Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.624
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Physiol Res ; 73(2): 239-251, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710061

RESUMO

Oxygen therapy provides an important treatment for preterm and low-birth-weight neonates, however, it has been shown that prolonged exposure to high levels of oxygen (hyperoxia) is one of the factors contributing to the development of bronchopulmonary dysplasia (BPD) by inducing lung injury and airway hyperreactivity. There is no effective therapy against the adverse effects of hyperoxia. Therefore, this study was undertaken to test the hypothesis that natural phytoalexin resveratrol will overcome hyperoxia-induced airway hyperreactivity, oxidative stress, and lung inflammation. Newborn rats were exposed to hyperoxia (fraction of inspired oxygen - FiO2>95 % O2) or ambient air (AA) for seven days. Resveratrol was supplemented either in vivo (30 mg·kg-1·day-1) by intraperitoneal administration or in vitro to the tracheal preparations in an organ bath (100 mikroM). Contractile and relaxant responses were studied in tracheal smooth muscle (TSM) using the in vitro organ bath system. To explain the involvement of nitric oxide in the mechanisms of the protective effect of resveratrol against hyperoxia, a nitric oxide synthase inhibitor - Nomega-nitro-L-arginine methyl ester (L-NAME), was administered in some sets of experiments. The superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and the tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) levels in the lungs were determined. Resveratrol significantly reduced contraction and restored the impaired relaxation of hyperoxia-exposed TSM (p<0.001). L-NAME reduced the inhibitory effect of resveratrol on TSM contractility, as well as its promotion relaxant effect (p<0.01). Resveratrol preserved the SOD and GPx activities and decreased the expression of TNF-alpha and IL-1beta in hyperoxic animals. The findings of this study demonstrate the protective effect of resveratrol against hyperoxia-induced airway hyperreactivity and lung damage and suggest that resveratrol might serve as a therapy to prevent the adverse effects of neonatal hyperoxia. Keywords: Bronchopulmonary dysplasia, Hyperoxia, Airway hyperreactivity, Resveratrol, Pro-inflammatory cytokines.


Assuntos
Animais Recém-Nascidos , Displasia Broncopulmonar , Modelos Animais de Doenças , Estresse Oxidativo , Pneumonia , Resveratrol , Animais , Resveratrol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Displasia Broncopulmonar/prevenção & controle , Displasia Broncopulmonar/metabolismo , Pneumonia/prevenção & controle , Pneumonia/metabolismo , Pneumonia/induzido quimicamente , Ratos , Hiperóxia/complicações , Hiperóxia/metabolismo , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Antioxidantes/farmacologia , Hiper-Reatividade Brônquica/prevenção & controle , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/fisiopatologia , Hiper-Reatividade Brônquica/induzido quimicamente , Ratos Sprague-Dawley , Masculino
2.
J Transl Med ; 22(1): 457, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745204

RESUMO

BACKGROUND AND PURPOSE: Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS: We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-ß1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1ß in combination with TGF-ß1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS: Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-ß1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION: In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.


Assuntos
Artrite Reumatoide , Fibrose , Inflamação , Doenças Pulmonares Intersticiais , Proteínas Proto-Oncogênicas c-akt , Resveratrol , Transdução de Sinais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/metabolismo , Humanos , Inflamação/patologia , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Membrana/metabolismo , Autofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Pulmão/patologia , Pulmão/efeitos dos fármacos , Masculino
3.
BMC Cancer ; 24(1): 566, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711004

RESUMO

BACKGROUND: Resveratrol has demonstrated its ability to regulate BRCA1 gene expression in breast cancer cells, and previous studies have established the binding of MBD proteins to BRCA1 gene promoter regions. However, the molecular mechanism underlying these interactions remains to be elucidated. The aimed to evaluate the impact of MBD proteins on the regulation of BRCA1, BRCA2, and p16 genes and their consequential effects on breast cancer cells. METHODS: Efficacy of resveratrol was assessed using the MTT assay. Binding interactions were investigated through EMSA, ChIP, & MeIP assay. Expression analyses of MBD genes and proteins were conducted using qRT-PCR and western blotting, respectively. Functional assays, including clonogenic, migratory, and sphere formation assays were used to assess cancer cells' colony-forming, metastatic, and tumor-forming abilities. The cytotoxicity of resveratrol on cancer cells was also tested using an apoptosis assay. RESULTS: The study determined an IC50 of 30µM for resveratrol. MBD proteins were found to bind to the BRCA1 gene promoter. Resveratrol exhibited regulatory effects on MBD gene expression, subsequently impacting BRCA1 gene expression and protein levels. Higher concentrations of resveratrol resulted in reduced colony and sphere formation, decreases migration of cancer cells, and an increases number of apoptotic cells in breast cancer cells. Impact Identification of MBD2-BRCA1 axis indicates their significant role in the induction of apoptosis and reduction of metastasis and proliferation in breast cancer cells. Further therapy can be designed to target these MBD proteins and resveratrol could be used along with other anticancer drugs to target breast cancer. CONCLUSIONS: In conclusion MBD2 protein interact to the BRCA1 gene promoter, and resveratrol modulates MBD2 gene expression, which in turn regulates BRCA1 gene expression, and inhibits cell proliferation, migration, and induces apoptosis in ER+, PR+ & Triple negative breast cancer cells.


Assuntos
Proteína BRCA1 , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Regiões Promotoras Genéticas , Resveratrol , Neoplasias de Mama Triplo Negativas , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico
4.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674092

RESUMO

Malignant tumors are the second most common cause of death worldwide. More attention is being paid to the link between the body's impaired oxidoreductive balance and cancer incidence. Much attention is being paid to polyphenols derived from plants, as one of their properties is an antioxidant character: the ability to eliminate reactive oxygen and nitrogen species, chelate specific metal ions, modulate signaling pathways affecting inflammation, and raise the level and activity of antioxidant enzymes while lowering those with oxidative effects. The following three compounds, resveratrol, quercetin, and curcumin, are polyphenols modulating multiple molecular targets, or increasing pro-apoptotic protein expression levels and decreasing anti-apoptotic protein expression levels. Experiments conducted in vitro and in vivo on animals and humans suggest using them as chemopreventive agents based on antioxidant properties. The advantage of these natural polyphenols is low toxicity and weak adverse effects at higher doses. However, the compounds discussed are characterized by low bioavailability and solubility, which may make achieving the blood concentrations needed for the desired effect challenging. The solution may lie in derivatives of naturally occurring polyphenols subjected to structural modifications that enhance their beneficial effects or work on implementing new ways of delivering antioxidants that improve their solubility and bioavailability.


Assuntos
Antioxidantes , Curcumina , Quercetina , Resveratrol , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/química , Curcumina/farmacologia , Curcumina/uso terapêutico , Resveratrol/farmacologia , Humanos , Animais , Antioxidantes/farmacologia , Neoplasias/prevenção & controle , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Quimioprevenção/métodos , Antineoplásicos/farmacologia , Polifenóis/farmacologia , Polifenóis/química
5.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612856

RESUMO

PURPOSE: Resveratrol is a natural polyphenol which has a very low bioavailability but whose antioxidant, anti-inflammatory and anti-apoptotic properties may have therapeutic potential for the treatment of neurodegenerative diseases such as multiple sclerosis (MS). Previously, we reported the oral administration of resveratrol nanoparticles (RNs) elicited a neuroprotective effect in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, at significantly lower doses than unconjugated resveratrol (RSV) due to enhanced bioavailability. Furthermore, we demonstrated that the intranasal administration of a cell-derived secretome-based therapy at low concentrations leads to the selective neuroprotection of the optic nerve in EAE mice. The current study sought to assess the potential selective efficacy of lower concentrations of intranasal RNs for attenuating optic nerve damage in EAE mice. METHODS: EAE mice received either a daily intranasal vehicle, RNs or unconjugated resveratrol (RSV) for a period of thirty days beginning on the day of EAE induction. Mice were assessed daily for limb paralysis and weekly for visual function using the optokinetic response (OKR) by observers masked to treatment regimes. After sacrifice at day 30, spinal cords and optic nerves were stained to assess inflammation and demyelination, and retinas were immunostained to quantify retinal ganglion cell (RGC) survival. RESULTS: Intranasal RNs significantly increased RGC survival at half the dose previously shown to be required when given orally, reducing the risk of systemic side effects associated with prolonged use. Both intranasal RSV and RN therapies enhanced RGC survival trends, however, only the effects of intranasal RNs were significant. RGC loss was prevented even in the presence of inflammatory and demyelinating changes induced by EAE in optic nerves. CONCLUSIONS: The intranasal administration of RNs is able to reduce RGC loss independent of the inflammatory and demyelinating effects on the optic nerve and the spinal cord. The concentration of RNs needed to achieve neuroprotection is lower than previously demonstrated with oral administration, suggesting intranasal drug delivery combined with nanoparticle conjugation warrants further exploration as a potential neuroprotective strategy for the treatment of optic neuritis, alone as well as in combination with glucocorticoids.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Nanopartículas , Animais , Camundongos , Resveratrol/farmacologia , Neuroproteção , Administração Intranasal , Encefalomielite Autoimune Experimental/tratamento farmacológico
6.
Zhongguo Zhong Yao Za Zhi ; 49(3): 744-753, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621878

RESUMO

This study observed the protective effect of resveratrol(Res) on ovarian function in poor ovarian response(POR) mice by regulating the Hippo signaling pathway and explored the potential mechanism of Res in inhibiting ovarian cell apoptosis. Female mice with regular estrous cycles were randomly divided into a blank group, a model group, and low-and high-dose Res groups(20 and 40 mg·kg~(-1)), with 20 mice in each group. The blank group received an equal volume of 0.9% saline solution by gavage, while the model group and Res groups received suspension of glycosides of Triptergium wilfordii(GTW) at 50 mg·kg~(-1) by gavage for two weeks to induce the model. After modeling, the low-and high-dose Res groups were continuously treated with drugs by gavage for two weeks, while the blank group and the model group received an equal volume of 0.9% saline solution by gavage. Ovulation was induced in all groups on the day following the end of treatment. Finally, 12 female mice were randomly selected from each group, and the remaining eight female mice were co-housed with male mice at a ratio of 1∶1. Changes in the estrous cycle of mice were observed using vaginal cytology smears. The number of ovulated eggs, ovarian wet weight, ovarian index, and pregnancy rate of mice were measured. The le-vels of anti-Mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in serum were determined using enzyme-linked immunosorbent assay(ELISA). Ovarian tissue morphology and ovarian cell apoptosis were observed using hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining, respectively. The protein expression levels of yes-associated protein(YAP) 1 and transcriptional coactivator with PDZ-binding motif(TAZ) were detected by immunohistochemistry(IHC), while the changes in protein expression levels of mammalian sterile 20-like kinase(MST) 1/2, large tumor suppressor(LATS) 1/2, YAP1, TAZ, B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) were determined by Western blot. The results showed that compared with the blank group, the model group had an increased rate of estrous cycle disruption in mice, a decreased number of normally developing ovarian follicles, an increased number of blocked ovarian follicles, increased ovarian granulosa cell apoptosis, decreased ovulation, reduced ovarian wet weight and ovarian index, increased serum FSH and LH levels, decreased AMH and E_2 levels, decreased protein expression levels of YAP1 and TAZ in ovarian tissues, increased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and decreased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Additionally, the number of embryos per litter significantly decreased after co-housing. Compared with the model group, the low-and high-dose Res groups exhibited reduced estrous cycle disruption rates in mice, varying degrees of improvement in the number and morphology of ovarian follicles, reduced numbers of blocked ovarian follicles, improved ovarian granulosa cell apoptosis, increased ovulation, elevated ovarian wet weight and ovarian index, decreased serum FSH and LH levels, increased AMH and E_2 levels, elevated protein expression levels of YAP1 and TAZ in ovarian tissues, decreased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and increased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Furthermore, the number of embryos per litter increased to varying degrees after co-housing. In conclusion, Res effectively inhibits ovarian cell apoptosis in mice and improves ovarian responsiveness. Its mechanism may be related to the regulation of key molecules in the Hippo pathway.


Assuntos
Via de Sinalização Hippo , Ovário , Gravidez , Camundongos , Feminino , Masculino , Animais , Proteína X Associada a bcl-2/metabolismo , Resveratrol/farmacologia , Solução Salina/metabolismo , Solução Salina/farmacologia , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Mamíferos/metabolismo
7.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673959

RESUMO

Ovarian cancer poses a significant threat to patients in its advanced stages, often with limited treatment options available. In such cases, palliative management becomes the primary approach to maintaining a reasonable quality of life. Therefore, the administration of any medication that can benefit patients without a curative option holds potential. Resveratrol, a natural compound known for its in vitro anticancer activities, has generated contrasting results in vivo and human studies. In this study, we aimed to assess the anticancer effects of resveratrol on ovarian cancer cells grown on the chorioallantoic membrane (CAM) of chicken embryos. Two ovarian cancer cell lines, OVCAR-8 and SKOV-3, were cultured in collagen scaffolds for four days before being implanted on the CAM of chicken embryos on day 7. Different doses of resveratrol were applied to the CAM every two days for six days. Subsequently, CAM tissues were excised, fixed, and subjected to histological analysis. Some CAM tumours were extracted to analyse proteins through Western blotting. Our findings indicate that specific doses of resveratrol significantly reduce angiogenic activities, pNF-κB levels, and SLUG protein levels by using immunohistochemistry. These results suggest that resveratrol may have the potential to impact the behaviour of ovarian cancer CAM tumours, thereby warranting further consideration as a complementary treatment option for women with incurable ovarian cancer.


Assuntos
Membrana Corioalantoide , Neoplasias Ovarianas , Resveratrol , Resveratrol/farmacologia , Membrana Corioalantoide/efeitos dos fármacos , Animais , Feminino , Embrião de Galinha , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Humanos , Linhagem Celular Tumoral , Fatores de Transcrição da Família Snail/metabolismo , Neovascularização Patológica/tratamento farmacológico , NF-kappa B/metabolismo , Antineoplásicos Fitogênicos/farmacologia
8.
Food Funct ; 15(9): 4852-4861, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38573228

RESUMO

This study elucidates the mechanism of obesity-related adverse pregnancy outcomes and further investigates the effect of resveratrol on reproductive performance in a short- or long-term HFD-induced obese mouse model. Results show that maternal weight had a significant positive correlation with litter mortality in mice. A long-term HFD increased body weight and litter mortality with decreased expression of uterine cytochrome oxidase 4 (COX4), which was recovered by resveratrol in mice. Moreover, HFD decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factors-1 (Nrf-1), and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) and increased the expression of phosphorylated extracellular regulated protein kinases (p-ERK) in the uterus. Resveratrol, a polyphenol that can directly bind to the ERK protein, suppressed the phosphorylation of ERK, increased the expression of p-AMPK, PGC-1α and Nrf-1, and decreased litter mortality in mice.


Assuntos
Dieta Hiperlipídica , Mitocôndrias , Resultado da Gravidez , Resveratrol , Útero , Animais , Resveratrol/farmacologia , Feminino , Gravidez , Camundongos , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Útero/metabolismo , Útero/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo
9.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675538

RESUMO

Polyphenols, the main antioxidants of diet, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of four polyphenolic compounds on ROS production and on the levels of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of breast cancer. THP-1 differentiated macrophages were activated by LPS and simultaneously treated with different doses of a green tea extract (GTE), resveratrol (RSV), curcumin (CRC) and an olive fruit extract (oliplus). By using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, we found that all of the tested compounds showed antioxidant activity in vitro. In addition, GTE, RSV and CRC were able to counteract ROS production induced by H2O2 in THP-1 cells. As assessed by a zymographic analysis of THP-1 supernatants and by an "in-gel zymography" of a pool of sera from patients with breast cancer, the antioxidant compounds used in this study inhibited both the activity and expression of MMP-2 and MMP-9 through different mechanisms related to their structures and to their ability to scavenge ROS. The results of this study suggest that the used antioxidants could be promising agents for the prevention and complementary treatment of breast cancer and other diseases in which MMPs play a pivotal role.


Assuntos
Antioxidantes , Neoplasias da Mama , Macrófagos , Feminino , Humanos , Antioxidantes/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Curcumina/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia , Células THP-1
10.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612425

RESUMO

Resveratrol is a polyphenol present in various plant sources. Studies have reported numerous potential health benefits of resveratrol, exhibiting anti-aging, anti-inflammatory, anti-microbial, and anti-carcinogenic activity. Due to the reported effects, resveratrol is also being tested in reproductive disorders, including female infertility. Numerous cellular, animal, and even human studies were performed with a focus on the effect of resveratrol on female infertility. In this review, we reviewed some of its molecular mechanisms of action and summarized animal and human studies regarding resveratrol and female infertility, with a focus on age-related infertility, polycystic ovary syndrome, and endometriosis.


Assuntos
Endometriose , Infertilidade Feminina , Animais , Feminino , Humanos , Infertilidade Feminina/tratamento farmacológico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Endometriose/tratamento farmacológico , Polifenóis , Envelhecimento
11.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612556

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is influenced by a variety of factors, including environmental and genetic factors. The most significant outcome is the alteration of free fatty acid and triglyceride metabolism. Lipotoxicity, impaired autophagy, chronic inflammation, and oxidative stress, as well as coexisting insulin resistance, obesity, and changes in the composition of gut microbiota, are also considered crucial factors in the pathogenesis of MASLD. Resveratrol is a polyphenolic compound that belongs to the stilbene subgroup. This review summarises the available information on the therapeutic effects of resveratrol against MASLD. Resveratrol has demonstrated promising antisteatotic, antioxidant, and anti-inflammatory activities in liver cells in in vitro and animal studies. Resveratrol has been associated with inhibiting the NF-κB pathway, activating the SIRT-1 and AMPK pathways, normalizing the intestinal microbiome, and alleviating intestinal inflammation. However, clinical studies have yielded inconclusive results regarding the efficacy of resveratrol in alleviating hepatic steatosis or reducing any of the parameters found in MASLD in human patients. The lack of homogeneity between studies, low bioavailability of resveratrol, and population variability when compared to animal models could be the reasons for this.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Animais , Humanos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Antioxidantes , Inflamação
12.
Sci Rep ; 14(1): 9107, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643283

RESUMO

Neutrophil extracellular traps (NETs) are defense mechanisms that trap and kill microorganisms and degrade cytokines. However, excessive production, dysregulation of suppression mechanisms, or inefficient removal of NETs can contribute to increased inflammatory response and the development of pathological conditions. Therefore, research has focused on identifying drugs that inhibit or delay the NET release process. Since reactive oxygen species (ROS) play a significant role in NET release, we aimed to investigate whether resveratrol (RSV), with a wide range of biological and pharmacological properties, could modulate NET release in response to different stimuli. Thus, human neutrophils were pretreated with RSV and subsequently stimulated with PMA, LPS, IL-8, or Leishmania. Our findings revealed that RSV reduced the release of NETs in response to all tested stimuli. RSV decreased hydrogen peroxide levels in PMA- and LPS-stimulated neutrophils, inhibited myeloperoxidase activity, and altered the localization of neutrophil elastase. RSV inhibition of NET generation was not mediated through A2A or A2B adenosine receptors or PKA. Based on the observed effectiveness of RSV in inhibiting NET release, our study suggests that this flavonoid holds potential as a candidate for treating NETs involving pathologies.


Assuntos
Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Resveratrol/farmacologia , Resveratrol/metabolismo , Peróxido de Hidrogênio/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Life Sci ; 346: 122638, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614294

RESUMO

AIMS: Resveratrol (RSV) is a polyphenolic substance found in numerous natural products. Despite the wide range of therapeutic activities, including antioxidant and anti-inflammatory effects, the poor pharmacokinetic characteristics decrease the RSV bioavailability following oral administration. Milk-derived exosomes (MEXOs), as a class of natural nanocarriers, are promising candidates for oral drug delivery approaches. MAIN METHODS: The current study developed RSV-loaded MEXOs to enhance the RSV oral bioavailability, introducing a suitable exosomal formulation for suppressing colon inflammation in acetic acid-induced rat models. KEY FINDINGS: The results showed a remarkable encapsulation efficiency of 83.33 %. The in vitro release profile demonstrated a good retaining capability in acidic conditions (pH 1.2) and a considerable release in a simulated duodenal environment (pH 6.8). According to the permeability study, encapsulation of RSV improved its transportation across the Caco-2 monolayer. Moreover, the in vivo and histological analysis results proved that the RSV-MEXOs formulation successfully alleviates the inflammation in colitis rat models and effectively relieves the colitis. SIGNIFICANCE: Our findings suggest that MEXOs should be of great attention as promising oral drug delivery vehicles for further clinical evaluations.


Assuntos
Modelos Animais de Doenças , Exossomos , Doenças Inflamatórias Intestinais , Resveratrol , Animais , Resveratrol/administração & dosagem , Resveratrol/farmacologia , Resveratrol/farmacocinética , Ratos , Administração Oral , Exossomos/metabolismo , Células CACO-2 , Humanos , Masculino , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Ratos Sprague-Dawley , Disponibilidade Biológica , Leite , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/patologia
14.
Microb Cell Fact ; 23(1): 122, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678199

RESUMO

BACKGROUND: Industrial biomanufacturing of value-added products using CO2 as a carbon source is considered more sustainable, cost-effective and resource-efficient than using common carbohydrate feedstocks. Cupriavidus necator H16 is a representative H2-oxidizing lithoautotrophic bacterium that can be utilized to valorize CO2 into valuable chemicals and has recently gained much attention as a promising platform host for versatile C1-based biomanufacturing. Since this microbial platform is genetically tractable and has a high-flux carbon storage pathway, it has been engineered to produce a variety of valuable compounds from renewable carbon sources. In this study, the bacterium was engineered to produce resveratrol autotrophically using an artificial phenylpropanoid pathway. RESULTS: The heterologous genes involved in the resveratrol biosynthetic pathway-tyrosine ammonia lyase (TAL), 4-coumaroyl CoA ligase (4CL), and stilbene synthase (STS) -were implemented in C. necator H16. The overexpression of acetyl-CoA carboxylase (ACC), disruption of the PHB synthetic pathway, and an increase in the copy number of STS genes enhanced resveratrol production. In particular, the increased copies of VvSTS derived from Vitis vinifera resulted a 2-fold improvement in resveratrol synthesis from fructose. The final engineered CR-5 strain produced 1.9 mg/L of resveratrol from CO2 and tyrosine via lithoautotrophic fermentation. CONCLUSIONS: To the best of our knowledge, this study is the first to describe the valorization of CO2 into polyphenolic compounds by engineering a phenylpropanoid pathway using the lithoautotrophic bacterium C. necator H16, demonstrating the potential of this strain a platform for sustainable chemical production.


Assuntos
Dióxido de Carbono , Cupriavidus necator , Fermentação , Engenharia Metabólica , Resveratrol , Cupriavidus necator/metabolismo , Cupriavidus necator/genética , Resveratrol/metabolismo , Dióxido de Carbono/metabolismo , Engenharia Metabólica/métodos , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Amônia-Liases/metabolismo , Amônia-Liases/genética , Vias Biossintéticas
15.
Arch Microbiol ; 206(5): 229, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647675

RESUMO

In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.


Assuntos
Resveratrol , Estilbenos , Estilbenos/química , Estilbenos/farmacologia , Humanos , Resveratrol/farmacologia , Resveratrol/química , Fungos/efeitos dos fármacos , Endófitos/química , Endófitos/metabolismo , Endófitos/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Medicina Tradicional , Plantas/química
16.
Sci Rep ; 14(1): 7875, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570564

RESUMO

This study examines the manufacturing, characterization, and biological evaluation of platinum nanoparticles, which were synthesized by Enterobacter cloacae and coated with Bovine Serum Albumin (BSA) and Resveratrol (RSV). The formation of PtNPs was confirmed with the change of color from dark yellow to black, which was due to the bioreduction of platinum chloride by E. cloacae. BSA and RSV functionalization enhanced these nanoparticles' biocompatibility and therapeutic potential. TGA, SEM, XRD, and FTIR were employed for characterization, where PtNPs and drug conjugation-related functional groups were studied by FTIR. XRD confirmed the crystalline nature of PtNPs and Pt-BSA-RSV NPs, while TGA and SEM showed thermal stability and post-drug coating morphological changes. Designed composite was also found to be biocompatible in nature in hemolytic testing, indicating their potential in Biomedical applications. After confirmation of PtNPs based nanocaompsite synthesis, they were examined for anti-bacterial, anti-oxidant, anti-inflammatory, and anti-cancer properties. Pt-BSA-RSV NPs showed higher concentration-dependent DPPH scavenging activity, which measured antioxidant capability. Enzyme inhibition tests demonstrated considerable anti-inflammatory activity against COX-2 and 15-LOX enzymes. In in vitro anticancer studies, Pt-BSA-RSV NPs effectively killed human ovarian cancer cells. This phenomenon was demonstrated to be facilitated by the acidic environment of cancer, as the drug release assay confirmed the release of RSV from the NP formulation in the acidic environment. Finally, Molecular docking also demonstrated that RSV has strong potential as an anti-oxidant, antibacterial, anti-inflammatory, and anticancer agent. Overall, in silico and in vitro investigations in the current study showed good medicinal applications for designed nanocomposites, however, further in-vivo experiments must be conducted to validate our findings.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Soroalbumina Bovina/química , Nanopartículas Metálicas/química , Resveratrol/farmacologia , Platina/farmacologia , Platina/química , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Nanopartículas/química , Anti-Inflamatórios
17.
BMC Oral Health ; 24(1): 412, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575921

RESUMO

The present study aimed to investigate the impact of resveratrol on oral neoplastic parameters through a systematic review and meta-analysis. Resveratrol, a naturally occurring polyphenol, has shown promising potential as a therapeutic agent in various cancer types, including oral neoplasms. Understanding the collective findings from existing studies can shed light on the efficacy and mechanisms of resveratrol in oral cancer management. The systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search was performed to identify relevant studies from various databases, registers, websites, and citation searches. The inclusion criteria encompassed in-vivo studies investigating the impact of resveratrol on oral neoplastic parameters in animal models. After screening and assessment, a total of five eligible studies were included in the meta-analysis. The meta-analysis of the selected studies revealed that resveratrol treatment exhibited a potential impact on reducing oral neoplastic proliferation and promoting neoplastic apoptosis. The combined analysis showed a statistically significant decrease in neoplastic parameters with an overall effect size (ES) of 0.85 (95% CI: [0.74, 0.98]). Subgroup analyses were conducted to explore potential variations among different cellular types and exposure compounds, providing further insights into the efficacy of resveratrol in specific contexts. This systematic review and meta-analysis support the potential of resveratrol as a promising therapeutic agent in oral cancer management. The findings indicate that resveratrol may effectively modulate neoplastic proliferation and apoptosis in various cellular types within animal models of oral cancer. However, further well-controlled studies and clinical trials are warranted to validate these observations and elucidate the underlying mechanisms of resveratrol's actions. Resveratrol holds promise as a complementary therapeutic approach in the prevention and treatment of oral neoplastic conditions.


Assuntos
Neoplasias Bucais , Animais , Resveratrol/uso terapêutico , Neoplasias Bucais/tratamento farmacológico , Apoptose
18.
Colloids Surf B Biointerfaces ; 238: 113922, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678790

RESUMO

The phytoalexin resveratrol has received increasing attention for its potential to prevent oxidative damages in human organism. To shed further light on molecular mechanisms of its interaction with lipid membranes we study resveratrol influence on the organisation and mechanical properties of biomimetic lipid systems composed of synthetic phosphatidylcholines with mixed aliphatic chains and different degree of unsaturation at sn-2 position (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, PDPC). High-sensitivity isothermal titration calorimetric measurements reveal stronger spontaneous resveratrol association to polyunsaturated phosphatidylcholine bilayers compared to the monounsaturated ones resulting from hydrophobic interactions, conformational changes of the interacting species and desolvation of molecular surfaces. The latter is supported by the results from Laurdan spectroscopy of large unilamellar vesicles providing data on hydration at the glycerol backbones of glycerophospholipides. Higher degree of lipid order is reported for POPC membranes compared to PDPC. While resveratrol mostly enhances the hydration of PDPC membranes, increasing POPC dehydration is reported upon treatment with the polyphenol. Dehydration of the polyunsaturated lipid bilayers is measured only at the highest phytoalexin content studied (resveratrol/lipid 0.5 mol/mol) and is less pronounced than the effect reported for POPC membranes. The polyphenol effect on membrane mechanics is probed by thermal shape fluctuation analysis of quasispherical giant unilamellar vesicles. Markedly different trend of the bending elasticity with increasing resveratrol concentration is reported for the two types of phospholipid bilayers studied. POPC membranes become more rigid in the presence of resveratrol, whereas PDPC-containing bilayers exhibit softening at lower concentrations of the polyphenol followed by a slight growth without bilayer stiffening even at the highest resveratrol content explored. The new data on the structural organization and membrane properties of resveratrol-treated phosphatidylcholine membranes may underpin the development of future liposomal applications of the polyphenol in medicinal chemistry.


Assuntos
Bicamadas Lipídicas , Resveratrol , Resveratrol/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Estilbenos/química , Materiais Biomiméticos/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
19.
Eur J Histochem ; 68(2)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656259

RESUMO

This study investigated the impact of resveratrol on abnormal metabolic remodeling in atrial fibrillation (AF) and explored potential molecular mechanisms. An AF cell model was established by high-frequency electrical stimulation of HL-1 atrial muscle cells. Resveratrol concentrations were optimized using CCK-8 and flow cytometry. AF-induced increases in ROS and mitochondrial calcium, along with decreased adenosine triphosphate (ATP) and mitochondrial membrane potential, were observed. Resveratrol mitigated these changes and maintained normal mitochondrial morphology. Moreover, resveratrol acted through the SIRT3-dependent pathway, as evidenced by its ability to suppress AF-induced acetylation of key metabolic enzymes. SIRT3 overexpression controls acetylation modifications, suggesting its regulatory role. In conclusion, resveratrol's SIRT3-dependent pathway intervenes in AF-induced mitochondrial dysfunction, presenting a potential therapeutic avenue for AF-related metabolic disorders. This study sheds light on the role of resveratrol in mitigating AF-induced mitochondrial remodeling and highlights its potential as a novel treatment for AF.


Assuntos
Fibrilação Atrial , Resveratrol , Sirtuína 3 , Resveratrol/farmacologia , Sirtuína 3/metabolismo , Fibrilação Atrial/metabolismo , Fibrilação Atrial/tratamento farmacológico , Animais , Camundongos , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
20.
Int J Immunopathol Pharmacol ; 38: 3946320241249397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688472

RESUMO

Objectives: Resveratrol has been implicated in the differentiation and development of human umbilical cord mesenchymal stem cells. The differentiation of into esophageal fibroblasts is a promising strategy for esophageal tissue engineering. However, the pharmacological effect and underlying mechanism of resveratrol on human umbilical cord mesenchymal stem cells differentiation are unknown. Here, we investigated the effects and mechanism of resveratrol on the differentiation of human umbilical cord mesenchymal stem cells. Methods: Using a transwell-membrane coculture system to culture human umbilical cord mesenchymal stem cells and esophageal fibroblasts, we examined how resveratrol act on the differentiation of human umbilical cord mesenchymal stem cells. Immunocytochemistry, Sirius red staining, quantitative real-time PCR, and Western blotting were performed to examine collagen synthesis and possible signaling pathways in human umbilical cord mesenchymal stem cells. Results: We found that resveratrol promoted collagen synthesis and AKT phosphorylation. However, co-treatment of cells with resveratrol and the PI3K inhibitor LY294002 inhibited collagen synthesis and AKT phosphorylation. We demonstrated that resveratrol down-regulated the expression of IL-6, TGF-ß, caspase-9, and Bax by activating the AKT pathway in human umbilical cord mesenchymal stem cell. Furthermore, resveratrol inhibited phosphorylated NF-ĸB in human umbilical cord mesenchymal stem cells. Conclusion: Our data suggest that resveratrol promotes the differentiation of human umbilical cord mesenchymal stem cells into fibroblasts. The underlying mechanism is associated with the downregulation of IL-6 and TGF-ß via the AKT pathway and by inhibiting the NF-ĸB pathway. Resveratrol may be useful for esophageal tissue engineering.


Assuntos
Diferenciação Celular , Esôfago , Fibroblastos , Células-Tronco Mesenquimais , Proteínas Proto-Oncogênicas c-akt , Resveratrol , Transdução de Sinais , Cordão Umbilical , Humanos , Resveratrol/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cordão Umbilical/citologia , Esôfago/efeitos dos fármacos , Esôfago/citologia , Colágeno/metabolismo , Células Cultivadas , Técnicas de Cocultura , Interleucina-6/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fosforilação , Caspase 9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA