Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2401748121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739789

RESUMO

Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.


Assuntos
Nicotiana , Nicotiana/virologia , Nicotiana/metabolismo , Potyviridae/genética , Potyviridae/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Permeabilidade da Membrana Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Potássio/metabolismo
2.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38787366

RESUMO

Flaviviruses target their replication on membranous structures derived from the ER, where both viral and host proteins play crucial structural and functional roles. Here, we have characterized the involvement of the ER-associated degradation (ERAD) pathway core E3 ligase complex (SEL1L-HRD1) regulator proteins in the replication of Japanese encephalitis virus (JEV). Through high-resolution immunofluorescence imaging of JEV-infected HeLa cells, we observe that the virus replication complexes marked by NS1 strongly colocalize with the ERAD adapter SEL1L, lectin OS9, ER-membrane shuttle factor HERPUD1, E3 ubiquitin ligase HRD1 and rhomboid superfamily member DERLIN1. NS5 positive structures also show strong overlap with SEL1L. While these effectors show significant transcriptional upregulation, their protein levels remain largely stable in infected cells. siRNA mediated depletion of OS9, SEL1L, HERPUD1 and HRD1 significantly inhibit viral RNA replication and titres, with SEL1L depletion showing the maximum attenuation of replication. By performing protein translation arrest experiments, we show that SEL1L, and OS9 are stabilised upon JEV infection. Overall results from this study suggest that these ERAD effector proteins are crucial host-factors for JEV replication.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Degradação Associada com o Retículo Endoplasmático , Proteínas de Membrana , Ubiquitina-Proteína Ligases , Replicação Viral , Humanos , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Vírus da Encefalite Japonesa (Espécie)/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HeLa , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Interações Hospedeiro-Patógeno , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Proteínas/metabolismo , Proteínas/genética , Antígenos de Diferenciação
3.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38687323

RESUMO

The human cytomegalovirus (HCMV) pUS2 glycoprotein exploits the host's endoplasmic reticulum (ER)-associated degradation (ERAD) pathway to degrade major histocompatibility complex class I (MHC-I) and prevent antigen presentation. Beyond MHC-I, pUS2 has been shown to target a range of cellular proteins for degradation, preventing their cell surface expression. Here we have identified a novel pUS2 target, ER-resident protein lectin mannose binding 2 like (LMAN2L). pUS2 expression was both necessary and sufficient for the downregulation of LMAN2L, which was dependent on the cellular E3 ligase TRC8. Given the hypothesized role of LMAN2L in the trafficking of glycoproteins, we employed proteomic plasma membrane profiling to measure LMAN2L-dependent changes at the cell surface. A known pUS2 target, integrin alpha-6 (ITGA6), was downregulated from the surface of LMAN2L-deficient cells, but not other integrins. Overall, these results suggest a novel strategy of pUS2-mediated protein degradation whereby pUS2 targets LMAN2L to impair trafficking of ITGA6. Given that pUS2 can directly target other integrins, we propose that this single viral protein may exhibit both direct and indirect mechanisms to downregulate key cell surface molecules.


Assuntos
Citomegalovirus , Retículo Endoplasmático , Proteínas do Envelope Viral , Proteínas Virais , Humanos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteólise , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/genética , Degradação Associada com o Retículo Endoplasmático , Interações Hospedeiro-Patógeno , Membrana Celular/metabolismo , Membrana Celular/virologia
4.
J Virol ; 97(10): e0124523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792001

RESUMO

IMPORTANCE: Influenza viruses are a public health concern since they cause seasonal outbreaks and occasionally pandemics. Our study investigates the importance of a protein modification called "palmitoylation" in the replication of influenza B virus. Palmitoylation involves attaching fatty acids to the viral protein hemagglutinin and has previously been studied for influenza A virus. We found that this modification is important for the influenza B virus to replicate, as mutating the sites where palmitate is attached prevented the virus from generating viable particles. Our experiments also showed that this modification occurs in the endoplasmic reticulum. We identified the specific enzymes responsible for this modification, which are different from those involved in palmitoylation of HA of influenza A virus. Overall, our research illuminates the similarities and differences in fatty acid attachment to HA of influenza A and B viruses and identifies the responsible enzymes, which might be promising targets for anti-viral therapy.


Assuntos
Aciltransferases , Retículo Endoplasmático , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza B , Lipoilação , Ácido Palmítico , Replicação Viral , Humanos , Aciltransferases/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/química , Vírus da Influenza A/metabolismo , Vírus da Influenza B/química , Vírus da Influenza B/crescimento & desenvolvimento , Vírus da Influenza B/metabolismo , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Lipoilação/genética , Mutação , Ácido Palmítico/metabolismo
5.
Nat Commun ; 13(1): 105, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013224

RESUMO

Zika virus (ZIKV) infection can be associated with neurological pathologies, such as microcephaly in newborns and Guillain-Barre syndrome in adults. Effective therapeutics are currently not available. As such, a comprehensive understanding of virus-host interactions may guide the development of medications for ZIKV. Here we report a human genome-wide overexpression screen to identify host factors that regulate ZIKV infection and find TMEM120A as a ZIKV restriction factor. TMEM120A overexpression significantly inhibits ZIKV replication, while TMEM120A knockdown increases ZIKV infection in cell lines. Moreover, Tmem120a knockout in mice facilitates ZIKV infection in primary mouse embryonic fibroblasts (MEF) cells. Mechanistically, the antiviral activity of TMEM120A is dependent on STING, as TMEM120A interacts with STING, promotes the translocation of STING from the endoplasmic reticulum (ER) to ER-Golgi intermediate compartment (ERGIC) and enhances the phosphorylation of downstream TBK1 and IRF3, resulting in the expression of multiple antiviral cytokines and interferon-stimulated genes. In summary, our gain-of-function screening identifies TMEM120A as a key activator of the antiviral signaling of STING.


Assuntos
Interações Hospedeiro-Patógeno/genética , Canais Iônicos/genética , Proteínas de Membrana/genética , Infecção por Zika virus/genética , Zika virus/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/virologia , Feminino , Regulação da Expressão Gênica , Complexo de Golgi/genética , Complexo de Golgi/imunologia , Complexo de Golgi/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Interferon beta/genética , Interferon beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Canais Iônicos/deficiência , Canais Iônicos/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Transdução de Sinais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Zika virus/crescimento & desenvolvimento , Zika virus/patogenicidade , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
6.
Biochem Biophys Res Commun ; 586: 137-142, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844119

RESUMO

Nuclear pore complexes (NPC) regulate molecular traffics on nuclear envelope, which plays crucial roles during cell fate specification and diseases. The viral accessory protein NSP9 of SARS-CoV-2 is reported to interact with nucleoporin 62 (NUP62), a structural component of the NPC, but its biological impact on the host cell remain obscure. Here, we established new cell line models with ectopic NSP9 expression and determined the subcellular destination and biological functions of NSP9. Confocal imaging identified NSP9 to be largely localized in close proximity to the endoplasmic reticulum. In agreement with the subcellular distribution of NSP9, association of NSP9 with NUP62 was observed in cytoplasm. Furthermore, the overexpression of NSP9 correlated with a reduction of NUP62 expression on the nuclear envelope, suggesting that attenuating NUP62 expression might have contributed to defective NPC formation. Importantly, the loss of NUP62 impaired translocation of p65, a subunit of NF-κB, upon TNF-α stimulation. Concordantly, NSP9 over-expression blocked p65 nuclear transport. Taken together, these data shed light on the molecular mechanisms underlying the modulation of host cells during SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Glicoproteínas de Membrana/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Transporte Ativo do Núcleo Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Modelos Biológicos , Membrana Nuclear/metabolismo , Membrana Nuclear/virologia , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Transcrição RelA/metabolismo , Proteínas não Estruturais Virais/genética
7.
Cell Rep ; 37(10): 110077, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879280

RESUMO

Viruses rearrange host membranes to support different entry steps. Polyomavirus simian virus 40 (SV40) reorganizes the endoplasmic reticulum (ER) membrane to generate focus structures that enable virus ER-to-cytosol escape, a decisive infection step. The molecular architecture of the ER exit site that might illuminate why it is ideally suited for membrane penetration is unknown. Here 3D focused ion beam scanning electron microscopy (FIB-SEM) reconstruction reveals that the ER focus structure consists of multi-tubular ER junctions where SV40 preferentially localizes, suggesting that tubular branch points are virus ER-to-cytosol penetration sites. Functional analysis demonstrates that lunapark-an ER membrane protein that typically stabilizes three-way ER junctions-relocates to the ER foci, where it supports focus formation, leading to SV40 ER escape and infection. Our results reveal how a virus repurposes the activity of an ER membrane protein to form a virus-induced ER substructure required for membrane escape and suggest that ER tubular junctions are vulnerable sites exploited by viruses for membrane penetration.


Assuntos
Citosol/virologia , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Vírus 40 dos Símios/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Citosol/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Interações Hospedeiro-Patógeno , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Masculino , Proteínas de Membrana/genética , Vírus 40 dos Símios/patogenicidade , Vírus 40 dos Símios/ultraestrutura
8.
Viruses ; 13(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696522

RESUMO

The dengue virus (DENV) causes the most prevalent arthropod-borne viral disease worldwide. While its incidence is increasing in many countries, there is no approved antiviral therapy currently available. In infected cells, the DENV induces extensive morphological alterations of the endoplasmic reticulum (ER) to generate viral replication organelles (vRO), which include convoluted membranes (CM) and vesicle packets (VP) hosting viral RNA replication. The viral non-structural protein NS4B localizes to vROs and is absolutely required for viral replication through poorly defined mechanisms, which might involve cellular protein partners. Previous interactomic studies identified the ATPase valosin-containing protein (VCP) as a DENV NS4B-interacting host factor in infected cells. Using both pharmacological and dominant-negative inhibition approaches, we show, in this study, that VCP ATPase activity is required for efficient DENV replication. VCP associates with NS4B when expressed in the absence of other viral proteins while in infected cells, both proteins colocalize within large DENV-induced cytoplasmic structures previously demonstrated to be CMs. Consistently, VCP inhibition dramatically reduces the abundance of DENV CMs in infected cells. Most importantly, using a recently reported replication-independent plasmid-based vRO induction system, we show that de novo VP biogenesis is dependent on VCP ATPase activity. Overall, our data demonstrate that VCP ATPase activity is required for vRO morphogenesis and/or stability. Considering that VCP was shown to be required for the replication of other flaviviruses, our results argue that VCP is a pan-flaviviral host dependency factor. Given that new generation VCP-targeting drugs are currently evaluated in clinical trials for cancer treatment, VCP may constitute an attractive broad-spectrum antiviral target in drug repurposing approaches.


Assuntos
Vírus da Dengue/metabolismo , Proteína com Valosina/metabolismo , Compartimentos de Replicação Viral/fisiologia , Adenosina Trifosfatases/genética , Linhagem Celular , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Retículo Endoplasmático/virologia , Humanos , RNA Viral/genética , Proteína com Valosina/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/fisiologia
9.
Viruses ; 13(9)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34578379

RESUMO

A variety of immunolabeling procedures for both light and electron microscopy were used to examine the cellular origins of the host membranes supporting the SARS-CoV-2 replication complex. The endoplasmic reticulum has long been implicated as a source of membrane for the coronavirus replication organelle. Using dsRNA as a marker for sites of viral RNA synthesis, we provide additional evidence supporting ER as a prominent source of membrane. In addition, we observed a rapid fragmentation of the Golgi apparatus which is visible by 6 h and complete by 12 h post-infection. Golgi derived lipid appears to be incorporated into the replication organelle although protein markers are dispersed throughout the infected cell. The mechanism of Golgi disruption is undefined, but chemical disruption of the Golgi apparatus by brefeldin A is inhibitory to viral replication. A search for an individual SARS-CoV-2 protein responsible for this activity identified at least five viral proteins, M, S, E, Orf6, and nsp3, that induced Golgi fragmentation when expressed in eukaryotic cells. Each of these proteins, as well as nsp4, also caused visible changes to ER structure as shown by correlative light and electron microscopy (CLEM). Collectively, these results imply that specific disruption of the Golgi apparatus is a critical component of coronavirus replication.


Assuntos
Retículo Endoplasmático/virologia , Complexo de Golgi/virologia , SARS-CoV-2/fisiologia , Replicação Viral , Animais , Chlorocebus aethiops , Proteínas M de Coronavírus/fisiologia , Proteínas M de Coronavírus/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/ultraestrutura , Humanos , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Microscopia Eletrônica , SARS-CoV-2/ultraestrutura , Células Vero , Proteínas Estruturais Virais/fisiologia , Proteínas Estruturais Virais/ultraestrutura
10.
Viruses ; 13(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064125

RESUMO

To initiate infection, a virus enters a host cell typically via receptor-dependent endocytosis. It then penetrates a subcellular membrane, reaching a destination that supports transcription, translation, and replication of the viral genome. These steps lead to assembly and morphogenesis of the new viral progeny. The mature virus finally exits the host cell to begin the next infection cycle. Strikingly, viruses hijack host molecular chaperones to accomplish these distinct entry steps. Here we highlight how DNA viruses, including polyomavirus and the human papillomavirus, exploit soluble and membrane-associated chaperones to enter a cell, penetrating and escaping an intracellular membrane en route for infection. We also describe the mechanism by which RNA viruses-including flavivirus and coronavirus-co-opt cytosolic and organelle-selective chaperones to promote viral endocytosis, protein biosynthesis, replication, and assembly. These examples underscore the importance of host chaperones during virus infection, potentially revealing novel antiviral strategies to combat virus-induced diseases.


Assuntos
Vírus de DNA/fisiologia , Chaperonas Moleculares/metabolismo , Vírus de RNA/fisiologia , Citosol/metabolismo , Vírus de DNA/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Endossomos/metabolismo , Endossomos/virologia , Interações Hospedeiro-Patógeno , Membranas Intracelulares/metabolismo , Vírus de RNA/metabolismo , Internalização do Vírus , Replicação Viral
11.
Nat Immunol ; 22(4): 497-509, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790474

RESUMO

Classic major histocompatibility complex class I (MHC-I) presentation relies on shuttling cytosolic peptides into the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP). Viruses disable TAP to block MHC-I presentation and evade cytotoxic CD8+ T cells. Priming CD8+ T cells against these viruses is thought to rely solely on cross-presentation by uninfected TAP-functional dendritic cells. We found that protective CD8+ T cells could be mobilized during viral infection even when TAP was absent in all hematopoietic cells. TAP blockade depleted the endosomal recycling compartment of MHC-I molecules and, as such, impaired Toll-like receptor-regulated cross-presentation. Instead, MHC-I molecules accumulated in the ER-Golgi intermediate compartment (ERGIC), sequestered away from Toll-like receptor control, and coopted ER-SNARE Sec22b-mediated vesicular traffic to intersect with internalized antigen and rescue cross-presentation. Thus, when classic MHC-I presentation and endosomal recycling compartment-dependent cross-presentation are impaired in dendritic cells, cell-autonomous noncanonical cross-presentation relying on ERGIC-derived MHC-I counters TAP dysfunction to nevertheless mediate CD8+ T cell priming.


Assuntos
Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Modelos Animais de Doenças , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Feminino , Complexo de Golgi/imunologia , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/patogenicidade , Ativação Linfocitária , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/genética
12.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33930332

RESUMO

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Assuntos
Antígenos CD/genética , Interações Hospedeiro-Patógeno/genética , Fatores Reguladores de Interferon/genética , Interferon Tipo I/genética , SARS-CoV-2/genética , Proteínas Virais/genética , Animais , Antígenos CD/química , Antígenos CD/imunologia , Sítios de Ligação , Linhagem Celular Tumoral , Chlorocebus aethiops , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/virologia , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Regulação da Expressão Gênica , Complexo de Golgi/genética , Complexo de Golgi/imunologia , Complexo de Golgi/virologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Fatores Reguladores de Interferon/classificação , Fatores Reguladores de Interferon/imunologia , Interferon Tipo I/imunologia , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/imunologia , Transdução de Sinais , Células Vero , Proteínas Virais/química , Proteínas Virais/imunologia , Internalização do Vírus , Liberação de Vírus/genética , Liberação de Vírus/imunologia , Replicação Viral/genética , Replicação Viral/imunologia
13.
Arch Virol ; 166(7): 1921-1930, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33905022

RESUMO

Positive-stranded RNA viruses usually remodel the host endomembrane system to form virus-induced intracellular vesicles for replication during infections. The genus Potyvirus of the family Potyviridae represents the largest number of positive single-stranded RNA viruses, and its members cause great damage to crop production worldwide. Although potyviruses have a wide host range, each potyvirus infects a relatively limited number of host species. Phylogenesis and host range analysis can divide potyviruses into monocot-infecting and dicot-infecting groups, suggesting that they differ in their infection mechanisms, probably during replication. Comprehensive studies on the model dicot-infecting turnip mosaic virus have shown that the 6K2-induced replication vesicles are derived from the endoplasmic reticulum (ER) and subsequently target chloroplasts for viral genome replication. However, the replication site of monocot-infecting potyviruses is unknown. In this study, we show that the precursor 6K2-VPg-Pro polyproteins of dicot-infecting potyviruses and monocot-infecting potyviruses cluster phylogenetically in two separate groups. With a typical gramineae-infecting potyvirus-sugarcane mosaic virus (SCMV)-we found that replicative double-stranded RNA (dsRNA) forms aggregates in the cytoplasm but does not associate with chloroplasts. SCMV 6K2-VPg-Pro-induced vesicles colocalize with replicative dsRNA. Moreover, SCMV 6K2-VPg-Pro-induced structures target multiple intracellular organelles, including the ER, Golgi apparatus, mitochondria, and peroxisomes, and have no evident association with chloroplasts.


Assuntos
Potyvirus/genética , RNA Viral/genética , Replicação Viral/genética , Brassica napus/virologia , Cloroplastos/virologia , Produtos Agrícolas/virologia , Citoplasma/virologia , Retículo Endoplasmático/virologia , Genômica , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/virologia , Poaceae/virologia , Proteínas Virais/genética
14.
Curr Opin Virol ; 47: 95-105, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33690104

RESUMO

Polyomaviruses are mostly non-pathogenic, yet some can cause human disease especially under conditions of immunosuppression, including JC, BK, and Merkel cell polyomaviruses. Direct interactions between viruses and the host early during infection dictate the outcome of disease, many of which remain enigmatic. However, significant work in recent years has contributed to our understanding of how this virus family establishes an infection, largely due to advances made for animal polyomaviruses murine and SV40. Here we summarize the major findings that have contributed to our understanding of polyomavirus entry, trafficking, disassembly, signaling, and immune evasion during the infectious process and highlight major unknowns in these processes that are open areas of study.


Assuntos
Polyomavirus/fisiologia , Internalização do Vírus , Animais , Núcleo Celular/virologia , Retículo Endoplasmático/virologia , Endossomos/virologia , Humanos , Evasão da Resposta Imune , Transdução de Sinais , Ligação Viral
15.
Int J Biochem Cell Biol ; 131: 105906, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33370716

RESUMO

BACKGROUND: Apolipoprotein H (APOH), also known as beta2-glycoprotein I (beta2-GPI), is an acute phase protein in hepatitis B virus (HBV) infection and binds to hepatitis B surface antigen (HBsAg) with high-affinity. APOH expression is upregulated by HBV and the large surface protein (LHBs), but also elevated in HBV-related hepatoma cells. Previous studies show that intracellular retention of HBsAg induces endoplasmic reticulum (ER) stress, a key driver of hepatocyte damage during chronic liver injury, but the mechanisms are unclear. We hypothesize that APOH mediates HBV-induced ER stress through increased retention of HBsAg. METHODS: VR-APOH-myc and VR-LHBs-flag plasmids were constructed by PCR using pcDNA3.1(-)-APOH or an HBV expression vector, respectively. APOH and ER stress markers were examined at protein and mRNA levels by Western Blot or RT-qPCR. HBsAg titer was assayed by ELISA. RNA-seq was performed to elucidate the transcriptional impact of APOH manipulation in HBV-producing cells (HepG2.2.15 cells). RESULTS: We found that HBV upregulates APOH expression in 293 T cells, and APOH overexpression subsequently inhibits secretion of HBsAg. Next, we show that LHBs overexpression in conjunction with APOH leads to ER stress in 293 T cells, as evidenced by production of the binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP), as well as increased splicing of X-box binding protein 1 (XBP1). We further observed that loss of beta2-GPI reduced CHOP expression in HepG2.2.15 cells, while beta2-GPI overexpression enhanced CHOP production. CONCLUSION: The interaction of beta2-GPI and HBV initiates ER stress through driving intracellular retention of HBsAg and activates the UPR.


Assuntos
Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático/genética , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Interações Hospedeiro-Patógeno/genética , beta 2-Glicoproteína I/genética , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/virologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/imunologia , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Células Hep G2 , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Transdução de Sinais , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/imunologia , Transfecção , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/imunologia , beta 2-Glicoproteína I/imunologia
16.
J Biol Chem ; 296: 100111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33229438

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a ß-coronavirus, is the causative agent of the COVID-19 pandemic. Like for other coronaviruses, its particles are composed of four structural proteins: spike (S), envelope (E), membrane (M), and nucleoprotein (N) proteins. The involvement of each of these proteins and their interactions are critical for assembly and production of ß-coronavirus particles. Here, we sought to characterize the interplay of SARS-CoV-2 structural proteins during the viral assembly process. By combining biochemical and imaging assays in infected versus transfected cells, we show that E and M regulate intracellular trafficking of S as well as its intracellular processing. Indeed, the imaging data reveal that S is relocalized at endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) or Golgi compartments upon coexpression of E or M, as observed in SARS-CoV-2-infected cells, which prevents syncytia formation. We show that a C-terminal retrieval motif in the cytoplasmic tail of S is required for its M-mediated retention in the ERGIC, whereas E induces S retention by modulating the cell secretory pathway. We also highlight that E and M induce a specific maturation of N-glycosylation of S, independently of the regulation of its localization, with a profile that is observed both in infected cells and in purified viral particles. Finally, we show that E, M, and N are required for optimal production of virus-like-particles. Altogether, these results highlight how E and M proteins may influence the properties of S proteins and promote the assembly of SARS-CoV-2 viral particles.


Assuntos
Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/genética , Vírion/crescimento & desenvolvimento , Montagem de Vírus/fisiologia , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Expressão Gênica , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Complexo de Golgi/virologia , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas do Nucleocapsídeo/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Proteínas da Matriz Viral/metabolismo , Vírion/genética , Vírion/metabolismo , Internalização do Vírus , Liberação de Vírus/fisiologia
17.
Mem. Inst. Oswaldo Cruz ; 116: e200443, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1154874

RESUMO

BACKGROUND The coronaviruses (CoVs) called the attention of the world for causing outbreaks of severe acute respiratory syndrome (SARS-CoV), in Asia in 2002-03, and respiratory disease in the Middle East (MERS-CoV), in 2012. In December 2019, yet again a new coronavirus (SARS-CoV-2) first identified in Wuhan, China, was associated with a severe respiratory infection, known today as COVID-19. This new virus quickly spread throughout China and 30 additional countries. As result, the World Health Organization (WHO) elevated the status of the COVID-19 outbreak from emergency of international concern to pandemic on March 11, 2020. The impact of COVID-19 on public health and economy fueled a worldwide race to approve therapeutic and prophylactic agents, but so far, there are no specific antiviral drugs or vaccines available. In current scenario, the development of in vitro systems for viral mass production and for testing antiviral and vaccine candidates proves to be an urgent matter. OBJECTIVE The objective of this paper is study the biology of SARS-CoV-2 in Vero-E6 cells at the ultrastructural level. METHODS In this study, we documented, by transmission electron microscopy and real-time reverse transcription polymerase chain reaction (RT-PCR), the infection of Vero-E6 cells with SARS-CoV-2 samples isolated from Brazilian patients. FINDINGS The infected cells presented cytopathic effects and SARS-CoV-2 particles were observed attached to the cell surface and inside cytoplasmic vesicles. The entry of the virus into cells occurred through the endocytic pathway or by fusion of the viral envelope with the cell membrane. Assembled nucleocapsids were verified inside rough endoplasmic reticulum cisterns (RER). Viral maturation seemed to occur by budding of viral particles from the RER into smooth membrane vesicles. MAIN CONCLUSIONS Therefore, the susceptibility of Vero-E6 cells to SARS-CoV-2 infection and the viral pathway inside the cells were demonstrated by ultrastructural analysis.


Assuntos
Humanos , Animais , Células Vero/virologia , Vesículas Citoplasmáticas/virologia , Efeito Citopatogênico Viral , SARS-CoV-2/fisiologia , Chlorocebus aethiops , Nucleocapsídeo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microscopia Eletrônica de Transmissão , Endocitose , Retículo Endoplasmático/virologia , Internalização do Vírus , Reação em Cadeia da Polimerase em Tempo Real
18.
BMC Microbiol ; 20(1): 303, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046006

RESUMO

BACKGROUND: Porcine circovirus type 2 (PCV2) is an important and common DNA virus that infect pig and can cause immunosuppression and induce apoptosis in the infected cells. To escape the host immune system, PCV2 constantly builds up complex mechanisms or mutates genes, and that is why it is difficult to eradicate complex PCV2 infection by relying on vaccines and single compound. At present, there is few literature reports on the effective prevention and treatment of PCV2 infection by a combination of two or more compounds. Previously, we have demonstrated the anti-PCV2 effect of Matrine in vitro, but its mechanism has not been further evaluated. Literatures have proven that Osthole has a variety of pharmacological activities, and we tested the ability of Osthole to inhibit PCV2 replication in cell culture. Therefore, this study explored the synergistic antiviral effect of Matrine combined with Osthole and their synergistic anti-apoptotic mechanism. RESULTS: Osthole alone had an anti-PCV2 effect, and then its synergistic anti-PCV2 effect of Osthole and Matrine was better than that of Matrine or Osthole alone as demonstrated by qRT-PCR, IFA and Western blotting results. The anti-apoptotic mechanism of these two compounds by inducing the PERK pathway by PCV2 was elucidated through Annexin V-FITC/PI, JC-1 and Western blotting. Matrine and Osthole combination could inhibit the expression of Cap in Cap-transfected PK-15 cells, thus inhibiting Cap-induced PERK apoptosis. Ribavirin was used as a positive control. CONCLUSIONS: The combination of Osthole and Matrine had the synergistic effect of anti-PCV2 infection by directly inhibiting the expression of PCV2 Cap protein. The combination of these two compounds also inhibited PERK apoptosis induced by PCV2 Cap protein, possibly by regulating the level of GRP78. The results formed a base for further studies on the mechanism of anti-PCV2 in vivo using Matrine and Osthole combination and developing new anti-PCV2 compounds with Cap and GRP78 as therapeutic targets.


Assuntos
Alcaloides/farmacologia , Antivirais/farmacologia , Circovirus/efeitos dos fármacos , Cumarínicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Quinolizinas/farmacologia , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Circovirus/genética , Circovirus/metabolismo , Combinação de Medicamentos , Sinergismo Farmacológico , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Interações Hospedeiro-Patógeno/genética , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/virologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Suínos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Matrinas
19.
Viruses ; 12(10)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992749

RESUMO

Enteroviruses manipulate host membranes to form replication organelles, which concentrate viral and host factors to allow for efficient replication. However, this process has not been well-studied in living cells throughout the course of infection. To define the dynamic process of enterovirus membrane remodeling of major secretory pathway organelles, we have developed plasmid-based reporter systems that utilize viral protease-dependent release of a nuclear-localized fluorescent protein from the endoplasmic reticulum (ER) membrane during infection, while retaining organelle-specific fluorescent protein markers such as the ER and Golgi. This system thus allows for the monitoring of organelle-specific changes induced by infection in real-time. Using long-term time-lapse imaging of living cells infected with coxsackievirus B3 (CVB), we detected reporter translocation to the nucleus beginning ~4 h post-infection, which correlated with a loss of Golgi integrity and a collapse of the peripheral ER. Lastly, we applied our system to study the effects of a calcium channel inhibitor, 2APB, on virus-induced manipulation of host membranes. We found that 2APB treatment had no effect on the kinetics of infection or the percentage of infected cells. However, we observed aberrant ER structures in CVB-infected cells treated with 2APB and a significant decrease in viral-dependent cell lysis, which corresponded with a decrease in extracellular virus titers. Thus, our system provides a tractable platform to monitor the effects of inhibitors, gene silencing, and/or gene editing on viral manipulation of host membranes, which can help determine the mechanism of action for antivirals.


Assuntos
Enterovirus Humano B/fisiologia , Membranas Intracelulares/metabolismo , Imagem Óptica , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano B/genética , Genes Reporter/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/virologia , Cinética , Plasmídeos/genética , Via Secretória/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
20.
Viruses ; 12(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604762

RESUMO

Live visualization of influenza A virus (IAV) structural proteins during viral infection in cells is highly sought objective to study different aspects of the viral replication cycle. To achieve this, we engineered an IAV to express a Tetra Cysteine tag (TC tag) from hemagglutinin (HA), which allows intracellular labeling of the engineered HA protein with biarsenic dyes and subsequent fluorescence detection. Using such constructs, we rescued a recombinant IAV with TC tag inserted in HA, in A/Puerto Rico/8/1934(H1N1) background (HA-TC). This recombinant HA-TC tag reporter IAV was replication-competent; however, as compared to wild type PR8 IAV, it was attenuated in multicycle replication. We confirmed expression of TC tag and biarsenical labeling of HA by immunofluorescence assay in cells infected with an HA-TC tag reporter IAV. Further, we used this reporter virus to visualize HA expression and translocation in IAV infected cells by live confocal imaging. We also tested the utility of the HA-TC IAV in testing chemical inhibitors of the HA translocation. Overall, HA-TC IAV is a versatile tool that will be useful for studying viral life cycle events, virus-host interactions, and anti-viral testing.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Ligação Viral , Internalização do Vírus , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Cães , Retículo Endoplasmático/virologia , Imunofluorescência , Complexo de Golgi/virologia , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Microscopia Confocal , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA