Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892328

RESUMO

Curcumin is a natural compound that is considered safe and may have potential health benefits; however, its poor stability and water insolubility limit its therapeutic applications. Different strategies aim to increase its water solubility. Here, we tested the compound PVP-curcumin as a photosensitizer for antimicrobial photodynamic therapy (aPDT) as well as its potential to act as an adjuvant in antibiotic drug therapy. Gram-negative E. coli K12 and Gram-positive S. capitis were subjected to aPDT using various PVP-curcumin concentrations (1-200 µg/mL) and 475 nm blue light (7.5-45 J/cm2). Additionally, results were compared to aPDT using 415 nm blue light. Gene expression of recA and umuC were analyzed via RT-qPCR to assess effects on the bacterial SOS response. Further, the potentiation of Ciprofloxacin by PVP-curcumin was investigated, as well as its potential to prevent the emergence of antibiotic resistance. Both bacterial strains were efficiently reduced when irradiated with 415 nm blue light (2.2 J/cm2) and 10 µg/mL curcumin. Using 475 nm blue light, bacterial reduction followed a biphasic effect with higher efficacy in S. capitis compared to E. coli K12. PVP-curcumin decreased recA expression but had limited effect regarding enhancing antibiotic treatment or impeding resistance development. PVP-curcumin demonstrated effectiveness as a photosensitizer against both Gram-positive and Gram-negative bacteria but did not modulate the bacterial SOS response.


Assuntos
Antibacterianos , Ciprofloxacina , Curcumina , Fármacos Fotossensibilizantes , Recombinases Rec A , Curcumina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Recombinases Rec A/metabolismo , Recombinases Rec A/genética , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia , Fotoquimioterapia/métodos , Resposta SOS em Genética/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Povidona/química , Povidona/farmacologia , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Luz , Proteínas de Ligação a DNA
2.
Drug Resist Updat ; 75: 101087, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678745

RESUMO

In recent years, new evidence has shown that the SOS response plays an important role in the response to antimicrobials, with involvement in the generation of clinical resistance. Here we evaluate the impact of heterogeneous expression of the SOS response in clinical isolates of Escherichia coli on response to the fluoroquinolone, ciprofloxacin. In silico analysis of whole genome sequencing data showed remarkable sequence conservation of the SOS response regulators, RecA and LexA. Despite the genetic homogeneity, our results revealed a marked differential heterogeneity in SOS response activation, both at population and single-cell level, among clinical isolates of E. coli in the presence of subinhibitory concentrations of ciprofloxacin. Four main stages of SOS response activation were identified and correlated with cell filamentation. Interestingly, there was a correlation between clinical isolates with higher expression of the SOS response and further progression to resistance. This heterogeneity in response to DNA damage repair (mediated by the SOS response) and induced by antimicrobial agents could be a new factor with implications for bacterial evolution and survival contributing to the generation of antimicrobial resistance.


Assuntos
Antibacterianos , Ciprofloxacina , Proteínas de Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Recombinases Rec A , Resposta SOS em Genética , Resposta SOS em Genética/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Ciprofloxacina/farmacologia , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Antibacterianos/farmacologia , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Farmacorresistência Bacteriana/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA/efeitos dos fármacos , Sequenciamento Completo do Genoma , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Adaptação Fisiológica , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA
3.
Biochemistry ; 61(24): 2884-2896, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36473084

RESUMO

The SOS response is a bacterial DNA damage response pathway that has been heavily implicated in bacteria's ability to evolve resistance to antibiotics. Activation of the SOS response is dependent on the interaction between two bacterial proteins, RecA and LexA. RecA acts as a DNA damage sensor by forming lengthy oligomeric filaments (RecA*) along single-stranded DNA (ssDNA) in an ATP-dependent manner. RecA* can then bind to LexA, the repressor of SOS response genes, triggering LexA degradation and leading to induction of the SOS response. Formation of the RecA*-LexA complex therefore serves as the key "SOS activation signal." Given the challenges associated with studying a complex involving multiple macromolecular interactions, the essential constituents of RecA* that allow LexA cleavage are not well defined. Here, we leverage head-to-tail linked and end-capped RecA constructs as tools to define the minimal RecA* filament that can engage LexA. In contrast to previously postulated models, we found that as few as three linked RecA units are capable of ssDNA binding, LexA binding, and LexA cleavage. We further demonstrate that RecA oligomerization alone is insufficient for LexA cleavage, with an obligate requirement for ATP and ssDNA binding to form a competent SOS activation signal with the linked constructs. Our minimal system for RecA* highlights the limitations of prior models for the SOS activation signal and offers a novel tool that can inform efforts to slow acquired antibiotic resistance by targeting the SOS response.


Assuntos
Proteínas de Bactérias , Resposta SOS em Genética , Proteínas de Bactérias/química , Bactérias/metabolismo , Dano ao DNA , Trifosfato de Adenosina , Recombinases Rec A/química
4.
Nature ; 603(7900): 315-320, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197633

RESUMO

Colibactin is a chemically unstable small-molecule genotoxin that is produced by several different bacteria, including members of the human gut microbiome1,2. Although the biological activity of colibactin has been extensively investigated in mammalian systems3, little is known about its effects on other microorganisms. Here we show that colibactin targets bacteria that contain prophages, and induces lytic development through the bacterial SOS response. DNA, added exogenously, protects bacteria from colibactin, as does expressing a colibactin resistance protein (ClbS) in non-colibactin-producing cells. The prophage-inducing effects that we observe apply broadly across different phage-bacteria systems and in complex communities. Finally, we identify bacteria that have colibactin resistance genes but lack colibactin biosynthetic genes. Many of these bacteria are infected with predicted prophages, and we show that the expression of their ClbS homologues provides immunity from colibactin-triggered induction. Our study reveals a mechanism by which colibactin production could affect microbiomes and highlights a role for microbial natural products in influencing population-level events such as phage outbreaks.


Assuntos
Bactérias , Toxinas Bacterianas , Peptídeos , Policetídeos , Prófagos , Ativação Viral , Bactérias/efeitos dos fármacos , Bactérias/virologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Bacteriólise/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/farmacologia , Policetídeos/metabolismo , Policetídeos/farmacologia , Prófagos/efeitos dos fármacos , Prófagos/fisiologia , Resposta SOS em Genética/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos
5.
Microbiol Immunol ; 66(5): 225-233, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35174526

RESUMO

Persisters are a subpopulation that exhibit growth suppression, antibiotic tolerance, and regrowth after antibiotic removal, without any genetic mutations, which causes the recalcitrance and recurrence of infectious diseases. Persisters are majorly induced through the repression of energy metabolism, but some exceptions have been reported. We have previously shown that ldhA, which encodes lactate dehydrogenase, induces Escherichia coli persisters, resulting in a state of high-energy metabolism. However, the detailed mechanism of persister formation upon ldhA expression remains elusive. In the present study, we focused on the SOS response pathway via the DNA repair pathway that consumes adenosine triphosphate and revealed that the SOS response pathway is activated upon ldhA expression even before antimicrobial treatment. Metabolome analysis of ldhA-overexpressing cells revealed that nucleotide metabolic pathways, such as de novo purine biosynthesis, were activated to prepare a nucleotide pool, as substrate for repairing ofloxacin-induced DNA damage. We provide a novel persister model that contributes to survival as a species by "accidentally" activating the SOS response even before receiving antimicrobial stress.


Assuntos
Anti-Infecciosos , Escherichia coli , Antibacterianos/farmacologia , Escherichia coli/metabolismo , Lactato Desidrogenase 5 , Nucleotídeos/metabolismo , Resposta SOS em Genética
6.
Cells ; 10(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571923

RESUMO

The Escherichia coli SOS response to DNA damage, discovered and conceptualized by Evelyn Witkin and Miroslav Radman, is the prototypic DNA-damage stress response that upregulates proteins of DNA protection and repair, a radical idea when formulated in the late 1960s and early 1970s. SOS-like responses are now described across the tree of life, and similar mechanisms of DNA-damage tolerance and repair underlie the genome instability that drives human cancer and aging. The DNA damage that precedes damage responses constitutes upstream threats to genome integrity and arises mostly from endogenous biology. Radman's vision and work on SOS, mismatch repair, and their regulation of genome and species evolution, were extrapolated directly from bacteria to humans, at a conceptual level, by Radman, then many others. We follow his lead in exploring bacterial molecular genomic mechanisms to illuminate universal biology, including in human disease, and focus here on some events upstream of SOS: the origins of DNA damage, specifically at chromosome fragile sites, and the engineered proteins that allow us to identify mechanisms. Two fragility mechanisms dominate: one at replication barriers and another associated with the decatenation of sister chromosomes following replication. DNA structures in E. coli, additionally, suggest new interpretations of pathways in cancer evolution, and that Holliday junctions may be universal molecular markers of chromosome fragility.


Assuntos
Sítios Frágeis do Cromossomo , Dano ao DNA , Reparo do DNA , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Resposta SOS em Genética , Animais , Proteínas de Escherichia coli/genética , Humanos
7.
Cells ; 10(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923690

RESUMO

Deinococcus bacteria are extremely resistant to radiation and able to repair a shattered genome in an essentially error-free manner after exposure to high doses of radiation or prolonged desiccation. An efficient, SOS-independent response mechanism to induce various DNA repair genes such as recA is essential for radiation resistance. This pathway, called radiation/desiccation response, is controlled by metallopeptidase IrrE and repressor DdrO that are highly conserved in Deinococcus. Among various Deinococcus species, Deinococcus radiodurans has been studied most extensively. Its genome encodes classical DNA repair proteins for error-free repair but no error-prone translesion DNA polymerases, which may suggest that absence of mutagenic lesion bypass is crucial for error-free repair of massive DNA damage. However, many other radiation-resistant Deinococcus species do possess translesion polymerases, and radiation-induced mutagenesis has been demonstrated. At least dozens of Deinococcus species contain a mutagenesis cassette, and some even two cassettes, encoding error-prone translesion polymerase DnaE2 and two other proteins, ImuY and ImuB-C, that are probable accessory factors required for DnaE2 activity. Expression of this mutagenesis cassette is under control of the SOS regulators RecA and LexA. In this paper, we review both the RecA/LexA-controlled mutagenesis and the IrrE/DdrO-controlled radiation/desiccation response in Deinococcus.


Assuntos
Reparo do DNA/genética , Deinococcus/genética , Regulação Bacteriana da Expressão Gênica , Tolerância a Radiação/genética , Resposta SOS em Genética/genética , Mutagênese/genética
8.
Cell Rep ; 30(5): 1373-1384.e4, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023456

RESUMO

ADP-ribosylation of proteins is crucial for fundamental cellular processes. Despite increasing examples of DNA ADP-ribosylation, the impact of this modification on DNA metabolism and cell physiology is unknown. Here, we show that the DarTG toxin-antitoxin system from enteropathogenic Escherichia coli (EPEC) catalyzes reversible ADP-ribosylation of single-stranded DNA (ssDNA). The DarT toxin recognizes specific sequence motifs. EPEC DarG abrogates DarT toxicity by two distinct mechanisms: removal of DNA ADP-ribose (ADPr) groups and DarT sequestration. Furthermore, we investigate how cells recognize and deal with DNA ADP-ribosylation. We demonstrate that DNA ADPr stalls replication and is perceived as DNA damage. Removal of ADPr from DNA requires the sequential activity of two DNA repair pathways, with RecF-mediated homologous recombination likely to transfer ADP-ribosylation from single- to double-stranded DNA (dsDNA) and subsequent nucleotide excision repair eliminating the lesion. Our work demonstrates that these DNA repair pathways prevent the genotoxic effects of DNA ADP-ribosylation.


Assuntos
ADP-Ribosilação , Reparo do DNA , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Recombinação Homóloga , Adenosina Difosfato Ribose/metabolismo , Viabilidade Microbiana , Modelos Biológicos , Resposta SOS em Genética
9.
Ecotoxicol Environ Saf ; 188: 109892, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31732272

RESUMO

Increasing quantities of pharmaceutical waste in the environment have disrupted the balance of ecosystems, and may have subsequent effects on human health. Although a handful of previous studies have shown the impacts of pharmaceutically active compounds on the environment, the toxicological effects of their degradation products remain largely unknown. In the current study, the photo-degradation products of environmental ibuprofen were assessed for both ecotoxicological and human health effects using a series of in vitro assays. Here, six of the major degradation products are synthesized with high purity (>98%) and characterized with 1HNMR, 13CNMR, FT-IR and HRMS. To evaluate human health effects, three gut microbiota species, Lactobacillus acidophilus, Enterococcus faecalis and Escherichia coli, and two human cell lines, HEK293T and HepG2, are exposed to various concentrations of ibuprofen and its degradation products. On L. acidophilus, the ibuprofen degradation product (±)-(2R,3R)-2-(4-isobutylphenyl)-5-methylhexan-3-ol shows a greater toxic effect while ibuprofen enhances its growth at lower concentrations. At higher concentrations, ibuprofen shows at least a 2-fold higher toxicity compared to that of its degradation products. However, E. faecalis shows little or no effect upon exposure to these compounds. An induction of the SOS response in E. coli is observed but limited to only ibuprofen and 4-acetylbenzoic acid. In human cell line studies, survival of both HEK293T and HepG2 cell lines is profoundly impaired by the photo-degradation products of (±)- (2R,3R)-2-(4-isobutylphenyl)-5-methylhexan-3-ol, (±)-(2R,3S)-2-(4-isobutylphenyl)-5-methylhexan-3-ol, and (±)-1-(4-(1-hydroxy-2methylpropyl)phenyl)ethan-1-one. In this work, the bioluminescence bacterium, Aliivibrio fischeri, is used as a model to assess environmental impact. Both ibuprofen and its degradation products inhibit the growth of this gram-negative bacteria with the primary compound showing the most significant impact. Overall, our results highlight that some of the degradation products of ibuprofen can be more toxic to human kidney cell line and liver cell line than the parent compound while ibuprofen can be more toxic to human gut microbiota and A. fischeri than ibuprofen degradation products.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Ibuprofeno/toxicidade , Fotólise , Poluentes Químicos da Água/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Ecossistema , Ecotoxicologia , Microbioma Gastrointestinal/genética , Células HEK293 , Células Hep G2 , Humanos , Ibuprofeno/química , Resposta SOS em Genética/efeitos dos fármacos , Poluentes Químicos da Água/química
10.
Int J Biochem Cell Biol ; 119: 105642, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31698090

RESUMO

The recombinases present in the all kingdoms in nature play a crucial role in DNA metabolism processes such as replication, repair, recombination and transcription. However, till date, the role of RecA in the deadly foodborne pathogen Listeria monocytogenes remains unknown. In this study, the authors show that L. monocytogenes expresses recA more than two-fold in vivo upon exposure to the DNA damaging agents, methyl methanesulfonate and ultraviolet radiation. The purified L. monocytogenes RecA protein show robust binding to single stranded DNA. The RecA is capable of forming displacement loop and hydrolyzes ATP, whereas the mutant LmRecAK70A fails to hydrolyze ATP, showing conserved walker A and B motifs. Interestingly, L. monocytogenes RecA and LmRecAK70A perform the DNA strand transfer activity, which is the hallmark feature of RecA protein with an oligonucleotide-based substrate. Notably, L. monocytogenes RecA readily cleaves L. monocytogenes LexA, the SOS regulon and protects the presynaptic filament from the exonuclease I activity. Altogether, this study provides the first detailed characterization of L. monocytogenes RecA and presents important insights into the process of homologous recombination in the gram-positive foodborne bacteria L. monocytogenes.


Assuntos
Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Recombinação Homóloga , Listeria monocytogenes/enzimologia , Resposta SOS em Genética , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/metabolismo
11.
Nutr Cancer ; 72(1): 110-119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31266374

RESUMO

Probiotics, the beneficial bacteria produce active metabolites which could probably mimic their anticancer effect and prevent the risk associated with live bacteria. Thus, the study was designed to isolate effective lactic acid bacteria (LAB) and monitor anticancerous potential of their metabiotic extracts. Probiotics were isolated from different sources and their cell free supernatants (CFS) were screened for antigenotoxic and cytotoxic potentials using SOS Chromo Test and MTT assay on Caco-2 and HT-29 cells. Organic extracts of CFS were prepared and dissolved in different solvents. The isolate with most effective metabiotic extract in terms of cytotoxicity was classified for probiotic and phylogenetic characters and the metabiotic extract was characterized physiochemically. Among 60 isolated LAB, CFS of only 10 isolates showed antigenotoxicity more than 30% and four exhibited 70-80% cytotoxicity. Further, organic extracts of these four CFS dissolved in carboxymethyl cellulose showed 80-90% cytotoxicity. Interestingly, the most effective isolate was found to possess probiotic attributes and phylogenetic characterization revealed it to be Lactobacillus rhamnosus MD 14. Physiochemical characterization of its metabiotic extract indicated the presence of heat sensitive organic acids and proteins. To conclude, metabiotics produced by isolated probiotic L. rhamnosus MD 14 exhibited both antigenotoxic and cytotoxic potential against colon cancer.


Assuntos
Antimutagênicos/farmacologia , Sobrevivência Celular , Neoplasias do Colo/tratamento farmacológico , Dano ao DNA , Lacticaseibacillus rhamnosus/fisiologia , Probióticos/farmacologia , Resposta SOS em Genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Filogenia , RNA Ribossômico 16S/genética
12.
PLoS Pathog ; 15(11): e1008123, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725806

RESUMO

Adherent Invasive Escherichia coli (AIEC) strains recovered from Crohn's disease lesions survive and multiply within macrophages. A reference strain for this pathovar, AIEC LF82, forms microcolonies within phagolysosomes, an environment that prevents commensal E. coli multiplication. Little is known about the LF82 intracellular growth status, and signals leading to macrophage intra-vacuolar multiplication. We used single-cell analysis, genetic dissection and mathematical models to monitor the growth status and cell cycle regulation of intracellular LF82. We found that within macrophages, bacteria may replicate or undergo non-growing phenotypic switches. This switch results from stringent response firing immediately after uptake by macrophages or at later stages, following genotoxic damage and SOS induction during intracellular replication. Importantly, non-growers resist treatment with various antibiotics. Thus, intracellular challenges induce AIEC LF82 phenotypic heterogeneity and non-growing bacteria that could provide a reservoir for antibiotic-tolerant bacteria responsible for relapsing infections.


Assuntos
Antibacterianos/farmacologia , Doença de Crohn/microbiologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/microbiologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Macrófagos/microbiologia , Aderência Bacteriana , Comunicação Celular , Células Cultivadas , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/genética , Humanos , Macrófagos/efeitos dos fármacos , Resposta SOS em Genética/efeitos dos fármacos
13.
Biochem Biophys Res Commun ; 517(4): 655-661, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31416617

RESUMO

Bacterial RecA plays an important role in the evaluation of antibiotic resistance via stress-induced DNA repair mechanism; SOS response. Accordingly, RecA became an important therapeutic target against antimicrobial resistance. Small molecule inhibitors of RecA may prevent adaptation of antibiotic resistance mutations and the emergence of antimicrobial resistance. In our study, we observed that phenolic compound p-Coumaric acid as potent RecA inhibitor. It inhibited RecA driven biochemical activities in vitro such as ssDNA binding, strand exchange, ATP hydrolysis and RecA coprotease activity of E. coli and L. monocytogenes RecA proteins. The mechanism underlying such inhibitory action of p-Coumaric acid involves its ability to interfere with the DNA binding domain of RecA protein. p-Coumaric acid also potentiates the activity of ciprofloxacin by inhibiting drastic cell survival of L. monocytogenes as well as filamentation process; the bacteria defensive mechanism in response to DNA damage. Additionally, it also blocked the ciprofloxacin induced RecA expression leading to suppression of SOS response in L. monocytogenes. These findings revealed that p-Coumaric acid is a potent RecA inhibitor, and can be used as an adjuvant to the existing antibiotics which not only enhance the shelf-life but also slow down the emergence of antibiotic resistance in bacteria.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Propionatos/farmacologia , Recombinases Rec A/antagonistas & inibidores , Resposta SOS em Genética/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Ciprofloxacina/farmacologia , Ácidos Cumáricos , Reparo do DNA/efeitos dos fármacos , DNA Bacteriano/antagonistas & inibidores , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Expressão Gênica , Hidrólise/efeitos dos fármacos , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/metabolismo , Testes de Sensibilidade Microbiana , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Recombinação Genética/efeitos dos fármacos
14.
J Antimicrob Chemother ; 74(8): 2188-2196, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31102529

RESUMO

BACKGROUND: Fluoroquinolones such as ciprofloxacin induce the mutagenic SOS response and increase the levels of intracellular reactive oxygen species (ROS). Both the SOS response and ROS increase bacterial mutagenesis, fuelling the emergence of resistant mutants during antibiotic treatment. Recently, there has been growing interest in developing new drugs able to diminish the mutagenic effect of antibiotics by modulating ROS production and the SOS response. OBJECTIVES: To test whether physiological concentrations of N-acetylcysteine, a clinically safe antioxidant drug currently used in human therapy, is able to reduce ROS production, SOS induction and mutagenesis in ciprofloxacin-treated bacteria without affecting antibiotic activity. METHODS: The Escherichia coli strain IBDS1 and its isogenic mutant deprived of SOS mutagenesis (TLS-) were treated with different concentrations of ciprofloxacin, N-acetylcysteine or both drugs in combination. Relevant parameters such as MICs, growth rates, ROS production, SOS induction, filamentation and antibiotic-induced mutation rates were evaluated. RESULTS: Treatment with N-acetylcysteine reduced intracellular ROS levels (by ∼40%), as well as SOS induction (by up to 75%) and bacterial filamentation caused by subinhibitory concentrations of ciprofloxacin, without affecting ciprofloxacin antibacterial activity. Remarkably, N-acetylcysteine completely abolished SOS-mediated mutagenesis. CONCLUSIONS: Collectively, our data strongly support the notion that ROS are a key factor in antibiotic-induced SOS mutagenesis and open the possibility of using N-acetylcysteine in combination with antibiotic therapy to hinder the development of antibiotic resistance.


Assuntos
Acetilcisteína/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Mutagênese/efeitos dos fármacos , Resposta SOS em Genética/efeitos dos fármacos , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Taxa de Mutação , Espécies Reativas de Oxigênio/análise
15.
World J Microbiol Biotechnol ; 35(4): 53, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30900038

RESUMO

The oxidative stress response of the highly resistant actinomycete Dietzia cinnamea P4 after treatment with hydrogen peroxide (H2O2) was assessed in order to depict the possible mechanisms underlying its intrinsic high resistance to DNA damaging agents. We used transcriptional profiling to monitor the magnitude and kinetics of changes in the mRNA levels after exposure to different concentrations of H2O2 at 10 min and 1 h following the addition of the stressor. Catalase and superoxide dismutase genes were induced in different ways, according to the condition applied. Moreover, alkyl hydroperoxide reductase ahpCF, thiol peroxidase, thioredoxin and glutathione genes were upregulated in the presence of H2O2. Expression of peroxidase genes was not detected during the experiment. Overall results point to an actinomycete strain endowed with a set of enzymatic defenses against oxidative stress and with the main genes belonging to a functional SOS system (lexA, recA, uvrD), including suppression of lexA repressor, concomitantly to recA and uvrD gene upregulation upon H2O2 challenge.


Assuntos
Actinomycetales/efeitos dos fármacos , Actinomycetales/metabolismo , Peróxido de Hidrogênio/efeitos adversos , Estresse Oxidativo , Resposta SOS em Genética/fisiologia , Actinomycetales/enzimologia , Actinomycetales/genética , Proteínas de Bactérias/genética , Catalase/classificação , Catalase/genética , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Glutationa/genética , Cinética , Peroxidases/genética , Peroxirredoxinas/genética , Filogenia , RNA Mensageiro/metabolismo , Recombinases Rec A/genética , Resposta SOS em Genética/genética , Análise de Sequência , Serina Endopeptidases/genética , Superóxido Dismutase/genética , Tiorredoxinas/genética , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
16.
Artigo em Inglês | MEDLINE | ID: mdl-30857727

RESUMO

DNA damage is ubiquitous and can arise from endogenous or exogenous sources. DNA-damaging alkylating agents are present in environmental toxicants as well as in cancer chemotherapy drugs and are a constant threat, which can lead to mutations or cell death. All organisms have multiple DNA repair and DNA damage tolerance pathways to resist the potentially negative effects of exposure to alkylating agents. In bacteria, many of the genes in these pathways are regulated as part of the SOS reponse or the adaptive response. In this work, we probed the cellular responses to the alkylating agents chloroacetaldehyde (CAA), which is a metabolite of 1,2-dichloroethane used to produce polyvinyl chloride, and styrene oxide (SO), a major metabolite of styrene used in the production of polystyrene and other polymers. Vinyl chloride and styrene are produced on an industrial scale of billions of kilograms annually and thus have a high potential for environmental exposure. To identify stress response genes in E. coli that are responsible for tolerance to the reactive metabolites CAA and SO, we used libraries of transcriptional reporters and gene deletion strains. In response to both alkylating agents, genes associated with several different stress pathways were upregulated, including protein, membrane, and oxidative stress, as well as DNA damage. E. coli strains lacking genes involved in base excision repair and nucleotide excision repair were sensitive to SO, whereas strains lacking recA and the SOS gene ybfE were sensitive to both alkylating agents tested. This work indicates the varied systems involved in cellular responses to alkylating agents, and highlights the specific DNA repair genes involved in the responses.


Assuntos
Acetaldeído/análogos & derivados , Alquilantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Resposta SOS em Genética/genética , Acetaldeído/farmacologia , DNA Bacteriano/genética , Esterases/genética , Recombinases Rec A/genética
17.
Int Microbiol ; 22(3): 369-376, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30811002

RESUMO

Escherichia coli cells have been observed earlier to display caspase-3-like protease activity (CLP) and undergo programmed cell death (PCD) when exposed to gamma rays. The presence of an irreversible caspase-3 inhibitor (Ac-DEVD-CMK) during irradiation was observed to increase cell survival. Since radiation is known to induce SOS response, the effect of a caspase-3 inhibitor on SOS response was studied in E. coli. UV, a well-known SOS inducer, was used in the current study. Cell filamentation in E. coli upon UV exposure was found to be inhibited by ninefold in the presence of a caspase-3 inhibitor. CLP activity was found to increase twofold in UV-exposed cells than in control (non-treated) cells. Further, bright fluorescing filaments were observed in UV-exposed E. coli cells treated with FITC-DEVD-FMK, a fluorescent dye tagged with an irreversible caspase-3 inhibitor (DEVD-FMK), indicating the presence of active CLP in these cells. Unlike caspase-3 inhibitor, a serine protease inhibitor, phenylmethanesulfonyl fluoride (PMSF), was not found to improve cell survival after UV treatment. Additionally, a SOS reporter system known as SIVET (selectable in vivo expression technology) assay was performed to reconfirm the inhibition of SOS induction in the presence of caspase-3 inhibitor. SIVET assay is used to quantify cells in which the SOS response has been induced leading to a scorable permanent selectable change in the cell. The SIVET induction frequency (calculated as the ratio of SIVET-induced cells to total viable cells) increased around tenfold in UV-exposed cultures. The induction frequency was found to decrease significantly to 51 from 80% in the cells pre-incubated with caspase-3 inhibitor. On the contrary, caspase-3 inhibitor failed to improve cell survival of E. coli ΔrecA and E. coli DM49 (SOS non-inducible) cells post UV treatment. Summing together, the results indicated a possible linkage of SOS response and the PCD process in E. coli. The findings also indicated that functional SOS pathway is required for CLP-like activity; however, the exact mechanism remains to be elucidated.


Assuntos
Inibidores de Caspase/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Raios Ultravioleta , Caspase 3/metabolismo , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Resposta SOS em Genética/efeitos dos fármacos , Resposta SOS em Genética/efeitos da radiação , Inibidores de Serina Proteinase/metabolismo
18.
J Antibiot (Tokyo) ; 72(7): 566-573, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30792518

RESUMO

Antibiotic resistance is considered a global threat to public health. Adaptive resistance mutations and the acquisition of resistance genes by horizontal gene transfer are known to be facilitated by the RecA-dependent SOS response during antibiotic treatment, making RecA inhibitors promising agents for the prevention of antibiotic resistance. However, the impact of RecA inactivation on antibiotic sensitivities remains unclear. Therefore, in this study, we performed high-throughput screening to determine the minimum inhibitory concentrations (MICs) of 217 chemicals, including both antibiotics and toxic chemicals of unknown drug action, in the wild-type MDS42 and the ΔrecA mutant strains of Escherichia coli. The ΔrecA mutant showed increased sensitivity to DNA-damaging agents, DNA replication inhibitors, and chromate stress, as well as to other chemicals, such as S-(2-aminoethyl)-L-cysteine, L-histidine, ruthenium red, D-penicillamine, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), cerulenin, and L-cysteine. Microarray analysis showed further that the ΔrecA mutant had lower expressions of glnK, nac, and glnLG, which encode nitrogen assimilation regulators, as well as amtB, which encodes an ammonium transporter, compared with the wild type. These findings suggest that the ΔrecA mutation affects not only the SOS response but also amino acid metabolism.


Assuntos
Antibacterianos/farmacologia , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Testes de Sensibilidade Microbiana/métodos , Recombinases Rec A/efeitos dos fármacos , Recombinases Rec A/genética , Resposta SOS em Genética/efeitos dos fármacos , Cromatos/toxicidade , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Análise em Microsséries , Mutação , RNA Bacteriano/genética
19.
J Antimicrob Chemother ; 74(6): 1572-1577, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30789224

RESUMO

BACKGROUND: Infections with antibiotic-resistant pathogens in cancer patients are a leading cause of mortality. Cancer patients are treated with compounds that can damage bacterial DNA, potentially triggering the SOS response, which in turn enhances the bacterial mutation rate. Antibiotic resistance readily occurs after mutation of bacterial core genes. Thus, we tested whether cancer chemotherapy drugs enhance the emergence of resistant mutants in commensal bacteria. METHODS: Induction of the SOS response was tested after the incubation of Escherichia coli biosensors with 39 chemotherapeutic drugs at therapeutic concentrations. The mutation frequency was assessed after induction with the SOS-inducing chemotherapeutic drugs. We then tested the ability of the three most highly inducing drugs to drive the emergence of resistant mutants of major bacterial pathogens to first-line antibiotics. RESULTS: Ten chemotherapeutic drugs activated the SOS response. Among them, eight accelerated the evolution of the major commensal E. coli, mostly through activation of the SOS response, with dacarbazine, azacitidine and streptozotocin enhancing the mutation rate 21.3-fold (P < 0.001), 101.7-fold (P = 0.01) and 1158.7-fold (P = 0.02), respectively. These three compounds also spurred the emergence of imipenem-resistant Pseudomonas aeruginosa (up to 6.21-fold; P = 0.05), ciprofloxacin-resistant Staphylococcus aureus (up to 57.72-fold; P = 0.016) and cefotaxime-resistant Enterobacteria cloacae (up to 4.57-fold; P = 0.018). CONCLUSIONS: Our results suggest that chemotherapy could accelerate evolution of the microbiota and drive the emergence of antibiotic-resistant mutants from bacterial commensals in patients. This reveals an additional level of complexity of the interactions between cancer, chemotherapy and the gut microbiota.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/uso terapêutico , Farmacorresistência Bacteriana , Enterobacter cloacae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Resposta SOS em Genética
20.
Biochemistry ; 58(9): 1295-1310, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726069

RESUMO

Escherichia coli RecA (EcRecA) forms discrete foci that cluster at cell poles during normal growth, which are redistributed along the filamented cell axis upon induction of the SOS response. The plasma membrane is thought to act as a scaffold for EcRecA foci, thereby playing an important role in RecA-dependent homologous recombination. In addition, in vivo and in vitro studies demonstrate that EcRecA binds strongly to the anionic phospholipids. However, there have been almost no data on the association of mycobacterial RecA proteins with the plasma membrane and the effects of membrane components on their function. Here, we show that mycobacterial RecA proteins specifically interact with phosphatidylinositol and cardiolipin among other anionic phospholipids; however, they had no effect on the ability of RecA proteins to bind single-stranded DNA. Interestingly, phosphatidylinositol and cardiolipin impede the DNA-dependent ATPase activity of RecA proteins, although ATP binding is not affected. Furthermore, the ability of RecA proteins to promote DNA strand exchange is not affected by anionic phospholipids. Strikingly, anionic phospholipids suppress the RecA-stimulated autocatalytic cleavage of the LexA repressor. The Mycobacterium smegmatis RecA foci localize to the cell poles during normal growth, and these structures disassemble and reassemble into several foci along the cell after the induction of DNA damage. Taken together, these data support the notion that the interaction of RecA with cardiolipin and phosphatidylinositol, the major anionic phospholipids of the mycobacterial plasma membrane, may be physiologically relevant, as they provide a scaffold for RecA storage and may regulate recombinational DNA repair and the SOS response.


Assuntos
Membrana Celular/metabolismo , Mycobacterium smegmatis/metabolismo , Fosfolipídeos/metabolismo , Recombinases Rec A/metabolismo , Trifosfato de Adenosina/metabolismo , Ânions/química , Ânions/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Membrana Celular/química , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Difusão Dinâmica da Luz , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Polarização de Fluorescência , Lipossomos/química , Lipossomos/metabolismo , Mycobacterium smegmatis/química , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfolipídeos/química , Recombinases Rec A/química , Recombinases Rec A/genética , Resposta SOS em Genética , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA