Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.016
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Theriogenology ; 223: 98-107, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697014

RESUMO

The ALDH1A1 gene encodes a cytoplasmic member of the aldehyde dehydrogenase 1 family, which plays an important role in regulating animal reproductive performance, including estrus cycle and embryonic development. The aim of this study was to characterize ALDH1A1 activity in ovaries of 3-5 year-old yaks and to determine its effects on cell proliferation, apoptosis, and progesterone secretion in luteal cells (LCs). The coding sequence (CDS) of the ALDH1A1 gene was cloned by reverse transcription-PCR and immunohistochemical analysis was used to confirm localization of the ALDH1A1 protein in the ovary. To assess the activity of ALDH1A1 in regulating progesterone secretion, si-ALDH1A1 was transfected into LCs in vitro and progesterone levels in LC supernatants were measured by ELISA. The interference efficiency was assessed by real-time quantitative PCR (RT-qPCR) and immunofluorescence staining, and cell proliferation and apoptosis were evaluated by EdU and TUNEL staining, respectively. The cloned ALDH1A1 sequence contained 1462 bp, encoding 487 amino acids. Immunohistochemical analysis showed that ALDH1A1 protein expression, which was significantly higher in LCs, was mainly found in antral follicles and the corpus luteum (CL). The expression of ALDH1A1 mRNA in LCs was effectively inhibited by si-ALDH1A1transfection, and progesterone secretion was markedly decreased along with the significant down-regulation of progesterone pathway-related genes, STAR, CYP11A1, CYP19A1, CYP17A1, 3ß-HSD, and HSD17B1. Knockdown of ALDH1A1 mRNA expression decreased cell proliferation and increased apoptosis in LCs. The mRNA expression of the proliferation-related genes, PCNA, CCND1, CCNB1 and CDC25A, was significantly down-regulated, while expression of the apoptosis-promoting CASP3 gene was significantly increased. In summary, we characterized the yak ALDH1A1 gene and revealed that ALDH1A1 knockdown promoted apoptosis, repressed cell proliferation, and decreased progesterone secretion by yak LCs, potentially by regulating the mRNA expression of genes related to proliferation, apoptosis, and progesterone synthesis and secretion.


Assuntos
Família Aldeído Desidrogenase 1 , Células Lúteas , Retinal Desidrogenase , Animais , Feminino , Bovinos/genética , Células Lúteas/metabolismo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1/genética , Família Aldeído Desidrogenase 1/metabolismo , Apoptose , Progesterona/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Proliferação de Células , Regulação da Expressão Gênica/fisiologia
2.
Biochem Pharmacol ; 224: 116252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701866

RESUMO

The mitogen-activated protein kinase (MAPK/ERK) pathway is pivotal in controlling the proliferation and survival of melanoma cells. Several mutations, including those in BRAF, exhibit an oncogenic effect leading to increased cellular proliferation. As a result, the combination therapy of a MEK inhibitor with a BRAF inhibitor demonstrated higher efficacy and lower toxicity than BRAF inhibitor alone. This combination has become the preferred standard of care for tumors driven by BRAF mutations. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a known marker of stemness involved in drug resistance in several type of tumors, including melanoma. This study demonstrates that melanoma cells overexpressing ALDH1A1 displayed resistance to vemurafenib and trametinib through the activation of PI3K/AKT signaling instead of MAPK axis. Inhibition of PI3K/AKT signaling partially rescued sensitivity to the drugs. Consistently, pharmacological inhibition of ALDH1A1 activity downregulated the activation of AKT and partially recovered responsiveness to vemurafenib and trametinib. We propose ALDH1A1 as a new potential target for treating melanoma resistant to MAPK/ERK inhibitors.


Assuntos
Família Aldeído Desidrogenase 1 , Resistencia a Medicamentos Antineoplásicos , Melanoma , Células-Tronco Neoplásicas , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Retinal Desidrogenase , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Linhagem Celular Tumoral , Família Aldeído Desidrogenase 1/metabolismo , Família Aldeído Desidrogenase 1/genética , Retinal Desidrogenase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Pirimidinonas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Piridonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Vemurafenib/farmacologia , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/genética , Antineoplásicos/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fenótipo
3.
Sci Rep ; 14(1): 10583, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719848

RESUMO

Identifying marker combinations for robust prognostic validation in primary tumour compartments remains challenging. We aimed to assess the prognostic significance of CSC markers (ALDH1, CD44, p75NTR, BMI-1) and E-cadherin biomarkers in OSCC. We analysed 94 primary OSCC and 67 metastatic lymph node samples, including central and invasive tumour fronts (ITF), along with clinicopathological data. We observed an increase in ALDH1+/CD44+/BMI-1- tumour cells in metastatic lesions compared to primary tumours. Multivariate analysis highlighted that elevated p75NTR levels (at ITF) and reduced E-cadherin expression (at the tumour centre) independently predicted metastasis, whilst ALDH1high exhibited independent predictive lower survival at the ITF, surpassing the efficacy of traditional tumour staging. Then, specifically at the ITF, profiles characterized by CSChighE-cadherinlow (ALDH1highp75NTRhighE-cadherinlow) and CSCintermediateE-cadherinlow (ALDH1 or p75NTRhighE-cadherinlow) were significantly associated with worsened overall survival and increased likelihood of metastasis in OSCC patients. In summary, our study revealed diverse tumour cell profiles in OSCC tissues, with varying CSC and E-cadherin marker patterns across primary tumours and metastatic sites. Given the pivotal role of reduced survival rates as an indicator of unfavourable prognosis, the immunohistochemistry profile identified as CSChighE-cadherinlow at the ITF of primary tumours, emerges as a preferred prognostic marker closely linked to adverse outcomes in OSCC.


Assuntos
Família Aldeído Desidrogenase 1 , Biomarcadores Tumorais , Caderinas , Carcinoma de Células Escamosas , Imuno-Histoquímica , Neoplasias Bucais , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/mortalidade , Neoplasias Bucais/diagnóstico , Caderinas/metabolismo , Feminino , Masculino , Prognóstico , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/mortalidade , Idoso , Família Aldeído Desidrogenase 1/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores de Fator de Crescimento Neural/metabolismo , Retinal Desidrogenase/metabolismo , Receptores de Hialuronatos/metabolismo , Adulto , Metástase Linfática , Proteínas do Tecido Nervoso/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética
4.
Cell Death Dis ; 15(5): 306, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693105

RESUMO

Colorectal cancers (CRCs) are highly heterogeneous and show a hierarchical organization, with cancer stem cells (CSCs) responsible for tumor development, maintenance, and drug resistance. Our previous studies showed the importance of thyroid hormone-dependent signaling on intestinal tumor development and progression through action on stem cells. These results have a translational value, given that the thyroid hormone nuclear receptor TRα1 is upregulated in human CRCs, including in the molecular subtypes associated with CSC features. We used an established spheroid model generated from the human colon adenocarcinoma cell line Caco2 to study the effects of T3 and TRα1 on spheroid formation, growth, and response to conventional chemotherapies. Our results show that T3 treatment and/or increased TRα1 expression in spheroids impaired the response to FOLFIRI and conferred a survival advantage. This was achieved by stimulating drug detoxification pathways and increasing ALDH1A1-expressing cells, including CSCs, within spheroids. These results suggest that clinical evaluation of the thyroid axis and assessing TRα1 levels in CRCs could help to select optimal therapeutic regimens for patients with CRC. Proposed mechanism of action of T3/TRα1 in colon cancer spheroids. In the control condition, TRα1 participates in maintaining homeostatic cell conditions. The presence of T3 in the culture medium activates TRα1 action on target genes, including the drug efflux pumps ABCG2 and ABCB1. In the case of chemotherapy FOLFIRI, the increased expression of ABC transcripts and proteins induced by T3 treatment is responsible for the augmented efflux of 5-FU and Irinotecan from the cancer cells. Taken together, these mechanisms contribute to the decreased efficacy of the chemotherapy and allow cells to escape the treatment. Created with BioRender.com .


Assuntos
Camptotecina/análogos & derivados , Neoplasias do Colo , Fluoruracila , Células-Tronco Neoplásicas , Esferoides Celulares , Receptores alfa dos Hormônios Tireóideos , Tri-Iodotironina , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Células CACO-2 , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Tri-Iodotironina/farmacologia , Leucovorina/farmacologia , Leucovorina/uso terapêutico , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Fenótipo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Família Aldeído Desidrogenase 1/metabolismo , Família Aldeído Desidrogenase 1/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Retinal Desidrogenase/metabolismo , Retinal Desidrogenase/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
5.
Anticancer Res ; 44(5): 1877-1883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677758

RESUMO

BACKGROUND/AIM: Human gastric cancer stem-like cells (CSCs)/cancer-initiating cells can be identified as aldehyde dehydrogenase-high (ALDHhigh) cells. Cancer immunotherapy employing immune checkpoint blockade has been approved for advanced gastric cancer cases. However, the effectiveness of cancer immunotherapy against gastric CSCs/CICs remains unclear. This study aimed to investigate the susceptibility of gastric CSCs/CICs to immunotherapy. MATERIALS AND METHODS: Gastric CSCs/CICs were isolated as ALDHhigh cells using the human gastric cancer cell line, MKN-45. ALDHhigh clone cells and ALDHlow clone cells were isolated using the ALDEFLUOR assay. ALDH1A1 expression was assessed via qRT-PCR. Sphere-forming ability was evaluated to confirm the presence of CSCs/CICs. A model neoantigen, AP2S1, was over-expressed in ALDHhigh clone cells and ALDHlow clone cells, and susceptibility to AP2S1-specific TCR-T cells was assessed using IFNγ ELISPOT assay. RESULTS: Three ALDHhigh clone cells were isolated from MKN-45 cells. ALDHhigh clone cells exhibited a stable phenotype in in vitro culture for more than 2 months. The High-36 clone cells demonstrated the highest sphere-forming ability, whereas the Low-8 cells showed the lowest sphere-forming ability. High-36 cells exhibited lower expression of HLA-A24 compared to Low-8 cells. TCR-T cells specific for AP2S1 showed lower reactivity to High-36 cells compared to Low-8 cells. CONCLUSION: High-36 cells and Low-8 cells represent novel gastric CSCs/CICs and non-CSCs/CICs, respectively. ALDHhigh CSCs/CICs evade T cells due to lower expression of HLA class 1.


Assuntos
Família Aldeído Desidrogenase 1 , Células-Tronco Neoplásicas , Neoplasias Gástricas , Linfócitos T Citotóxicos , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Família Aldeído Desidrogenase 1/metabolismo , Família Aldeído Desidrogenase 1/genética , Linhagem Celular Tumoral , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Retinal Desidrogenase/metabolismo , Evasão Tumoral/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia
6.
Oncol Res ; 32(5): 955-963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686049

RESUMO

Background: Bortezomib results in peripheral neuropathy (PN) in approximately 50% of patients, during multiple myeloma (MM) treatment, a complication known as Bortezomib-induced peripheral neuropathy (BIPN). The drug response varies among individuals. Genetic factor may play an important role in BIPN. Methods: A next-generation sequencing (NGS) panel containing 1659 targets from 233 genes was used to identify risk variants for developing BIPN in 204 MM patients who received bortezomib therapy. mRNA expression of MTHFR and ALDH1A1 in 62 peripheral blood samples was detected by real-time quantitative PCR (RT-qPCR). Serum homocysteine (Hcy) levels were detected in 40 samples by chemiluminescent microparticle immunoassay (CMIA). Results: Compared with the non-BIPN group (n = 89), a total of 8 significantly associated single nucleotide polymorphisms (SNPs) were identified in the BIPN group (n = 115): MTHFR (rs1801131, rs1801133, rs17421511), EPHX1 (rs1051740), MME (rs2016848), ALDH1A1 (rs6151031), HTR7 (rs1935349) and CYP2A6 (rs8192720). The mRNA expression level of MTHFR in newly diagnosed patients with peripheral neuritis after treatment (NP group) was lower than that of newly diagnosed patients without peripheral neuritis after treatment (NnP group) (1.70 ± 0.77 vs. 2.81 ± 0.97, p= 0.009). Serum Hcy levels were significantly higher in BIPN group than in non-BIPN group (11.66 ± 1.79 µmol/L vs. 8.52 ± 3.29 µmol/L, p= 0.016) and healthy controls (11.66 ± 1.79 µmol/L vs. 8.55 ± 2.13 µmol/L, p≤ 0.001). Conclusion: CYP2A6, EPHX1, MTHFR, ALDH1A1, HTR7, MME and BIPN are linked in Chinese MM patients. BIPN is more likely to occur in patients with lower MTHFR mRNA expression, which might result in higher serum Hcy levels.


Assuntos
Bortezomib , Metilenotetra-Hidrofolato Redutase (NADPH2) , Mieloma Múltiplo , Doenças do Sistema Nervoso Periférico , Polimorfismo de Nucleotídeo Único , Humanos , Bortezomib/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Masculino , Feminino , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Idoso , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Povo Asiático/genética , Família Aldeído Desidrogenase 1/genética , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Retinal Desidrogenase/genética , Predisposição Genética para Doença , Adulto , China , Sequenciamento de Nucleotídeos em Larga Escala , População do Leste Asiático
7.
Cancer Med ; 13(3): e7004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400679

RESUMO

BACKGROUND: Embryonic pluripotency markers are recognized for their role in ER- BC aggressiveness, but their significance in ER+ BC remains unclear. This study aims to investigate the prevalence of expression of pluripotency markers in ER+ BC and their effect on survival and prognostic indicators. METHODS: We analyzed data of ER+ BC patients from three large cancer datasets to assess the expression of three pluripotency markers (NANOG, SOX-2, and OCT4), and the stem cell marker ALDH1A1. Additionally, we investigated associations between gene expression, through mRNA-Seq analysis, and overall survival (OS). The prevalence of mutational variants within these genes was explored. Using immunohistochemistry (IHC), we examined the expression and associations with clinicopathologic prognostic indicators of the four markers in 81 ER+ BC patients. RESULTS: Through computational analysis, NANOG and ALDH1A1 genes were significantly upregulated in ER+ BC compared to ER- BC patients (p < 0.001), while POU5F1 (OCT4) was downregulated (p < 0.001). NANOG showed an adverse impact on OS whereas ALDH1A1 was associated with a highly significant improved survival in ER+ BC (p = 4.7e-6), except for the PR- and HER2+ subgroups. Copy number alterations (CNAs) ranged from 0.4% to 1.6% in these genes, with the highest rate detected in SOX2. In the IHC study, approximately one-third of tumors showed moderate to strong expression of each of the four markers, with 2-4 markers strongly co-expressed in 56.8% of cases. OCT-4 and ALDH1A1 showed a significant association with a high KI-67 index (p = 0.009 and 0.008, respectively), while SOX2 showed a significant association with perinodal fat invasion (p = 0.017). CONCLUSION: Pluripotency markers and ALDH1A1 are substantially expressed in ER+ BC tumors with different, yet significant, associations with prognostic and survival outcomes. This study suggests these markers as targets for prospective clinical validation studies of their prognostic value and their possible therapeutic roles.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Estudos Prospectivos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Estrogênios , Células-Tronco Embrionárias/metabolismo , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase/genética
8.
Chem Biol Interact ; 391: 110910, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364885

RESUMO

Aldehyde dehydrogenase 1A (ALDH1A) isoforms may be a useful target for overcoming chemotherapy resistance in high-grade serous ovarian cancer (HGSOC) and other solid tumor cancers. However, as different cancers express different ALDH1A isoforms, isoform selective inhibitors may have a limited therapeutic scope. Furthermore, resistance to an ALDH1A isoform selective inhibitor could arise via induction of expression of other ALDH1A isoforms. As such, we have focused on the development of pan-ALDH1A inhibitors, rather than on ALDH1A isoform selective compounds. Herein, we report the development of a new group of pan-ALDH1A inhibitors to assess whether broad spectrum ALDH1A inhibition is an effective adjunct to chemotherapy in HGSOC. Optimization of the CM10 scaffold, aided by ALDH1A1 crystal structures, led to improved biochemical potencies, improved cellular efficacy as demonstrated by reduction in ALDEFLUOR signal in HGSOC cells, and substantial improvements in liver microsomal stability. Based on this work we identified two compounds 17 and 25 suitable for future in vivo proof of concept experiments.


Assuntos
Isoenzimas , Neoplasias , Humanos , Aldeído Desidrogenase/metabolismo , Retinal Desidrogenase/metabolismo , Aldeído Oxirredutases/metabolismo
9.
Theranostics ; 14(2): 714-737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169509

RESUMO

Rationale: Current therapies for metastatic osseous disease frequently fail to provide a durable treatment response. To date, there are only limited therapeutic options for metastatic prostate cancer, the mechanisms that drive the survival of metastasis-initiating cells are poorly characterized, and reliable prognostic markers are missing. A high aldehyde dehydrogenase (ALDH) activity has been long considered a marker of cancer stem cells (CSC). Our study characterized a differential role of ALDH1A1 and ALDH1A3 genes as regulators of prostate cancer progression and metastatic growth. Methods: By genetic silencing of ALDH1A1 and ALDH1A3 in vitro, in xenografted zebrafish and murine models, and by comparative immunohistochemical analyses of benign, primary tumor, and metastatic specimens from patients with prostate cancer, we demonstrated that ALDH1A1 and ALDH1A3 maintain the CSC phenotype and radioresistance and regulate bone metastasis-initiating cells. We have validated ALDH1A1 and ALDH1A3 as potential biomarkers of clinical outcomes in the independent cohorts of patients with PCa. Furthermore, by RNAseq, chromatin immunoprecipitation (ChIP), and biostatistics analyses, we suggested the molecular mechanisms explaining the role of ALDH1A1 in PCa progression. Results: We found that aldehyde dehydrogenase protein ALDH1A1 positively regulates tumor cell survival in circulation, extravasation, and metastatic dissemination, whereas ALDH1A3 plays the opposite role. ALDH1A1 and ALDH1A3 are differentially expressed in metastatic tumors of patients with prostate cancer, and their expression levels oppositely correlate with clinical outcomes. Prostate cancer progression is associated with the increasing interplay of ALDH1A1 with androgen receptor (AR) and retinoid receptor (RAR) transcriptional programs. Polo-like kinase 3 (PLK3) was identified as a transcriptional target oppositely regulated by ALDH1A1 and ALDH1A3 genes in RAR and AR-dependent manner. PLK3 contributes to the control of prostate cancer cell proliferation, migration, DNA repair, and radioresistance. ALDH1A1 gain in prostate cancer bone metastases is associated with high PLK3 expression. Conclusion: This report provides the first evidence that ALDH1A1 and PLK3 could serve as biomarkers to predict metastatic dissemination and radiotherapy resistance in patients with prostate cancer and could be potential therapeutic targets to eliminate metastasis-initiating and radioresistant tumor cell populations.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Animais , Camundongos , Peixe-Zebra/metabolismo , Linhagem Celular Tumoral , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Neoplasias da Próstata/genética , Biomarcadores , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
10.
Cancer Immunol Res ; 12(2): 180-194, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38051215

RESUMO

Globally, hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and a leading cause of cancer-related death. We previously identified an immune evasion pathway whereby tumor cells produce retinoic acid (RA) to promote differentiation of intratumoral monocytes into protumor macrophages. Retinaldehyde dehydrogenase 1 (RALDH1), RALDH2, and RALDH3 are the three isozymes that catalyze RA biosynthesis. In this study, we have identified RALDH1 as the key driver of RA production in HCC and demonstrated the efficacy of RALDH1-selective inhibitors (Raldh1-INH) in suppressing RA production by HCC cells. Raldh1-INH restrained tumor growth in multiple mouse models of HCC by reducing the number and tumor-supporting functions of intratumoral macrophages as well as increasing T-cell infiltration and activation within tumors. Raldh1-INH also displayed favorable pharmacokinetic, pharmacodynamic, and toxicity profiles in mice thereby establishing them as promising new drug candidates for HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Retinal Desidrogenase/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Tretinoína/farmacologia , Tretinoína/metabolismo , Aldeído Oxirredutases/metabolismo
11.
Anticancer Res ; 44(1): 37-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160009

RESUMO

BACKGROUND/AIM: We have reported that p62 (also known as sequestosome 1) is needed for survival/proliferation and tumor formation by aldehyde dehydrogenase 1 (ALDH1) -positive cancer stem cells (CSCs) and that p62high ALDH1A3high expression is associated with a poor prognosis in luminal B breast cancer. However, the association between p62high ALDH1A3high and the benefit from radiotherapy in patients with luminal B breast cancer remains unclear. MATERIALS AND METHODS: Datasets from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) were downloaded, and data from p62high ALDH1A3high luminal B patients treated without or with radiotherapy were analyzed by Kaplan-Meier and multivariate Cox regression analyses. We also performed an in vitro tumor sphere formation assay after X-ray irradiation using p62-knockdown ALDH1high luminal B BT-474 cells. RESULTS: p62high ALDH1A3high patients had poorer clinical outcomes than other luminal B breast cancer patients treated with radiotherapy. The combination of p62 DsiRNA KD and X-ray irradiation suppressed in vitro tumor sphere formation by ALDH1high BT-474 cells. These results suggest that p62 is involved in the reduced effect of X-ray irradiation on ALDH1-positive luminal B breast CSCs. CONCLUSION: p62 and ALDH1A3 may serve as prognostic biomarkers for luminal B breast cancer patients treated with radiotherapy. Additionally, the combination of p62 inhibition and radiotherapy could be useful for targeted strategies against ALDH1-positive luminal B breast CSCs.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Neoplasias da Mama/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mama/patologia , Família Aldeído Desidrogenase 1/metabolismo , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Retinal Desidrogenase/metabolismo , Prognóstico
12.
Proc Natl Acad Sci U S A ; 120(36): e2302342120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639589

RESUMO

Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are "nonlethal," in that the inhibition of the enzymes' activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).


Assuntos
Aldeído Desidrogenase , Anticorpos , Humanos , Azidas , Carcinogênese , Química Click , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
13.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298333

RESUMO

The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Oxidantes , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas , RNA , Família Aldeído Desidrogenase 1
14.
Int J Biol Macromol ; 242(Pt 1): 124749, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37160174

RESUMO

Cyclophosphamide (CP) is one of the most widely used anticancer drugs for various malignancies. However, its long-term use leads to ALDH1A1-mediated inactivation and subsequent resistance which necessitates the development of potential ALDH1A1 inhibitors. Currently, ALDH1A1 inhibitors from different chemical classes have been reported, but these failed to reach the market due to safety and efficacy problems. Developing a new treatment from the ground requires a huge amount of time, effort, and money, therefore it is worthwhile to improve CP efficacy by proposing better adjuvants as ALDH1A1 inhibitors. Herein, the database constituting the FDA-approved drugs with well-established safety and toxicity profiles was screened through already reported machine learning models by our research group. This model is validated for discriminating the ALDH1A1 inhibitors and non-inhibitors. Virtual screening protocol (VS) from this model identified four FDA-approved drugs, raloxifene, bazedoxifene, avanafil, and betrixaban as selective ALDH1A1 inhibitors. The molecular docking, dynamics, and water swap analysis also suggested these drugs to be promising ALDH1A1 inhibitors which were further validated for their CP resistance reversal potential by in-vitro analysis. The in-vitro enzymatic assay results indicated that raloxifene and bazedoxifene selectively inhibited the ALDH1A1 enzyme with IC50 values of 2.35 and 4.41 µM respectively, whereas IC50 values of both the drugs against ALDH2 and ALDH3A1 was >100 µM. Additional in-vitro studies with well-reported ALDH1A1 overexpressing A549 and MIA paCa-2 cell lines suggested that mafosfamide sensitivity was further ameliorated by the combination of both raloxifene and bazedoxifene. Collectively, in-silico and in-vitro studies indicate raloxifene and bazedoxifene act as promising adjuvants with CP that may improve the quality of treatment for cancer patients with minimal toxicities.


Assuntos
Neoplasias , Cloridrato de Raloxifeno , Humanos , Cloridrato de Raloxifeno/farmacologia , Simulação de Acoplamento Molecular , Reposicionamento de Medicamentos , Ciclofosfamida/farmacologia , Neoplasias/tratamento farmacológico , Aldeído-Desidrogenase Mitocondrial , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
15.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047661

RESUMO

Aldehyde dehydrogenase 1A3 (ALDH1A3), one of the three members of the aldehyde dehydrogenase 1A subfamily, has been associated with increased progression and drug resistance in various types of solid tumours. Recently, it has been reported that high ALDH1A3 expression is prognostic of poor survival in patients with malignant pleural mesothelioma (MPM), an asbestos-associated chemoresistant cancer. We treated MPM cells, cultured as multicellular spheroids, with NR6, a potent and highly selective ALDH1A3 inhibitor. Here we report that NR6 treatment caused the accumulation of toxic aldehydes, induced DNA damage, CDKN2A expression and cell growth arrest. We observed that, in CDKN2A proficient cells, NR6 treatment induced IL6 expression, but abolished CXCL8 expression and IL-8 release, preventing both neutrophil recruitment and generation of neutrophil extracellular traps (NETs). Furthermore, we demonstrate that in response to ALDH1A3 inhibition, CDKN2A loss skewed cell fate from senescence to apoptosis. Dissecting the role of ALDH1A3 isoform in MPM cells and tumour microenvironment can open new fronts in the treatment of this cancer.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Aldeído Desidrogenase , Linhagem Celular Tumoral , Inibidores Enzimáticos/uso terapêutico , Neoplasias Pulmonares/genética , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Mesotelioma/metabolismo , Infiltração de Neutrófilos , Neoplasias Pleurais/patologia , Esferoides Celulares/metabolismo , Microambiente Tumoral , Retinal Desidrogenase/metabolismo
16.
J Vis Exp ; (193)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067271

RESUMO

Relapse after cancer treatment is often attributed to the persistence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are characterized by their remarkable tumor-initiating and self-renewal capacity. Depending on the origin of the tumor (e.g., ovaries), the CSC surface biomarker profile can vary dramatically, making the identification of such cells via immunohistochemical staining a challenging endeavor. On the contrary, aldehyde dehydrogenase 1A1 (ALDH1A1) has emerged as an excellent marker to identify CSCs, owing to its conserved expression profile in nearly all progenitor cells including CSCs. The ALDH1A1 isoform belongs to a superfamily of 19 enzymes that are responsible for the oxidation of various endogenous and xenobiotic aldehydes to the corresponding carboxylic acid products. Chan et al. recently developed AlDeSense, an isoform-selective "turn-on" probe for the detection of ALDH1A1 activity, as well as a non-reactive matching control reagent (Ctrl-AlDeSense) to account for off-target staining. This isoform-selective tool has already been demonstrated to be a versatile chemical tool through the detection of ALDH1A1 activity in K562 myelogenous leukemia cells, mammospheres, and melanoma-derived CSC xenografts. In this article, the utility of the probe was showcased through additional fluorimetry, confocal microscopy, and flow cytometry experiments where the relative ALDH1A1 activity was determined in a panel of five ovarian cancer cell lines.


Assuntos
Aldeído Desidrogenase , Neoplasias Ovarianas , Humanos , Feminino , Família Aldeído Desidrogenase 1/metabolismo , Retinal Desidrogenase/metabolismo , Linhagem Celular Tumoral , Aldeído Desidrogenase/metabolismo , Neoplasias Ovarianas/patologia , Células-Tronco Neoplásicas/patologia
17.
Anticancer Res ; 43(5): 2145-2154, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37097684

RESUMO

BACKGROUND/AIM: This study aimed to examine the clinical significance of the protein expression of the cancer stem cell (CSC) markers ALDH1A1, CD133, CD44, and MSI-1 in primary and metastatic tissues of patients with breast cancer (BC). PATIENTS AND METHODS: ALDH1A1, CD133, CD44, and MSI-1 protein expression in pairs of primary and metastatic tissues of 55 patients with BC with metastases treated at Kanagawa Cancer Center between January 1970 and December 2016 were evaluated using immunohistochemical assay and their association with clinicopathological factors and survival was examined. RESULTS: There were no significant differences in CSC marker expression rates between primary and metastatic tissues for any CSC markers. Regarding the relationship between CSC marker expression in primary tissues and survival, patients with high CD133 expression had significantly lower recurrence-free survival (DFS) and overall survival. On multivariate analysis, they were also a poor independent predictor of DFS (hazard ratio=4.993, 95%CI=2.189-11.394, p=0.0001). In contrast, there was no significant association between the expression of any CSC marker in metastatic tissues and survival. CONCLUSION: CD133 expression in the primary BC tissue may be a useful risk factor for recurrence in patients with BC.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Células-Tronco Neoplásicas , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Metástase Neoplásica , Biomarcadores Tumorais/metabolismo , Família Aldeído Desidrogenase 1/metabolismo , Retinal Desidrogenase/metabolismo , Antígeno AC133/metabolismo , Receptores de Hialuronatos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Humanos , Feminino , Pessoa de Meia-Idade , Intervalo Livre de Doença , Japão
18.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768723

RESUMO

Recurrent disease and treatment-associated chemoresistance are the two main factors accounting for poor clinical outcomes of ovarian cancer (OC) patients. Both can be associated with cancer stem cells (CSCs), which contribute to cancer formation, progression, chemoresistance, and recurrence. Hence, this study investigated whether the expression of known CSC-associated markers ALDH1A, CD44, and CD133 may predict OC patient prognosis. We analyzed their expression in primary epithelial ovarian cancer (EOC) patients using immunohistochemistry and related them to clinicopathological data, including overall survival (OS) and progression-free survival (PFS). Expression of ALDH1A1 was detected in 32%, CD133 in 28%, and CD44 in 33% of cases. While Kaplan-Meier analysis revealed no association of the expression of CD133 and CD44 with PFS and OS, ALDH1A1-positive patients were characterized with both significantly shorter OS (p = 0.00022) and PFS (p = 0.027). Multivariate analysis demonstrated that the expression of ALDH1A1, FIGO stage III-IV, and residual disease after suboptimal debulking or neoadjuvant chemotherapy correlated with shorter OS. The results of this study identify ALDH1A1 as a potential independent prognostic factor of shorter OS and PFS in EOC patients. Therefore, targeting ALDH1A1-positive cancer cells may be a promising therapeutic strategy to influence the disease course and treatment response.


Assuntos
Receptores de Hialuronatos , Neoplasias Ovarianas , Feminino , Humanos , Família Aldeído Desidrogenase 1/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário/patologia , Seguimentos , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Prognóstico , Retinal Desidrogenase/metabolismo
19.
Sci Transl Med ; 14(676): eabm4054, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542696

RESUMO

More than 40% of individuals will develop osteoarthritis (OA) during their lifetime, yet there are currently no licensed disease-modifying treatments for this disabling condition. Common polymorphic variants in ALDH1A2, which encodes the key enzyme for synthesis of all-trans retinoic acid (atRA), are associated with severe hand OA. Here, we sought to elucidate the biological significance of this association. We first confirmed that ALDH1A2 risk variants were associated with hand OA in the U.K. Biobank. Articular cartilage was acquired from 33 individuals with hand OA at the time of routine hand OA surgery. After stratification by genotype, RNA sequencing was performed. A reciprocal relationship between ALDH1A2 mRNA and inflammatory genes was observed. Articular cartilage injury up-regulated similar inflammatory genes by a process that we have previously termed mechanoflammation, which we believe is a primary driver of OA. Cartilage injury was also associated with a concomitant drop in atRA-inducible genes, which were used as a surrogate measure of cellular atRA concentration. Both responses to injury were reversed using talarozole, a retinoic acid metabolism blocking agent (RAMBA). Suppression of mechanoflammation by talarozole was mediated by a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent mechanism. Talarozole was able to suppress mechano-inflammatory genes in articular cartilage in vivo 6 hours after mouse knee joint destabilization and reduced cartilage degradation and osteophyte formation after 26 days. These data show that boosting atRA suppresses mechanoflammation in the articular cartilage in vitro and in vivo and identifies RAMBAs as potential disease-modifying drugs for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Tretinoína/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Articulação do Joelho , Anti-Inflamatórios , Condrócitos/metabolismo , Família Aldeído Desidrogenase 1/metabolismo , Retinal Desidrogenase/metabolismo
20.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500483

RESUMO

Folate (vitamin B9) is involved in one-carbon transfer reactions and plays a significant role in nucleic acid synthesis and control of cellular proliferation, among other key cellular processes. It is now recognized that the role of folates in different stages of carcinogenesis is complex, and more research is needed to understand how folate reactions become dysregulated in cancers and the metabolic consequences that occur as a result. ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism expressed in many tissues, is ubiquitously downregulated in cancers and is not expressed in cancer cell lines. The RT4 cell line (derived from papillary bladder cancer) which expresses high levels of ALDH1L1 represents an exception, providing an opportunity to explore the metabolic consequences of the loss of this enzyme. We have downregulated this protein in RT4 cells (shRNA driven knockdown or CRISPR driven knockout) and compared metabolomes of ALDH1L1-expressing and -deficient cells to determine if metabolic changes linked to the loss of this enzyme might provide proliferative and/or survival advantages for cancer cells. In this study, cell extracts were analyzed using Ultra High Performance Liquid Chromatography High Resolution Mass Spectrometry (UHPLC-HR-MS). A total of 13,339 signals were identified or annotated using an in-house library and public databases. Supervised and unsupervised multivariate analysis revealed metabolic differences between RT4 cells and ALDH1L1-deficient clones. Glycine (8-fold decrease) and metabolites derived from S-adenosylmethionine utilizing pathways were significantly decreased in the ALDH1L1-deficient clones, compared with RT4 cells. Other changes linked to ALDH1L1 downregulation include decreased levels of amino acids, Krebs cycle intermediates, and ribose-5-phosphate, and increased nicotinic acid. While the ALDH1L1-catalyzed reaction is directly linked to glycine biosynthesis and methyl group flux, its overall effect on cellular metabolism extends beyond immediate metabolic pathways controlled by this enzyme.


Assuntos
Ácido Fólico , Neoplasias , Humanos , Ácido Fólico/metabolismo , Glicina/metabolismo , Retinal Desidrogenase/metabolismo , Metilação , Família Aldeído Desidrogenase 1/metabolismo , S-Adenosilmetionina/metabolismo , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA