system and detailed mechanisms of the observed enhancement of the phototherapeutic effect. Combinations of organic dyes with gold nanoparticles allow significant enhancement of the effect of ROS generation due to surface plasmonic resonance in the latter, while the application of a biocompatible star-like polymer vehicle with a dextran core and anionic polyacrylamide arms allows better local integration of the components and targeted delivery of the PS molecules to cancer cells. In this study, we demonstrate, as proof of concept, a successful application of the developed PDT system for in vitro treatment of triple-negative breast cancer cells under irradiation with a low-power LED lamp (660 nm). We consider the developed nanocomposite to be a promising PDT system for application to other types of cancer.


Assuntos
Resinas Acrílicas , Ouro , Nanopartículas Metálicas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Ouro/química , Fotoquimioterapia/métodos , Nanopartículas Metálicas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Resinas Acrílicas/química , Linhagem Celular Tumoral , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Porfirinas/química , Porfirinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Polímeros/química , Antineoplásicos/farmacologia , Antineoplásicos/química
5.
Biosensors (Basel) ; 14(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38785696

RESUMO

This work presents a novel approach for tailoring molecularly imprinted polymers (MIPs) with a preliminary stage of atom transfer radical polymerization (ATRP), for a more precise definition of the imprinted cavity. A well-defined copolymer of acrylamide and N,N'-methylenebisacrylamide (PAAm-co-PMBAm) was synthesized by ATRP and applied to gold electrodes with the template, followed by a crosslinking reaction. The template was removed from the polymer matrix by enzymatic/chemical action. The surface modifications were monitored via electrochemical impedance spectroscopy (EIS), having the MIP polymer as a non-conducting film designed with affinity sites for CA15-3. The resulting biosensor exhibited a linear response to CA15-3 log concentrations from 0.001 to 100 U/mL in PBS or in diluted fetal bovine serum (1000×) in PBS. Compared to the polyacrylamide (PAAm) MIP from conventional free-radical polymerization, the ATRP-based MIP extended the biosensor's dynamic linear range 10-fold, improving low concentration detection, and enhanced the signal reproducibility across units. The biosensor demonstrated good sensitivity and selectivity. Overall, the work described confirmed that the process of radical polymerization to build an MIP material influences the detection capacity for the target substance and the reproducibility among different biosensor units. Extending this approach to other cancer biomarkers, the methodology presented could open doors to a new generation of MIP-based biosensors for point-of-care disease diagnosis.


Assuntos
Técnicas Biossensoriais , Polímeros Molecularmente Impressos , Polimerização , Polímeros Molecularmente Impressos/química , Impressão Molecular , Humanos , Espectroscopia Dielétrica , Polímeros/química , Acrilamidas/química , Reprodutibilidade dos Testes , Ouro/química , Resinas Acrílicas/química
6.
Int J Pharm ; 657: 124177, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697582

RESUMO

We present a promising method for producing amorphous drug particles using a nozzle-free ultrasonic nebulizer with polymers, specifically polyvinylpyrrolidone (PVP), poly(acrylic acid) (PAA), and Eudragit® S 100 (EUD). Model crystalline phase drugs-Empagliflozin, Furosemide, and Ilaprazole-are selected. This technique efficiently produces spherical polymer-drug composite particles and demonstrates enhanced stability against humidity and thermal conditions, compared to the drug-only amorphous particles. The composite particles exhibit improved water dissolution compared to the original crystalline drugs, indicating potential bioavailability enhancements. While there are challenges, including the need for continuous water supply for ultrasonic component cooling, dependency on the solubility of polymers and drugs in volatile organic solvents, and mildly elevated temperatures for solvent evaporation, our method offers significant advantages over traditional approaches. It provides a straightforward, flexible process adaptable to various drug-polymer combinations and consistently yields spherical amorphous solid dispersion (ASD) particles with a narrow size distribution. These attributes make our method a valuable advancement in pharmaceutical drug formulation and delivery.


Assuntos
Nebulizadores e Vaporizadores , Tamanho da Partícula , Polímeros , Polímeros/química , Estabilidade de Medicamentos , Solubilidade , Composição de Medicamentos/métodos , Resinas Acrílicas/química , Povidona/química , Ultrassom , Ácidos Polimetacrílicos/química , Furosemida/química , Química Farmacêutica/métodos
7.
ACS Appl Mater Interfaces ; 16(21): 27065-27074, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748094

RESUMO

Wearable biomedical sensors have enabled noninvasive and continuous physiological monitoring for daily health management and early detection of chronic diseases. Among biomedical sensors, wearable pH sensors attracted significant interest, as pH influences most biological reactions. However, conformable pH sensors that have sweat absorption ability, are self-adhesive to the skin, and are gas permeable remain largely unexplored. In this study, we present a pioneering approach to this problem by developing a Janus membrane-based pH sensor with self-adhesiveness on the skin. The sensor is composed of a hydrophobic polyurethane-polydimethylsiloxane porous hundreds nanometer-thick substrate and a hydrophilic poly(vinyl alcohol)-poly(acrylic acid) porous nanofiber layer. This Janus membrane exhibits a thickness of around 10 µm, providing a conformable adhesion to the skin. The simultaneous realization of solution absorption, gas permeability, and self-adhesiveness makes it suitable for long-term continuous monitoring without compromising the comfort of the wearer. The pH sensor was tested successfully for continuous monitoring for 7.5 h, demonstrating its potential for stable analysis of skin health conditions. The Janus membrane-based pH sensor holds significant promise for comprehensive skin health monitoring and wearable biomedical applications.


Assuntos
Poliuretanos , Suor , Dispositivos Eletrônicos Vestíveis , Concentração de Íons de Hidrogênio , Humanos , Suor/química , Poliuretanos/química , Permeabilidade , Resinas Acrílicas/química , Membranas Artificiais , Dimetilpolisiloxanos/química , Adesividade , Nanofibras/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Porosidade , Gases/química , Gases/análise
8.
Fr J Urol ; 34(2): 102585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38717460

RESUMO

INTRODUCTION: The aim was to compare the efficacy of polyacrylate polyalcohol copolymer (PPC) injections and dextranomer/hyaluronic acid (Dx/Ha) injections for the endoscopic treatment of vesicoureteral reflux in children. MATERIAL: This retrospective cohort study included 189 young patients who had endoscopic treatment for vesicoureteral reflux from January 2012 to December 2019 in our center. Among them, 101 had PCC injections and 88 had Dx/Ha injections. Indications for treatment were vesicoureteral reflux with breakthrough urinary tract infection or vesicoureteral reflux with renal scarring on dimercaptosuccinic acid (DMSA) renal scan. Endoscopic injection was performed under the ureteral meatus. Early complications, recurrence of febrile urinary tract infection and vesicoureteral reflux after endoscopic injection, ureteral obstruction and reintervention were evaluated and compared between groups. RESULTS: Endoscopic treatment was successful in 90.1% of patients who had PPC injection and in 82% of patients who had Dx/Ha injection. Four patients presented a chronic ureteral obstruction after PPC injection, one with a complete loss of function of the dilated kidney. One patient in the Dx/Ha group presented a postoperative ureteral dilatation after 2 injections. CONCLUSION: Despite a similar success rate after PPC and Dx/Ha injections for endoscopic treatment of VUR, there may be a greater risk of postoperative ureteral obstruction after PPC injections. The benefit of using PPC to prevent febrile UTI and renal scarring in children with low-grade VUR does not seem to outweigh the risk of chronic ureteral obstruction.


Assuntos
Dextranos , Ácido Hialurônico , Obstrução Ureteral , Refluxo Vesicoureteral , Humanos , Refluxo Vesicoureteral/terapia , Estudos Retrospectivos , Ácido Hialurônico/administração & dosagem , Ácido Hialurônico/uso terapêutico , Ácido Hialurônico/efeitos adversos , Feminino , Masculino , Dextranos/uso terapêutico , Dextranos/administração & dosagem , Dextranos/efeitos adversos , Pré-Escolar , Resultado do Tratamento , Lactente , Resinas Acrílicas/uso terapêutico , Resinas Acrílicas/administração & dosagem , Criança , Injeções , Estudos de Coortes , Ureteroscopia/efeitos adversos
9.
Int J Biol Macromol ; 269(Pt 1): 131971, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705336

RESUMO

A dual pH/temperature sensitive core-shell nanoformulation has been developed based on ZIF-8 coated with chitosan-poly(N-isopropyl acrylamide) (CS-PNIPAAm) for co-delivery of doxorubicin (DOX) and carboplatin (CBP) in breast cancer cells. The resulting nanoparticles (NPs) had particle sizes around 200 nm and a zeta potential of about +30 mV. The CBP and DOX loading contents in the final NPs were 11.6 % and 55.54 %, respectively. NPs showed a pH and thermoresponsive drug release profile with a sustained prolonged release under physiological conditions. The in vitro cytotoxicity experiments showed a significant synergism of CBP and DOX to induce the IC50 of 1.96 µg/mL in MCF-7 cells and 4.54 µg/mL in MDA-MB-231 cells. Also, the final NPs were safer than free DOX and CBP on normal cells. The in vitro study confirmed the higher potency of the designed NPs in combination therapy against breast cancer cells with lower side effects than free drugs.


Assuntos
Resinas Acrílicas , Neoplasias da Mama , Carboplatina , Quitosana , Doxorrubicina , Portadores de Fármacos , Liberação Controlada de Fármacos , Nanopartículas , Humanos , Quitosana/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Concentração de Íons de Hidrogênio , Nanopartículas/química , Resinas Acrílicas/química , Feminino , Carboplatina/farmacologia , Carboplatina/química , Portadores de Fármacos/química , Células MCF-7 , Linhagem Celular Tumoral , Temperatura , Imidazóis/química , Imidazóis/farmacologia , Estruturas Metalorgânicas/química , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Tamanho da Partícula
10.
Exp Dermatol ; 33(5): e15098, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770557

RESUMO

Healing of complex wounds requires dressings that must, at least, not hinder and should ideally promote the activity of key healing cells, in particular fibroblasts. This in vitro study assessed the effects of three wound-dressings (a pure Ca2+ alginate: Algostéril®, a Ca2+ alginate + carboxymethylcellulose: Biatain alginate® and a polyacrylate impregnated with lipido-colloid matrix: UrgoClean®) on dermal fibroblast activity. The results showed the pure calcium alginate to be non-cytotoxic, whereas the other wound-dressings showed moderate to strong cytotoxicity. The two alginates stimulated fibroblast migration and proliferation, whereas the polyacrylate altered migration and had no effect on proliferation. The pure Ca2+ alginate significantly increased the TGF-ß-induced fibroblast activation, which is essential to healing. This activation was confirmed by a significant increase in Vascular endothelial growth factor (VEGF) secretion and a higher collagen production. The other dressings reduced these fibroblast activities. The pure Ca2+ alginate was also able to counteract the inhibitory effect of NK cell supernatants on fibroblast migration. These in vitro results demonstrate that tested wound-dressings are not equivalent for fibroblast activation. Only Algostéril was found to promote all the fibroblast activities tested, which could contribute to its healing efficacy demonstrated in the clinic.


Assuntos
Alginatos , Movimento Celular , Proliferação de Células , Fibroblastos , Fator A de Crescimento do Endotélio Vascular , Cicatrização , Fibroblastos/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Humanos , Alginatos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Colágeno/metabolismo , Bandagens , Fator de Crescimento Transformador beta/metabolismo , Carboximetilcelulose Sódica , Células Cultivadas , Células Matadoras Naturais/efeitos dos fármacos , Resinas Acrílicas , Ácidos Hexurônicos , Ácido Glucurônico , Pele
11.
Nanoscale ; 16(17): 8573-8582, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602025

RESUMO

Advanced nanotechniques and the corresponding complex nanostructures they produce represent some of the most powerful tools for developing novel drug delivery systems (DDSs). In this study, a side-by-side electrospraying process was developed for creating double-chamber nanoparticles in which Janus soluble polyvinylpyrrolidone (PVP) patches were added to the sides of Eudragit RL100 (RL100) particles. Both sides were loaded with the poorly water-soluble drug paracetamol (PAR). Scanning electron microscope results demonstrated that the electrosprayed nanoparticles had an integrated Janus nanostructure. Combined with observations of the working processes, the microformation mechanism for creating the Janus PVP patches was proposed. XRD, DSC, and ATR-FTIR experiments verified that the PAR drug was present in the Janus particles in an amorphous state due to its fine compatibility with the polymeric matrices. In vitro dissolution tests verified that the Janus nanoparticles were able to provide a typical biphasic drug release profile, with the PVP patches providing 43.8 ± 5.4% drug release in the first phase in a pulsatile manner. In vivo animal experiments indicated that the Janus particles, on one hand, could provide a faster therapeutic effect than the electrosprayed sustained-release RL100 nanoparticles. On the other hand, they could maintain a therapeutic blood drug concentration for a longer period. The controlled release mechanism of the drug was proposed. The protocols reported here pioneer a new process-structure-performance relationship for developing Janus-structure-based advanced nano-DDSs.


Assuntos
Acetaminofen , Nanopartículas , Povidona , Acetaminofen/química , Acetaminofen/farmacocinética , Acetaminofen/administração & dosagem , Povidona/química , Animais , Nanopartículas/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Resinas Acrílicas/química , Masculino
12.
ACS Appl Bio Mater ; 7(5): 3033-3040, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38587908

RESUMO

Regenerative medicine based on cell therapy has emerged as a promising approach for the treatment of various medical conditions. However, the success of cell therapy heavily relies on the development of suitable injectable hydrogels that can encapsulate cells and provide a conducive environment for their survival, proliferation, and tissue regeneration. Herein, we address the medical need for cyto- and biocompatible injectable hydrogels by reporting on the synthesis of a hydrogel-forming thermosensitive copolymer. The copolymer was synthesized by grafting poly(N-isopropylacrylamide-co-carboxymethyl acrylate) (PNIPAM-COOH) onto chitosan through amide coupling. This chemical modification resulted in the formation of hydrogels that exhibit a sol-gel transition with an onset at approximately 27 °C, making them ideal for use in injectable applications. The hydrogels supported the survival and proliferation of cells for several days, which is critical for cell encapsulation. Furthermore, the study evaluates the addition of collagen/chitosan hybrid microspheres to support the adhesion of mesenchymal stem cells within the hydrogels. Altogether, these results demonstrate the potential of the PNIPAM-chitosan thermogel for cell encapsulation and its possible applications in regenerative medicine.


Assuntos
Resinas Acrílicas , Materiais Biocompatíveis , Quitosana , Hidrogéis , Teste de Materiais , Células-Tronco Mesenquimais , Microesferas , Quitosana/química , Resinas Acrílicas/química , Resinas Acrílicas/síntese química , Hidrogéis/química , Hidrogéis/síntese química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos
13.
J Colloid Interface Sci ; 668: 335-342, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678888

RESUMO

Membrane receptors perform a diverse range of cellular functions, accounting for more than half of all drug targets. The mechanical microenvironment regulates cell behaviors and phenotype. However, conventional analysis methods of membrane receptors often ignore the effects of the extracellular matrix stiffness, failing to reveal the heterogeneity of cell membrane receptors expression. Herein, we developed an in-situ surface-enhanced Raman scattering (SERS) imaging method to visualize single-cell membrane receptors on substrates with different stiffness. Two SERS substrates, Au@4-mercaptobenzonitrile@Ag@Sgc8c and Au@4-pethynylaniline@Ag@SYL3c, were employed to specifically target protein tyrosine kinase-7 (PTK7) and epithelial cell adhesion molecule (EpCAM), respectively. The polyacrylamide (PA) gels with tunable stiffness (2.5-25 kPa) were constructed to mimic extracellular matrix. The simultaneous SERS imaging of dual membrane receptors on single cancer cells on substrates with different stiffness was achieved. Our findings reveal decreased expression of PTK7 and EpCAM on cells cultured on stiffer substrates and higher migration ability of the cells. The results elucidate the heterogeneity of membrane receptors expression of cells cultured on the substrates with different stiffness. This single-cell analysis method offers an in-situ platform for investigating the impacts of extracellular matrix stiffness on the expression of membrane receptors, providing insights into the role of cell membrane receptors in cancer metastasis.


Assuntos
Molécula de Adesão da Célula Epitelial , Matriz Extracelular , Análise de Célula Única , Análise Espectral Raman , Matriz Extracelular/metabolismo , Humanos , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ouro/química , Resinas Acrílicas/química , Prata/química , Propriedades de Superfície , Linhagem Celular Tumoral , Compostos de Anilina/química , Tamanho da Partícula , Moléculas de Adesão Celular
15.
Anal Chem ; 96(18): 6906-6913, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656893

RESUMO

Glycerol tributyrate as a low-density lipoprotein plays a crucial role in drug development and food safety. In this work, a novel high-stability fiber optic sensor for glyceryl tributyrate based on the poly(acrylic acid) (PAA) and chitosan (CS) composite hydrogel embedding method is first proposed. Compared with traditional functionalization, the lipase in a polymer network structure used in this article can not only avoid chemical reactions that cause damage to the enzyme structure but also avoid the instability of ionic bonds and physical adsorption. Therefore, the PAA/CS hydrogel method proposed in this article can effectively retain enzyme structure. First, the impact of different layers (one to five layers) of PAA/CS on pH sensing performance was explored, and it was determined that layers 1-3 could be used for subsequent sensing experiments. Within the linear detection range of 0.5-10 mM, the detection sensitivities of the one to three layers of the biosensor are divided into 0.65, 0.95, and 1.51 nm/mM, respectively, with the three layers having the best effect. When the number of coating layers is three, the detection limit of the sensor is 0.47 mM, meeting the millimole level detection standard for anticancer requirement. Furthermore, the stability and selectivity of the sensor (in the presence of hemoglobin, urea, cholesterol, acetylcholine, and glucose) were analyzed. The three-layer sensor is used for sample detection. At concentrations of 1-10 mM, the absolute value of the recovery percentage (%) is 82-99%, which can accurately detect samples. The sensor proposed in this paper has the advantages of low sample consumption, high sensitivity, simple structure, and label-free measurement. The enzyme-embedding method provides a new route for rapid and reliable glyceryl tributyrate detection, which has potential applications in food safety as well as the development of anticancer drugs.


Assuntos
Resinas Acrílicas , Quitosana , Fibras Ópticas , Ressonância de Plasmônio de Superfície , Resinas Acrílicas/química , Quitosana/química , Hidrogéis/química , Limite de Detecção , Lipase/química , Lipase/metabolismo , Técnicas Biossensoriais/métodos
16.
Anal Chem ; 96(18): 7014-7021, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659215

RESUMO

Membrane-based lateral flow immunoassays (LFAs) have been employed as early point-of-care (POC) testing tools in clinical settings. However, the varying membrane properties, uncontrollable sample transport in LFAs, visual readout, and required large sample volumes have been major limiting factors in realizing needed sensitivity and desirable precise quantification. Addressing these challenges, we designed a membrane-free system in which the desirable three-dimensional (3D) structure of the detection zone is imitated and used a small pump for fluid flow and fluorescence as readout, all the while maintaining a one-step assay protocol. A hydrogel-like protein-polyelectrolyte complex (PPC) within a polyelectrolyte multilayer (PEM) was developed as the test line by complexing polystreptavidin (pSA) with poly(diallyldimethylammonium chloride) (PDDA), which in turn was layered with poly(acrylic acid) (PAA) resulting in a superior 3D streptavidin-rich test line. Since the remainder of the microchannel remains material-free, good flow control is achieved, and with the total volume of 20 µL, 7.5-fold smaller sample volumes can be used in comparison to conventional LFAs. High sensitivity with desirable reproducibility and a 20 min total assay time were achieved for the detection of NT-proBNP in plasma with a dynamic range of 60-9000 pg·mL-1 and a limit of detection of 56 pg·mL-1 using probe antibody-modified fluorescence nanoparticles. While instrument-free visual detection is no longer possible, the developed lateral flow channel platform has the potential to dramatically expand the LFA applicability, as it overcomes the limitations of membrane-based immunoassays, ultimately improving the accuracy and reducing the sample volume so that finger-prick analyses can easily be done in a one-step assay for analytes present at very low concentrations.


Assuntos
Biomarcadores , Compostos de Amônio Quaternário , Humanos , Imunoensaio/métodos , Biomarcadores/análise , Biomarcadores/sangue , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/análise , Limite de Detecção , Resinas Acrílicas/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/sangue , Polietilenos/química , Poliestirenos/química
17.
Lab Chip ; 24(9): 2440-2453, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38600866

RESUMO

Extensive research has demonstrated the potential of cell viscoelastic properties as intrinsic indicators of cell state, functionality, and disease. For this, several microfluidic techniques have been developed to measure cell viscoelasticity with high-throughput. However, current microchannel designs introduce complex stress distributions on cells, leading to inaccuracies in determining the stress-strain relationship and, consequently, the viscoelastic properties. Here, we introduce a novel approach using hyperbolic microchannels that enable precise measurements under a constant extensional stress and offer a straightforward stress-strain relationship, while operating at a measurement rate of up to 100 cells per second. We quantified the stresses acting in the channels using mechanical calibration particles made from polyacrylamide (PAAm) and found that the measurement buffer, a solution of methyl cellulose and phosphate buffered saline, shows strain-thickening following a power law up to 200 s-1. By measuring oil droplets with varying viscosities, we successfully detected changes in the relaxation times of the droplets and our approach could be used to get the interfacial tension and viscosity of liquid-liquid droplet systems from the same measurement. We further applied this methodology to PAAm microgel beads, demonstrating the accurate recovery of Young's moduli and the near-ideal elastic behavior of the beads. To explore the influence of altered cell viscoelasticity, we treated HL60 human leukemia cells with latrunculin B and nocodazole, resulting in clear changes in cell stiffness while relaxation times were only minimally affected. In conclusion, our approach offers a streamlined and time-efficient solution for assessing the viscoelastic properties of large cell populations and other microscale soft particles.


Assuntos
Elasticidade , Técnicas Analíticas Microfluídicas , Viscosidade , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Resinas Acrílicas/química , Dispositivos Lab-On-A-Chip , Ensaios de Triagem em Larga Escala/instrumentação
18.
Dent Med Probl ; 61(2): 249-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652924

RESUMO

BACKGROUND: As polyether ether ketone (PEEK) is a relatively new material in dentistry, its bonding properties with regard to dental acrylic base materials are not fully known. To ensure the long-term success of removable dentures with a PEEK framework, the base materials must be well bonded to each other. OBJECTIVES: The study aimed to investigate the effects of different kinds of surface roughening treatment on PEEK and acrylic resin bonding. MATERIAL AND METHODS: Eighty PEEK specimens (N = 80) were randomly divided into 5 groups (n = 16 per group) and subjected to various surface roughening treatment (control, grinding, sandblasting, tribochemical silica coating (CoJet), and sulfuric acid etching). Heat-polymerized acrylic resin was applied to the treated surfaces of the PEEK specimens. The shear bond strength (SBS) test, environmental scanning electron microscopy (ESEM) analysis and three-dimensional (3D) surface topography analysis were performed. The statistical analysis of the data was conducted using the analysis of variance (ANOVA) and Tukey's multiple comparison test. RESULTS: The one-way ANOVA showed significant differences in the SBS values between the groups (p = 0.001). Sandblasting, tribochemical silica coating and sulfuric acid etching resulted in high SBS values (p = 0.001). The highest SBS values were observed in the sulfuric acid etching group (8.83 ±3.63 MPa), while the lowest SBS values were observed in the control group (3.33 ±2.50 MPa). CONCLUSIONS: The additional roughening treatment applied to the PEEK surface increases the bond strength with heat-polymerized acrylic resin.


Assuntos
Resinas Acrílicas , Benzofenonas , Colagem Dentária , Cetonas , Polietilenoglicóis , Polímeros , Propriedades de Superfície , Projetos Piloto , Cetonas/química , Polietilenoglicóis/química , Resinas Acrílicas/química , Microscopia Eletrônica de Varredura , Teste de Materiais , Humanos , Resistência ao Cisalhamento , Ácidos Sulfúricos/química , Análise do Estresse Dentário
19.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612578

RESUMO

Ultraviolet radiation (UVR) has various effects on human cells and tissues, which can lead to a variety of skin diseases and cause inconvenience to people's lives. Among them, solar dermatitis is one of the important risk factors for malignant melanoma, so prevention and treatment of solar dermatitis is very necessary. Additionally, liquiritin (LQ) has anti-inflammatory effects. In this study, we aimed to evaluate the anti-inflammatory and pro-wound healing effects of liquiritin carbomer gel cold paste (LQ-CG-CP) in vitro and in vivo. The results of MTT experiments showed no cytotoxicity of LQ at concentrations of 40 µg/mL and below and cell damage at UVB irradiation doses above 60 mJ/cm2. Moreover, LQ can promote cell migration. ELISA results also showed that LQ inhibited the elevation of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) after UVB irradiation. In the mouse model of solar dermatitis, 2% LQ-CG-CP showed the best therapeutic efficacy for wound healing and relief of itching compared to MEIBAO moist burn moisturizer (MEBO). What is more, the results of skin histopathological examination show that LQ-CG-CP promotes re-epithelialization, shrinks wounds, and promotes collagen production, thus promoting wound healing. Simultaneously, LQ-CG-CP reduced TNF-α, IL-1ß, and IL-6 expression. In addition, LQ-CG-CP was not observed to cause histopathological changes and blood biochemical abnormalities in mice. Overall, LQ-CG-CP has great potential for the treatment of solar dermatitis.


Assuntos
Resinas Acrílicas , Dermatite , Flavanonas , Glucosídeos , Queimadura Solar , Animais , Camundongos , Humanos , Raios Ultravioleta , Interleucina-6 , Fator de Necrose Tumoral alfa , Cicatrização , Interleucina-1beta , Anti-Inflamatórios
20.
BMC Pulm Med ; 24(1): 203, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658883

RESUMO

BACKGROUND: Bronchial arterial embolization (BAE) has been accepted as an effective treatment for bronchiectasis-related hemoptysis. However, rare clinical trials compare different sizes of specific embolic agents. This study aims to evaluate whether different Embosphere microsphere sizes change the outcome of BAE. METHODS: A retrospective review was conducted on consecutive patients with bronchiectatic hemoptysis who were scheduled to undergo BAE treatment during a period from January 2018 to December 2022. The patients received BAE using microspheres of different sizes: group A patients were treated with 500-750 µm microspheres, and group B patients were treated with 700-900 µm microspheres. The cost of embolic microspheres (Chinese Yuan, CNY), duration of hospitalization, complications, and hemoptysis-free survival were compared between patients in group A and those in group B. A Cox proportional hazards regression model was used to identify predictors of recurrent hemoptysis. RESULTS: Median follow-up was 30.2 months (range, 20.3-56.5 months). The final analysis included a total of 112 patients (49-77 years of age; 45 men). The patients were divided into two groups: group A (N = 68), which received 500-750 µm Embosphere microspheres, and group B (N = 44), which received 700-900 µm Embosphere microspheres. Except for the cost of embolic microspheres(group A,5314.8 + 1301.5 CNY; group B, 3644.5 + 1192.3 CNY; p = 0.042), there were no statistically significant differences in duration of hospitalization (group A,7.2 + 1.4 days; group B, 8 + 2.4days; p = 0.550), hemoptysis-free survival (group A, 1-year, 2-year, 3-year, 85.9%, 75.8%, 62.9%; group B, 1-year, 2-year, 3-year, 88.4%, 81.2%,59.4%;P = 0.060), and complications(group A,26.5%; group B, 38.6%; p = 0.175) between the two groups. No major complications were observed. The multivariate analysis results revealed that the presence of cystic bronchiectasis (OR 1.61, 95% CI 1.12-2.83; P = 0.001) and systemic arterial-pulmonary shunts (SPSs) (OR 1.52, 95% CI 1.10-2.72; P = 0.028) were independent risk factors for recurrent bleeding. CONCLUSIONS: For the treatment of BAE in patients with bronchiectasis-related hemoptysis, 500-750 µm diameter Embosphere microspheres have a similar efficacy and safety profile compared to 700-900 µm diameter Embosphere microspheres, especially for those without SPSs or cystic bronchiectasis. Furthermore, the utilization of large-sized (700-900 µm) Embosphere microspheres is associated with the reduced cost of an embolic agent.


Assuntos
Resinas Acrílicas , Artérias Brônquicas , Bronquiectasia , Embolização Terapêutica , Hemoptise , Microesferas , Humanos , Hemoptise/terapia , Hemoptise/etiologia , Estudos Retrospectivos , Masculino , Feminino , Embolização Terapêutica/métodos , Pessoa de Meia-Idade , Idoso , Bronquiectasia/complicações , Bronquiectasia/terapia , Gelatina/administração & dosagem , Gelatina/uso terapêutico , Resultado do Tratamento , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA