Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 30(8): 1607-1618, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38349998

RESUMO

PURPOSE: The incidence of multiple primary malignancies (MPM) involving lung cancer has increased in recent decades. There is an urgent need to clarify the genetic profile of such patients and explore more efficacious therapy for them. EXPERIMENTAL DESIGN: Peripheral blood samples from MPM involving patients with lung cancer were assessed by whole-exome sequencing (WES), and the identified variants were referenced for pathogenicity using the public available database. Pathway enrichment analysis of mutated genes was performed to identify the most relevant pathway. Next, the effects of mutations in relevant pathway on function and response to targeted drugs were verified by in vitro and in vivo experiments. RESULTS: Germline exomes of 71 patients diagnosed with MPM involving lung cancer were sequenced. Pathway enrichment analysis shows that the homologous recombination repair (HRR) pathway has the strongest correlation. Moreover, HRR genes, especially key Holliday junction resolvases (HJR) genes (GEN1, BLM, SXL4, and RMI1), were most frequently mutated, unlike the status in the samples from patients with lung cancer only. Next, we identified a total of seven mutations in HJR genes led to homologous recombination DNA repair deficiency and rendered lung cancer cells sensitive to PARP inhibitor treatment, both in vitro and in vivo. CONCLUSIONS: This is the first study to map the profile of germline mutations in patients with MPM involving lung cancer. This study may shed light on early prevention and novel targeted therapies for MPM involving patients with lung cancer with HJR mutations.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Neoplasias Primárias Múltiplas , Humanos , Resolvases de Junção Holliday/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutação em Linhagem Germinativa , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Antineoplásicos/uso terapêutico
2.
Elife ; 112022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36190107

RESUMO

During the development of humoral immunity, activated B lymphocytes undergo vigorous proliferative, transcriptional, metabolic, and DNA remodeling activities; hence, their genomes are constantly exposed to an onslaught of genotoxic agents and processes. Branched DNA intermediates generated during replication and recombinational repair pose genomic threats if left unresolved and so, they must be eliminated by structure-selective endonucleases to preserve the integrity of these DNA transactions for the faithful duplication and propagation of genetic information. To investigate the role of two such enzymes, GEN1 and MUS81, in B cell biology, we established B-cell conditional knockout mouse models and found that deletion of GEN1 and MUS81 in early B-cell precursors abrogates the development and maturation of B-lineage cells while the loss of these enzymes in mature B cells inhibit the generation of robust germinal centers. Upon activation, these double-null mature B lymphocytes fail to proliferate and survive while exhibiting transcriptional signatures of p53 signaling, apoptosis, and type I interferon response. Metaphase spreads of these endonuclease-deficient cells showed severe and diverse chromosomal abnormalities, including a preponderance of chromosome breaks, consistent with a defect in resolving recombination intermediates. These observations underscore the pivotal roles of GEN1 and MUS81 in safeguarding the genome to ensure the proper development and proliferation of B lymphocytes.


Assuntos
Endonucleases , Interferon Tipo I , Animais , Camundongos , Linfócitos B/metabolismo , DNA , Endonucleases/genética , Endonucleases/metabolismo , Resolvases de Junção Holliday/genética , Resolvases de Junção Holliday/metabolismo , Interferon Tipo I/metabolismo , Proteína Supressora de Tumor p53 , Genoma
3.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768753

RESUMO

DNA lesions that impede fork progression cause replisome stalling and threaten genome stability. Bacillus subtilis RecA, at a lesion-containing gap, interacts with and facilitates DisA pausing at these branched intermediates. Paused DisA suppresses its synthesis of the essential c-di-AMP messenger. The RuvAB-RecU resolvasome branch migrates and resolves formed Holliday junctions (HJ). We show that DisA prevents DNA degradation. DisA, which interacts with RuvB, binds branched structures, and reduces the RuvAB DNA-dependent ATPase activity. DisA pre-bound to HJ DNA limits RuvAB and RecU activities, but such inhibition does not occur if the RuvAB- or RecU-HJ DNA complexes are pre-formed. RuvAB or RecU pre-bound to HJ DNA strongly inhibits DisA-mediated synthesis of c-di-AMP, and indirectly blocks cell proliferation. We propose that DisA limits RuvAB-mediated fork remodeling and RecU-mediated HJ cleavage to provide time for damage removal and replication restart in order to preserve genome integrity.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Resolvases de Junção Holliday/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Quebra Cromossômica , DNA Bacteriano/metabolismo , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Escherichia coli/genética , Magnésio/metabolismo
4.
J Mol Biol ; 433(13): 167014, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33933468

RESUMO

Much of our understanding of the homologous recombination (HR) machinery hinges on studies using Escherichia coli as a model organism. Interestingly enough, studies on the HR machinery in different bacterial species casts doubt on the universality of the E. coli paradigm. The human pathogen Mycobacterium tuberculosis encodes two Holliday junction (HJ)-resolvase paralogues, namely RuvC and RuvX; however, insights into their structural features and functional relevance is still limited. Here, we report on structure-guided functional studies of the M. tuberculosis RuvX HJ resolvase (MtRuvX). The crystalline MtRuvX is a dimer in the asymmetric unit, and each monomer has a RNAse H fold vis-à-vis RuvC-like nucleases. Interestingly, MtRuvX also contains some unique features, including the residues essential for ATP binding/coordination of Mg2+ ions. Indeed, MtRuvX exhibited an intrinsic, robust ATPase activity, which was further accentuated by DNA cofactors. Structure-guided substitutions of single residues at the ATP binding/Mg2+coordination sites while markedly attenuating the ATPase activity completely abrogated HJ cleavage, indicating an unanticipated relationship between ATP hydrolysis and DNA cleavage. However, the affinity of ATPase-deficient mutants for the HJ was not impaired. Contrary to RuvC, MtRuvX exhibits relaxed substrate specificity, cleaving a variety of branched DNA/RNA substrates. Notably, ATP hydrolysis plays a regulatory role, rendering MtRuvX from a canonical HJ resolvase to a DNA/RNA non-sequence specific endonuclease, indicating a link between HJ resolvase and nucleic acid metabolism. These findings provide novel insights into the structure and dual-functional activities of MtRuvX, and suggest that it may play an important role in DNA/RNA metabolism.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Resolvases de Junção Holliday/metabolismo , Mycobacterium tuberculosis/enzimologia , RNA/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , DNA/química , Clivagem do DNA , Resolvases de Junção Holliday/química , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA/química , Especificidade por Substrato
5.
Cell Rep ; 33(3): 108289, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086055

RESUMO

MutSα and MutSß play important roles in DNA mismatch repair and are linked to inheritable cancers and degenerative disorders. Here, we show that MSH2 and MSH3, the two components of MutSß, bind SLX4 protein, a scaffold for the assembly of the SLX1-SLX4-MUS81-EME1-XPF-ERCC1 (SMX) trinuclease complex. SMX promotes the resolution of Holliday junctions (HJs), which are intermediates in homologous recombinational repair. We find that MutSß binds HJs and stimulates their resolution by SLX1-SLX4 or SMX in reactions dependent upon direct interactions between MutSß and SLX4. In contrast, MutSα does not stimulate HJ resolution. MSH3-depleted cells exhibit reduced sister chromatid exchanges and elevated levels of homologous recombination ultrafine bridges (HR-UFBs) at mitosis, consistent with defects in the processing of recombination intermediates. These results demonstrate a role for MutSß in addition to its established role in the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease.


Assuntos
Resolvases de Junção Holliday/metabolismo , Proteínas MutS/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Instabilidade Genômica , Células HEK293 , Resolvases de Junção Holliday/fisiologia , Humanos , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS/metabolismo , Ligação Proteica , Recombinases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae
6.
Proc Natl Acad Sci U S A ; 116(50): 25068-25077, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767757

RESUMO

Extracellular DNA (eDNA) is a critical component of the extracellular matrix of bacterial biofilms that protects the resident bacteria from environmental hazards, which includes imparting significantly greater resistance to antibiotics and host immune effectors. eDNA is organized into a lattice-like structure, stabilized by the DNABII family of proteins, known to have high affinity and specificity for Holliday junctions (HJs). Accordingly, we demonstrated that the branched eDNA structures present within the biofilms formed by NTHI in the middle ear of the chinchilla in an experimental otitis media model, and in sputum samples recovered from cystic fibrosis patients that contain multiple mixed bacterial species, possess an HJ-like configuration. Next, we showed that the prototypic Escherichia coli HJ-specific DNA-binding protein RuvA could be functionally exchanged for DNABII proteins in the stabilization of biofilms formed by 3 diverse human pathogens, uropathogenic E. coli, nontypeable Haemophilus influenzae, and Staphylococcus epidermidis Importantly, while replacement of DNABII proteins within the NTHI biofilm matrix with RuvA was shown to retain similar mechanical properties when compared to the control NTHI biofilm structure, we also demonstrated that biofilm eDNA matrices stabilized by RuvA could be subsequently undermined upon addition of the HJ resolvase complex, RuvABC, which resulted in significant biofilm disruption. Collectively, our data suggested that nature has recapitulated a functional equivalent of the HJ recombination intermediate to maintain the structural integrity of bacterial biofilms.


Assuntos
Biofilmes , DNA Cruciforme , Matriz Extracelular , Resolvases de Junção Holliday , Recombinação Genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chinchila , DNA Helicases , DNA Cruciforme/química , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Proteínas de Escherichia coli , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Resolvases de Junção Holliday/química , Resolvases de Junção Holliday/metabolismo , Otite Média
7.
DNA Repair (Amst) ; 63: 47-55, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29414053

RESUMO

Cells maintain a small arsenal of resolving functions to process and eliminate complex DNA intermediates that result as a consequence of homologous recombination and distressed replication. Ordinarily the homologous recombination system serves as a high-fidelity mechanism to restore the integrity of a damaged genome, but in the absence of the appropriate resolving function it can turn DNA intermediates resulting from replication stress into pathological forms that are toxic to cells. Here we have investigated how the nucleases Mus81 and Gen1 and the helicase Blm contribute to survival after DNA damage or replication stress in Ustilago maydis cells with crippled yet homologous recombination-proficient forms of Brh2, the BRCA2 ortholog and primary Rad51 mediator. We found collaboration among the factors. Notable were three findings. First, the ability of Gen1 to rescue hydroxyurea sensitivity of dysfunctional Blm requires the absence of Mus81. Second, the response of mutants defective in Blm and Gen1 to hydroxyurea challenge is markedly similar suggesting cooperation of these factors in the same pathway. Third, the repair proficiency of Brh2 mutant variants deleted of its N-terminal DNA binding region requires not only Rad52 but also Gen1 and Mus81. We suggest these factors comprise a subpathway for channeling repair when Brh2 is compromised in its interplay with DNA.


Assuntos
Replicação do DNA , Reparo de DNA por Recombinação , Ustilago/metabolismo , Proteína BRCA2/metabolismo , DNA/efeitos dos fármacos , DNA/metabolismo , Endonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Resolvases de Junção Holliday/metabolismo , Hidroxiureia/toxicidade , Mutagênicos/toxicidade , Rad51 Recombinase/metabolismo , RecQ Helicases/metabolismo , Ustilago/efeitos dos fármacos , Ustilago/enzimologia , Ustilago/genética
8.
Nat Commun ; 8(1): 1790, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29176630

RESUMO

Break-induced replication (BIR) is a DNA double-strand break repair pathway that leads to genomic instabilities similar to those observed in cancer. BIR proceeds by a migrating bubble where asynchrony between leading and lagging strand synthesis leads to accumulation of long single-stranded DNA (ssDNA). It remains unknown how this ssDNA is prevented from unscheduled pairing with the template, which can lead to genomic instability. Here, we propose that uncontrolled Rad51 binding to this ssDNA promotes formation of toxic joint molecules that are counteracted by Srs2. First, Srs2 dislodges Rad51 from ssDNA preventing promiscuous strand invasions. Second, it dismantles toxic intermediates that have already formed. Rare survivors in the absence of Srs2 rely on structure-specific endonucleases, Mus81 and Yen1, that resolve toxic joint-molecules. Overall, we uncover a new feature of BIR and propose that tight control of ssDNA accumulated during this process is essential to prevent its channeling into toxic structures threatening cell viability.


Assuntos
DNA Helicases/fisiologia , Reparo do DNA/genética , Replicação do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Resolvases de Junção Holliday/metabolismo , Ligação Proteica/fisiologia , Rad51 Recombinase/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Mol Biol ; 429(7): 1009-1029, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28238763

RESUMO

Holliday junction (HJ) is a hallmark intermediate in DNA recombination and must be processed by dissolution (for double HJ) or resolution to ensure genome stability. Although HJ resolvases have been identified in all domains of life, there is a long-standing effort to search in prokaryotes and eukarya for proteins promoting HJ migration. Here, we report the structural and functional characterization of a novel ATPase, Sulfolobus islandicusPilT N-terminal-domain-containing ATPase (SisPINA), encoded by the gene adjacent to the resolvase Hjc coding gene. PINA is conserved in archaea and vital for S. islandicus viability. Purified SisPINA forms hexameric rings in the crystalline state and in solution, similar to the HJ migration helicase RuvB in Gram-negative bacteria. Structural analysis suggests that ATP binding and hydrolysis cause conformational changes in SisPINA to drive branch migration. Further studies reveal that SisPINA interacts with SisHjc and coordinates HJ migration and cleavage.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , DNA/metabolismo , Resolvases de Junção Holliday/metabolismo , Sulfolobus/enzimologia , Adenosina Trifosfatases/isolamento & purificação , Trifosfato de Adenosina/metabolismo , Sobrevivência Celular , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Sulfolobus/fisiologia
10.
Nat Commun ; 7: 13157, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27779184

RESUMO

Cells have evolved mechanisms to protect, restart and repair perturbed replication forks, allowing full genome duplication, even under replication stress. Interrogating the interplay between nuclease-helicase Dna2 and Holliday junction (HJ) resolvase Yen1, we find the Dna2 helicase activity acts parallel to homologous recombination (HR) in promoting DNA replication and chromosome detachment at mitosis after replication fork stalling. Yen1, but not the HJ resolvases Slx1-Slx4 and Mus81-Mms4, safeguards chromosome segregation by removing replication intermediates that escape Dna2. Post-replicative DNA damage checkpoint activation in Dna2 helicase-defective cells causes terminal G2/M arrest by precluding Yen1-dependent repair, whose activation requires progression into anaphase. These findings explain the exquisite replication stress sensitivity of Dna2 helicase-defective cells, and identify a non-canonical role for Yen1 in the processing of replication intermediates that is distinct from HJ resolution. The involvement of Dna2 helicase activity in completing replication may have implications for DNA2-associated pathologies, including cancer and Seckel syndrome.


Assuntos
DNA Helicases/genética , Replicação do DNA , Regulação Fúngica da Expressão Gênica , Resolvases de Junção Holliday/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Segregação de Cromossomos , Cromossomos Fúngicos/química , Cromossomos Fúngicos/metabolismo , DNA Helicases/metabolismo , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Resolvases de Junção Holliday/metabolismo , Recombinação Homóloga , Mitose , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Microbiol ; 100(4): 656-74, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26817626

RESUMO

The Mycobacterium tuberculosis genome possesses homologues of the ruvC and yqgF genes that encode putative Holliday junction (HJ) resolvases. However, their gene expression profiles and enzymatic properties have not been experimentally defined. Here we report that expression of ruvC and yqgF is induced in response to DNA damage. Protein-DNA interaction assays with purified M. tuberculosis RuvC (MtRuvC) and YqgF (MtRuvX) revealed that both associate preferentially with HJ DNA, albeit with differing affinities. Although both MtRuvC and MtRuvX cleaved HJ DNA in vitro, the latter displayed robust HJ resolution activity by symmetrically related, paired incisions. MtRuvX showed a higher binding affinity for the HJ structure over other branched recombination and replication intermediates. An MtRuvX(D28N) mutation, eliminating one of the highly conserved catalytic residues in this class of endonucleases, dramatically reduced its ability to cleave HJ DNA. Furthermore, a unique cysteine (C38) fulfils a crucial role in HJ cleavage, consistent with disulfide-bond mediated dimerization being essential for MtRuvX activity. In contrast, E. coli YqgF is monomeric and exhibits no branched DNA binding or cleavage activity. These results fit with a functional modification of YqgF in M. tuberculosis so that it can act as a dimeric HJ resolvase analogous to that of RuvC.


Assuntos
DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , Resolvases de Junção Holliday/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Cisteína , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Genoma Bacteriano , Resolvases de Junção Holliday/genética , Mycobacterium tuberculosis/efeitos da radiação , Multimerização Proteica , Análise de Sequência de DNA , Especificidade por Substrato , Raios Ultravioleta
12.
Cell Cycle ; 13(15): 2469-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483196

RESUMO

The stability of mammalian telomeres depends upon TRF2, which prevents inappropriate repair and checkpoint activation. By using a plasmid integration assay in yeasts carrying humanized telomeres, we demonstrated that TRF2 possesses the intrinsic property to both stimulate initial homologous recombination events and to prevent their resolution via its basic N-terminal domain. In human cells, we further showed that this TRF2 domain prevents telomere shortening mediated by the resolvase-associated protein SLX4 as well as GEN1 and MUS81, 2 different types of endonucleases with resolvase activities. We propose that various types of resolvase activities are kept in check by the basic N-terminal domain of TRF2 in order to favor an accurate repair of the stalled forks that occur during telomere replication.


Assuntos
Recombinação Genética , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Células HEK293 , Resolvases de Junção Holliday/metabolismo , Humanos , Plasmídeos , Recombinases/metabolismo , Homeostase do Telômero , Proteína 2 de Ligação a Repetições Teloméricas/genética , Transfecção , Proteína Supressora de Tumor p53/metabolismo
13.
J Biochem Mol Toxicol ; 28(10): 450-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24980922

RESUMO

GEN1, a Holliday junction resolvase, is involved in homologous repair of DNA double strand break and in maintaining centrosome integrity. Although GEN1 mutants have been reported in breast cancer patients and cell lines, little is currently known about the functions of GEN1 in the development and oncogenic transformation of mammary gland. In the present study, we demonstrate that GEN1 expression is correlated with mammary epithelial cell proliferation, differentiation in various physiological stages as well as casein. By immunofluorescence analysis, the centrosomal association of GEN1 is confirmed in mammary epithelial cells. Additionally, GEN1 is likely involved in DNA damage response of breast cancer cell lines. These results suggest that GEN1 may play an important role in the development of mammary gland; its response upon DNA damage indicates that GEN1 gene alteration may contribute to breast cancer formation.


Assuntos
Mama/enzimologia , Resolvases de Junção Holliday/metabolismo , Animais , Mama/crescimento & desenvolvimento , Neoplasias da Mama/enzimologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Centrossomo , Reparo do DNA , DNA de Neoplasias , Células Epiteliais/enzimologia , Feminino , Expressão Gênica , Humanos , Camundongos
14.
Plant Physiol ; 166(1): 181-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25006026

RESUMO

Xyloglucan (XyG) has been reported to contribute to the aluminum (Al)-binding capacity of the cell wall in Arabidopsis (Arabidopsis thaliana). However, the influence of O-acetylation of XyG, accomplished by the putative O-acetyltransferase TRICHOME BIREFRINGENCE-LIKE27 (TBL27 [AXY4]), on its Al-binding capacity is not known. In this study, we found that the two corresponding TBL27 mutants, axy4-1 and axy4-3, were more Al sensitive than wild-type Columbia-0 plants. TBL27 was expressed in roots as well as in leaves, stems, flowers, and siliques. Upon Al treatment, even within 30 min, TBL27 transcript accumulation was strongly down-regulated. The mutants axy4-1 and axy4-3 accumulated significantly more Al in the root and wall, which could not be correlated with pectin content or pectin methylesterase activity, as no difference in the mutants was observed compared with the wild type when exposed to Al stress. The increased Al accumulation in the wall of the mutants was found to be in the hemicellulose fraction. While the total sugar content of the hemicellulose fraction did not change, the O-acetylation level of XyG was reduced by Al treatment. Taken together, we conclude that modulation of the O-acetylation level of XyG influences the Al sensitivity in Arabidopsis by affecting the Al-binding capacity in the hemicellulose.


Assuntos
Alumínio/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucanos/metabolismo , Resolvases de Junção Holliday/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo , Acetilação , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Resolvases de Junção Holliday/genética , Raízes de Plantas/metabolismo
15.
PLoS One ; 7(10): e48440, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23119018

RESUMO

Recombination-dependent DNA replication, which is a central component of viral replication restart, is poorly understood in Firmicutes bacteriophages. Phage SPP1 initiates unidirectional theta DNA replication from a discrete replication origin (oriL), and when replication progresses, the fork might stall by the binding of the origin binding protein G38P to the late replication origin (oriR). Replication restart is dependent on viral recombination proteins to synthesize a linear head-to-tail concatemer, which is the substrate for viral DNA packaging. To identify new functions involved in this process, uncharacterized genes from phage SPP1 were analyzed. Immediately after infection, SPP1 transcribes a number of genes involved in recombination and replication from P(E2) and P(E3) promoters. Resequencing the region corresponding to the last two hypothetical genes transcribed from the P(E2) operon (genes 44 and 45) showed that they are in fact a single gene, re-annotated here as gene 44, that encodes a single polypeptide, named gene 44 product (G44P, 27.5 kDa). G44P shares a low but significant degree of identity in its C-terminal region with virus-encoded RusA-like resolvases. The data presented here demonstrate that G44P, which is a dimer in solution, binds with high affinity but without sequence specificity to several double-stranded DNA recombination intermediates. G44P preferentially cleaves Holliday junctions, but also, with lower efficiency, replicated D-loops. It also partially complemented the loss of RecU resolvase activity in B. subtilis cells. These in vitro and in vivo data suggest a role for G44P in replication restart during the transition to concatemeric viral replication.


Assuntos
Fagos Bacilares/enzimologia , Fagos Bacilares/genética , DNA Bacteriano/metabolismo , DNA Cruciforme/metabolismo , Resolvases de Junção Holliday/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/virologia , Sequência de Bases , Replicação do DNA , DNA Bacteriano/química , DNA Cruciforme/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Viral , Resolvases de Junção Holliday/química , Resolvases de Junção Holliday/genética , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Recombinação Genética , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética
16.
PLoS Genet ; 8(9): e1002979, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23071463

RESUMO

DNA double-strand break (DSB) repair occurring in repeated DNA sequences often leads to the generation of chromosomal rearrangements. Homologous recombination normally ensures a faithful repair of DSBs through a mechanism that transfers the genetic information of an intact donor template to the broken molecule. When only one DSB end shares homology to the donor template, conventional gene conversion fails to occur and repair can be channeled to a recombination-dependent replication pathway termed break-induced replication (BIR), which is prone to produce chromosome non-reciprocal translocations (NRTs), a classical feature of numerous human cancers. Using a newly designed substrate for the analysis of DSB-induced chromosomal translocations, we show that Mus81 and Yen1 structure-selective endonucleases (SSEs) promote BIR, thus causing NRTs. We propose that Mus81 and Yen1 are recruited at the strand invasion intermediate to allow the establishment of a replication fork, which is required to complete BIR. Replication template switching during BIR, a feature of this pathway, engenders complex chromosomal rearrangements when using repeated DNA sequences dispersed over the genome. We demonstrate here that Mus81 and Yen1, together with Slx4, also promote template switching during BIR. Altogether, our study provides evidence for a role of SSEs at multiple steps during BIR, thus participating in the destabilization of the genome by generating complex chromosomal rearrangements.


Assuntos
Cromossomos Fúngicos/genética , Reparo do DNA , Replicação do DNA , DNA Fúngico/isolamento & purificação , Endonucleases/genética , Saccharomyces cerevisiae/genética , Aberrações Cromossômicas , Cromossomos Fúngicos/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Campo Pulsado , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Conversão Gênica , Loci Gênicos , Resolvases de Junção Holliday/genética , Resolvases de Junção Holliday/metabolismo , Mutação , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Translocação Genética
17.
DNA Repair (Amst) ; 11(2): 102-11, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22062475

RESUMO

Helicases and nucleases form complexes that play very important roles in DNA repair pathways some of which interact with each other at Holliday junctions. In this study, we present in vitro and in vivo analysis of Hjm and its interaction with Hjc in Sulfolobus. In vitro studies employed Hjm from the hyperthermophilic archaeon Sulfolobus tokodaii (StoHjm) and its truncated derivatives, and characterization of the StoHjm proteins revealed that the N-terminal module (residues 1-431) alone was capable of ATP hydrolysis and DNA binding, while the C-terminal one (residues 415-704) was responsible for regulating the helicase activity. The region involved in StoHjm-StoHjc (Hjc from S. tokodaii) interaction was identified as part of domain II, domain III (Winged Helix motif), and domain IV (residues 366-645) for StoHjm. We present evidence supporting that StoHjc regulates the helicase activity of StoHjm by inducing conformation change of the enzyme. Furthermore, StoHjm is able to prevent the formation of Hjc/HJ high complex, suggesting a regulation mechanism of Hjm to the activity of Hjc. We show that Hjm is essential for cell viability using recently developed genetic system and mutant propagation assay, suggesting that Hjm/Hjc mediated resolution of stalled replication forks is of crucial importance in archaea. A tentative pathway with which Hjm/Hjc interaction could have occurred at stalled replication forks is discussed.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , DNA Cruciforme/metabolismo , Sulfolobus/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Sobrevivência Celular , DNA Helicases/genética , DNA Cruciforme/genética , Resolvases de Junção Holliday/metabolismo , Hidrólise , Estrutura Terciária de Proteína , Deleção de Sequência , Sulfolobus/citologia , Sulfolobus/metabolismo
18.
Cell Cycle ; 10(18): 3078-85, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21876385

RESUMO

Homologous recombination repair (HRR) is an evolutionarily conserved cellular process that is important for the maintenance of genome stability during S phase. Inactivation of the Saccharomyces cerevisiae Sgs1-Top3-Rmi1 complex leads to the accumulation of unprocessed, X-shaped HRR intermediates (X structures) following replicative stress. Further characterization of these X structures may reveal why loss of BLM (the human Sgs1 ortholog) leads to the human cancer predisposition disorder, Bloom syndrome. In two recent complementary studies, we examined the nature of the X structures arising in yeast strains lacking Sgs1, Top3 or Rmi1 by identifying which proteins could process these structures in vivo. We revealed that the unprocessed X structures that accumulate in these strains could be resolved by the ectopic overexpression of two different Holliday junction (HJ) resolvases, and that the endogenous Mus81-Mms4 endonuclease could also remove them, albeit slowly. In this review, we discuss the implications of these results and review the putative roles for the Sgs1-Top3-Rmi1 and Mus81-Mms4 complexes in the processing of various types of HRR intermediates during S phase.


Assuntos
Reparo de DNA por Recombinação , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Simples , Replicação do DNA , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Resolvases de Junção Holliday/genética , Resolvases de Junção Holliday/metabolismo , Humanos , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
J Mol Biol ; 410(1): 39-49, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21600217

RESUMO

The Bacillus subtilis RecU protein has two activities: to recognize, distort, and cleave four-stranded recombination intermediates and to modulate RecA activities. The RecU structure shows a mushroom-like appearance, with a cap and a stalk region. The RuvB interaction and the catalytic residues are located in the cap region of dimeric RecU. We report here that the stalk region is essential not only for RecA modulation but also for Holliday junction (HJ) recognition. Two recU mutants, which map in the stalk region, were isolated and characterized. In vivo, a RecU variant with a Phe81-to-Ala substitution (F81A) was as sensitive to DNA-damaging agents as a null recU strain, and a similar substitution at tyrosine 80 (Y80A) showed an intermediate phenotype. RecUY80A and RecUF81A poorly recognize and distort HJs. RecUY80A cleaves HJs with low efficiency, and RuvB modulates cleavage. At high concentrations, RecUF81A binds to HJs but fails to cleave them. Unlike wild-type RecU, RecUY80A and RecUF81A do not inhibit RecA dATPase and strand-exchange activities. The RecU stalk region is involved in RecA interaction, but once an HJ is bound, RecU fails to modulate RecA activities. Our biochemical study provides a mechanistic basis for the connections between these two mutually exclusive stages (i.e., RecA modulation and HJ resolution) of the recombination reaction.


Assuntos
Bacillus subtilis/genética , DNA Bacteriano/genética , DNA Cruciforme/genética , Resolvases de Junção Holliday/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , DNA Bacteriano/metabolismo , DNA Cruciforme/metabolismo , Resolvases de Junção Holliday/metabolismo , Dados de Sequência Molecular , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Recombinação Genética , Homologia de Sequência de Aminoácidos
20.
Nature ; 471(7340): 642-6, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21399624

RESUMO

In somatic cells, Holliday junctions can be formed between sister chromatids during the recombinational repair of DNA breaks or after replication fork demise. A variety of processes act upon Holliday junctions to remove them from DNA, in events that are critical for proper chromosome segregation. In human cells, the BLM protein, inactivated in individuals with Bloom's syndrome, acts in combination with topoisomerase IIIα, RMI1 and RMI2 (BTR complex) to promote the dissolution of double Holliday junctions. Cells defective for BLM exhibit elevated levels of sister chromatid exchanges (SCEs) and patients with Bloom's syndrome develop a broad spectrum of early-onset cancers caused by chromosome instability. MUS81-EME1 (refs 4-7), SLX1-SLX4 (refs 8-11) and GEN1 (refs 12, 13) also process Holliday junctions but, in contrast to the BTR complex, do so by endonucleolytic cleavage. Here we deplete these nucleases from Bloom's syndrome cells to analyse human cells compromised for the known Holliday junction dissolution/resolution pathways. We show that depletion of MUS81 and GEN1, or SLX4 and GEN1, from Bloom's syndrome cells results in severe chromosome abnormalities, such that sister chromatids remain interlinked in a side-by-side arrangement and the chromosomes are elongated and segmented. Our results indicate that normally replicating human cells require Holliday junction processing activities to prevent sister chromatid entanglements and thereby ensure accurate chromosome condensation. This phenotype was not apparent when both MUS81 and SLX4 were depleted from Bloom's syndrome cells, suggesting that GEN1 can compensate for their absence. Additionally, we show that depletion of MUS81 or SLX4 reduces the high frequency of SCEs in Bloom's syndrome cells, indicating that MUS81 and SLX4 promote SCE formation, in events that may ultimately drive the chromosome instabilities that underpin early-onset cancers associated with Bloom's syndrome.


Assuntos
Síndrome de Bloom/genética , Aberrações Cromossômicas , Cromossomos Humanos , DNA Cruciforme , Troca de Cromátide Irmã , Idade de Início , Síndrome de Bloom/enzimologia , Síndrome de Bloom/patologia , Cromátides/genética , Cromátides/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/deficiência , Endonucleases/genética , Endonucleases/metabolismo , Instabilidade Genômica/genética , Resolvases de Junção Holliday/deficiência , Resolvases de Junção Holliday/genética , Resolvases de Junção Holliday/metabolismo , Humanos , Metáfase , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RecQ Helicases/deficiência , RecQ Helicases/genética , Recombinases/deficiência , Recombinases/genética , Recombinases/metabolismo , Troca de Cromátide Irmã/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA