Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(19): 4963-4968, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686088

RESUMO

Intracellular Fe plays a key role in redox active energy and electron transfer. We sought to understand how Fe levels impact the retina, given that retinal pigment epithelial (RPE) cells are also challenged by accumulations of vitamin A aldehyde adducts (bisretinoid lipofuscin) that photogenerate reactive oxygen species and photodecompose into damaging aldehyde- and dicarbonyl-bearing species. In mice treated with the Fe chelator deferiprone (DFP), intracellular Fe levels, as reflected in transferrin receptor mRNA expression, were reduced. DFP-treated albino Abca4-/- and agouti wild-type mice exhibited elevated bisretinoid levels as measured by high-performance liquid chromatography or noninvasively by quantitative fundus autofluorescence. Thinning of the outer nuclear layer, a parameter indicative of the loss of photoreceptor cell viability, was also reduced in DFP-treated albino Abca4-/- In contrast to the effects of the Fe chelator, mice burdened with increased intracellular Fe in RPE due to deficiency in the Fe export proteins hephaestin and ceruloplasmin, presented with reduced bisretinoid levels. These findings indicate that intracellular Fe promotes bisretinoid oxidation and degradation. This interpretation was supported by experiments showing that DFP decreased the oxidative/degradation of the bisretinoid A2E in the presence of light and reduced cell death in cell-based experiments. Moreover, light-independent oxidation and degradation of A2E by Fenton chemistry products were evidenced by the consumption of A2E, release of dicarbonyls, and generation of oxidized A2E species in cell-free assays.


Assuntos
Epitélio Pigmentado da Retina/metabolismo , Retinoides/metabolismo , Transportadores de Cassetes de Ligação de ATP/deficiência , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Deferiprona , Ferro , Quelantes de Ferro/farmacologia , Lipofuscina/genética , Lipofuscina/metabolismo , Camundongos , Camundongos Knockout , Piridonas/farmacologia , Epitélio Pigmentado da Retina/patologia , Retinaldeído/genética , Retinaldeído/metabolismo
2.
Hum Mol Genet ; 24(15): 4417-28, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25972377

RESUMO

Human RPE65 mutations cause a spectrum of blinding retinal dystrophies from severe early-onset disease to milder manifestations. The RPE65 P25L missense mutation, though having <10% of wild-type (WT) activity, causes relatively mild retinal degeneration. To better understand these mild forms of RPE65-related retinal degeneration, and their effect on cone photoreceptor survival, we generated an Rpe65/P25L knock-in (KI/KI) mouse model. We found that, when subject to the low-light regime (∼100 lux) of regular mouse housing, homozygous Rpe65/P25L KI/KI mice are morphologically and functionally very similar to WT siblings. While mutant protein expression is decreased by over 80%, KI/KI mice retinae retain comparable 11-cis-retinal levels with WT. Consistently, the scotopic and photopic electroretinographic (ERG) responses to single-flash stimuli also show no difference between KI/KI and WT mice. However, the recovery of a-wave response following moderate visual pigment bleach is delayed in KI/KI mice. Importantly, KI/KI mice show significantly increased resistance to high-intensity (20 000 lux for 30 min) light-induced retinal damage (LIRD) as compared with WT, indicating impaired rhodopsin regeneration in KI/KI. Taken together, the Rpe65/P25L mutant produces sufficient chromophore under normal conditions to keep opsins replete and thus manifests a minimal phenotype. Only when exposed to intensive light is this hypomorphic mutation manifested physiologically, as its reduced expression and catalytic activity protects against the successive cycles of opsin regeneration underlying LIRD. These data also help define minimal requirements of chromophore for photoreceptor survival in vivo and may be useful in assessing a beneficial therapeutic dose for RPE65 gene therapy in humans.


Assuntos
Retina/metabolismo , Degeneração Retiniana/genética , Retinaldeído/genética , cis-trans-Isomerases/genética , Animais , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Luz , Camundongos , Mutação de Sentido Incorreto , Opsinas/genética , Opsinas/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/fisiopatologia , Retinaldeído/biossíntese , cis-trans-Isomerases/metabolismo
3.
Biochim Biophys Acta ; 1842(7): 1109-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24717912

RESUMO

Toll-like receptor (TLR) signaling plays a fundamental role in the induction and progression of autoimmune disease. In the present study, we showed that lipopolysaccharide (LPS), a TLR4 ligand, functions as an antagonist of peroxisome proliferator-activated receptor alpha (PPARα), a nuclear transcription factor. Using endotoxin induced uveitis (EIU) as a model, we found that TLR was negatively regulated by PPARα. Our data revealed that treatment with the PPARα agonist fenofibrate dramatically prevented LPS-induced uveitis and inhibited TLR/ Nuclear factor-kappaB (NF-κB) signaling during inflammation. Evaluation of the severity of anterior uveitis further showed that PPARα agonist treatment significantly decreased inflammatory cell infiltration, total protein concentration, vessel density, inflammatory cytokine production, and clinical scores in the anterior section of the eye during EIU. Moreover, fenofibrate administration recovered retinal function and decreased the production of inflammatory cytokines, retinal vascular leukostasis, and inflammatory cell infiltration into the posterior section of the eyes during EIU. In vitro studies further showed that down-regulation or deletion of PPARα led to increased TLR4 levels and the activation of NF-κB signaling in RPE cells and also blocked the anti-inflammatory effects of fenofibrate. Furthermore, activation or up-regulation of PPARα decreased TLR4 levels and inhibited the NF-κB signaling pathway induced by LPS in RPE cells. In TLR4-expressing reporter cells, activation or up-regulation of PPARα partially inhibited the activation of NF-κB and also decreased TLR4 transcriptional activity. In conclusion, the activation of PPARα represents a novel therapeutic strategy for human uveitis, as PPARα negatively regulates TLR4 activity and therefore exerts anti-inflammatory actions.


Assuntos
Endotoxinas/imunologia , NF-kappa B/metabolismo , PPAR gama/metabolismo , Receptor 4 Toll-Like/metabolismo , Uveíte/metabolismo , Animais , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Fenofibrato/imunologia , Fenofibrato/metabolismo , Leucostasia/genética , Leucostasia/imunologia , Leucostasia/metabolismo , Lipopolissacarídeos/imunologia , Masculino , NF-kappa B/genética , NF-kappa B/imunologia , PPAR gama/genética , PPAR gama/imunologia , Distribuição Aleatória , Ratos , Ratos Endogâmicos Lew , Retinaldeído/genética , Retinaldeído/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Uveíte/genética , Uveíte/imunologia
4.
J Biol Chem ; 288(47): 33912-33926, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24106275

RESUMO

Autosomal dominant retinitis pigmentosa (ADRP) mutants (T4K, N15S, T17M, V20G, P23A/H/L, and Q28H) in the N-terminal cap of rhodopsin misfold when expressed in mammalian cells. To gain insight into the causes of misfolding and to define the contributions of specific residues to receptor stability and function, we evaluated the responses of these mutants to 11-cis-retinal pharmacological chaperone rescue or disulfide bond-mediated repair. Pharmacological rescue restored folding in all mutants, but the purified mutant pigments in all cases were thermo-unstable and exhibited abnormal photobleaching, metarhodopsin II decay, and G protein activation. As a complementary approach, we superimposed this panel of ADRP mutants onto a rhodopsin background containing a juxtaposed cysteine pair (N2C/D282C) that forms a disulfide bond. This approach restored folding in T4K, N15S, V20G, P23A, and Q28H but not T17M, P23H, or P23L. ADRP mutant pigments obtained by disulfide bond repair exhibited enhanced stability, and some also displayed markedly improved photobleaching and signal transduction properties. Our major conclusion is that the N-terminal cap stabilizes opsin during biosynthesis and contributes to the dark-state stability of rhodopsin. Comparison of these two restorative approaches revealed that the correct position of the cap relative to the extracellular loops is also required for optimal photochemistry and efficient G protein activation.


Assuntos
Mutação de Sentido Incorreto , Dobramento de Proteína , Retinose Pigmentar/metabolismo , Rodopsina/metabolismo , Substituição de Aminoácidos , Animais , Bovinos , Células HEK293 , Humanos , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Retinaldeído/genética , Retinaldeído/metabolismo , Retinose Pigmentar/genética , Rodopsina/genética
5.
J Biol Chem ; 288(48): 34484-93, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24129572

RESUMO

Differentiated retinal pigmented epithelial (RPE) cells have been obtained from human induced pluripotent stem (hiPS) cells. However, the visual (retinoid) cycle in hiPS-RPE cells has not been adequately examined. Here we determined the expression of functional visual cycle enzymes in hiPS-RPE cells compared with that of isolated wild-type mouse primary RPE (mpRPE) cells in vitro and in vivo. hiPS-RPE cells appeared morphologically similar to mpRPE cells. Notably, expression of certain visual cycle proteins was maintained during cell culture of hiPS-RPE cells, whereas expression of these same molecules rapidly decreased in mpRPE cells. Production of the visual chromophore, 11-cis-retinal, and retinosome formation also were documented in hiPS-RPE cells in vitro. When mpRPE cells with luciferase activity were transplanted into the subretinal space of mice, bioluminance intensity was preserved for >3 months. Additionally, transplantation of mpRPE into blind Lrat(-/-) and Rpe65(-/-) mice resulted in the recovery of visual function, including increased electrographic signaling and endogenous 11-cis-retinal production. Finally, when hiPS-RPE cells were transplanted into the subretinal space of Lrat(-/-) and Rpe65(-/-) mice, their vision improved as well. Moreover, histological analyses of these eyes displayed replacement of dysfunctional RPE cells by hiPS-RPE cells. Together, our results show that hiPS-RPE cells can exhibit a functional visual cycle in vitro and in vivo. These cells could provide potential treatment options for certain blinding retinal degenerative diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina/transplante , cis-trans-Isomerases/genética , Animais , Diferenciação Celular , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/enzimologia , Camundongos , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/enzimologia , Retinaldeído/biossíntese , Retinaldeído/genética , Visão Ocular/genética , Visão Ocular/fisiologia , cis-trans-Isomerases/deficiência
6.
J Biol Chem ; 288(21): 15326-41, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23572532

RESUMO

Although several genetic and biochemical factors are associated with the pathogenesis of retinal degeneration, it has yet to be determined how these different impairments can cause similar degenerative phenotypes. Here, we report microglial/macrophage activation in both a Stargardt disease and age-related macular degeneration mouse model caused by delayed clearance of all-trans-retinal from the retina, and in a retinitis pigmentosa mouse model with impaired retinal pigment epithelium (RPE) phagocytosis. Mouse microglia displayed RPE cytotoxicity and increased production of inflammatory chemokines/cytokines, Ccl2, Il1b, and Tnf, after coincubation with ligands that activate innate immunity. Notably, phagocytosis of photoreceptor proteins increased the activation of microglia/macrophages and RPE cells isolated from model mice as well as wild-type mice. The mRNA levels of Tlr2 and Tlr4, which can recognize proteins as their ligands, were elevated in mice with retinal degeneration. Bone marrow-derived macrophages from Tlr4-deficient mice did not increase Ccl2 after coincubation with photoreceptor proteins. Tlr4(-/-)Abca4(-/-)Rdh8(-/-) mice displayed milder retinal degenerative phenotypes than Abca4(-/-)Rdh8(-/-) mice. Additionally, inactivation of microglia/macrophages by pharmacological approaches attenuated mouse retinal degeneration. This study demonstrates an important contribution of TLR4-mediated microglial activation by endogenous photoreceptor proteins in retinal inflammation that aggravates retinal cell death. This pathway is likely to represent an underlying common pathology in degenerative retinal disorders.


Assuntos
Proteínas do Olho/metabolismo , Degeneração Macular/metabolismo , Microglia/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retinaldeído/metabolismo , Retinose Pigmentar/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Proteínas do Olho/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Camundongos Knockout , Microglia/patologia , Células Fotorreceptoras de Vertebrados/patologia , Retinaldeído/genética , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
J Biol Chem ; 288(15): 10451-8, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23439646

RESUMO

Channelrhodopsins are microbial type rhodopsins that operate as light-gated ion channels. Largely prolonged lifetimes of the conducting state of channelrhodopsin-2 may be achieved by mutations of crucial single amino acids, i.e. cysteine 128. Such mutants are of great scientific interest in the field of neurophysiology because they allow neurons to be switched on and off on demand (step function rhodopsins). Due to their slow photocycle, structural alterations of these proteins can be studied by vibrational spectroscopy in more detail than possible with wild type. Here, we present spectroscopic evidence that the photocycle of the C128T mutant involves three different dark-adapted states that are populated according to the wavelength and duration of the preceding illumination. Our results suggest an important role of multiphoton reactions and the previously described side reaction for dark state regeneration. Structural changes that cause formation and depletion of the assumed ion conducting state P520 are only small and follow larger changes that occur early and late in the photocycle, respectively. They require only minor structural rearrangements of amino acids near the retinal binding pocket and are triggered by all-trans/13-cis retinal isomerization, although additional isomerizations are also involved in the photocycle. We will discuss an extended photocycle model of this mutant on the basis of spectroscopic and electrophysiological data.


Assuntos
Adaptação à Escuridão/fisiologia , Mutação de Sentido Incorreto , Retinaldeído/metabolismo , Rodopsina/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Retinaldeído/genética , Rodopsina/genética
8.
J Biol Chem ; 286(46): 39993-40001, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21940625

RESUMO

Two different mutations at Gly-90 in the second transmembrane helix of the photoreceptor protein rhodopsin have been proposed to lead to different phenotypes. G90D has been classically associated with congenital night blindness, whereas the newly reported G90V substitution was linked to a retinitis pigmentosa phenotype. Here, we used Val/Asp replacements of the native Gly at position 90 to unravel the structure/function divergences caused by these mutations and the potential molecular mechanisms of inherited retinal disease. The G90V and G90D mutants have a similar conformation around the Schiff base linkage region in the dark state and same regeneration kinetics with 11-cis-retinal, but G90V has dramatically reduced thermal stability when compared with the G90D mutant rhodopsin. The G90V mutant also shows, like G90D, an altered photobleaching pattern and capacity to activate Gt in the opsin state. Furthermore, the regeneration of the G90V mutant with 9-cis-retinal was improved, achieving the same A(280)/A(500) as wild type isorhodopsin. Hydroxylamine resistance was also recovered, indicating a compact structure around the Schiff base linkage, and the thermal stability was substantially improved when compared with the 11-cis-regenerated mutant. These results support the role of thermal instability and/or abnormal photoproduct formation in eliciting a retinitis pigmentosa phenotype. The improved stability and more compact structure of the G90V mutant when it was regenerated with 9-cis-retinal brings about the possibility that this isomer or other modified retinoid analogues might be used in potential treatment strategies for mutants showing the same structural features.


Assuntos
Mutação de Sentido Incorreto , Miopia/metabolismo , Cegueira Noturna/metabolismo , Retinose Pigmentar/metabolismo , Rodopsina/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Bovinos , Linhagem Celular Tumoral , Diterpenos , Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Miopia/genética , Cegueira Noturna/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Retinaldeído/genética , Retinaldeído/metabolismo , Retinose Pigmentar/genética , Rodopsina/genética , Relação Estrutura-Atividade
9.
J Biol Chem ; 283(28): 19730-8, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18474598

RESUMO

Visual perception begins with the absorption of a photon by an opsin pigment, inducing isomerization of its 11-cis-retinaldehyde chromophore. After a brief period of activation, the resulting all-trans-retinaldehyde dissociates from the opsin apoprotein rendering it insensitive to light. Restoring light sensitivity to apo-opsin requires thermal re-isomerization of all-trans-retinaldehyde to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle in retinal pigment epithelial (RPE) cells. Vertebrates can see over a 10(8)-fold range of background illumination. This implies that the visual cycle can regenerate a visual chromophore over a similarly broad range. However, nothing is known about how the visual cycle is regulated. Here we show that RPE cells, functionally or physically separated from photoreceptors, respond to light by mobilizing all-trans-retinyl esters. These retinyl esters are substrates for the retinoid isomerase and hence critical for regenerating visual chromophore. We show in knock-out mice and by RNA interference in human RPE cells that this mobilization is mediated by a protein called "RPE-retinal G protein receptor" (RGR) opsin. These data establish that RPE cells are intrinsically sensitive to light. Finally, we show that in the dark, RGR-opsin inhibits lecithin:retinol acyltransferase and all-trans-retinyl ester hydrolase in vitro and that this inhibition is released upon exposure to light. The results of this study suggest that RGR-opsin mediates light-dependent translocation of all-trans-retinyl esters from a storage pool in lipid droplets to an "isomerase pool" in membranes of the endoplasmic reticulum. This translocation permits insoluble all-trans-retinyl esters to be utilized as substrate for the synthesis of a new visual chromophore.


Assuntos
Células Epiteliais/metabolismo , Proteínas do Olho/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Retinaldeído/metabolismo , Opsinas de Bastonetes/metabolismo , Percepção Visual/fisiologia , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas do Olho/genética , Humanos , Camundongos , Camundongos Knockout , Interferência de RNA , Receptores Acoplados a Proteínas G/genética , Retinaldeído/genética , Opsinas de Bastonetes/genética , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
10.
Proc Natl Acad Sci U S A ; 102(38): 13658-63, 2005 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16150724

RESUMO

RPE65 is essential for isomerization of vitamin A to the visual chromophore. Mutations in RPE65 cause early-onset blindness, and Rpe65-deficient mice lack 11-cis-retinal but overaccumulate alltrans-retinyl esters in the retinal pigment epithelium (RPE). RPE65 is proposed to be a substrate chaperone but may have an enzymatic role because it is closely related to carotenoid oxygenases. We hypothesize that, by analogy with other carotenoid oxygenases, the predicted iron-coordinating residues of RPE65 are essential for retinoid isomerization. To clarify RPE65's role in isomerization, we reconstituted a robust minimal visual cycle in 293-F cells. Only cells transfected with RPE65 constructs produced 11-cis-retinoids, but coexpression with lecithin:retinol acyltransferase was needed for high-level production. Accumulation was significant, amounting to >2 nmol of 11-cis-retinol per culture. Transfection with constructs harboring mutations in residues of RPE65 homologous to those required for interlinked enzymatic activity and iron coordination in related enzymes abolish this isomerization. Iron chelation also abolished isomerization activity. Mutating cysteines implicated in palmitoylation of RPE65 had generally little effect on isomerization activity. Mutations associated with Leber congenital amaurosis/early-onset blindness cause partial to total loss of isomerization activity in direct relation to their clinical effects. These findings establish a catalytic role, in conjunction with lecithin:retinol acyltransferase, for RPE65 in synthesis of 11-cis-retinol, and its identity as the isomerohydrolase.


Assuntos
Substituição de Aminoácidos/genética , Cegueira/genética , Proteínas do Olho/metabolismo , Isomerases/genética , Mutação Puntual , Processamento de Proteína Pós-Traducional/genética , Visão Ocular/fisiologia , Aciltransferases/metabolismo , Animais , Cegueira/enzimologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Bovinos , Linhagem Celular , Cisteína/genética , Cisteína/metabolismo , Cães , Proteínas do Olho/genética , Humanos , Ferro/metabolismo , Isomerases/metabolismo , Camundongos , Oxigenases/metabolismo , Retina/metabolismo , Retinaldeído/genética , Retinaldeído/metabolismo , Transfecção , Visão Ocular/genética , cis-trans-Isomerases
11.
J Biol Rhythms ; 19(6): 504-17, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15523112

RESUMO

Mice exhibit multiple nonvisual responses to light, including 1) photoentrainment of circadian rhythm; 2) "masking," which refers to the acute effect of light on behavior, either negative (activity suppressing) or positive (activity inducing); and 3) pupillary constriction. In mammals, the eye is the sole photosensory organ for these responses, and it contains only 2 known classes of pigments: opsins and cryptochromes. No individual opsin or cryptochrome gene is essential for circadian photoreception, gene photoinduction, or masking. Previously, the authors found that mice lacking retinol-binding protein, in which dietary depletion of ocular retinaldehyde can be achieved, had normal light signaling to the SCN, as determined by per gene photoinduction. In the present study, the authors analyzed phototransduction to the SCN in vitamin A-replete and vitamin A-depleted rbp-/- and rbp-/-cry1-/-cry2-/- mice using molecular and behavioral end points. They found that vitamin A-depleted rbp-/- mice exhibit either normal photoentrainment or become diurnal. In contrast, while vitamin A-replete rbp-/-cry1-/-cry2-/- mice are light responsive (with reduced sensitivity), vitamin A-depleted rbp-/-cry1-/-cry2-/- mice, which presumably lack functional opsins and cryptochromes, lose most behavioral and molecular responses to light. These data demonstrate that both cryptochromes and opsins regulate nonvisual photoresponses.


Assuntos
Flavoproteínas/metabolismo , Transdução de Sinal Luminoso/fisiologia , Vitamina A/metabolismo , Animais , Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Criptocromos , Dieta , Suplementos Nutricionais , Flavoproteínas/genética , Regulação da Expressão Gênica , Genes fos , Luz , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Pupila , Retinaldeído/genética , Retinaldeído/metabolismo , Opsinas de Bastonetes/metabolismo , Núcleo Supraquiasmático/metabolismo , Vitamina A/administração & dosagem
12.
Hum Mol Genet ; 3(6): 915-8, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7951236

RESUMO

Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous retinopathies, some of which have been shown to result from mutations in two different known retinal genes, rhodopsin (3q) and peripherin-rds (6p). Three additional anonymous loci at 7p, 7q and pericentric 8 have been implicated by linkage studies. There are still, however, a few families in which all known loci have been excluded. In this report we present data indicating a location, on the short arm of chromosome 17, for the autosomal dominant RP (ADRP) locus in a large South African (SA) family of British ancestry. Positive two-point lod scores have been obtained for nine markers (D17S938, Z = 5.43; D17S796, Z = 4.82; D17S849, Z = 3.6; D17S786, Z = 3.55; TP53, Z = 3.55; D17S578, Z = 3.29; D17S960, Z = 3.16; D17S926, Z = 1.51; D17S804, Z = 0.47 all at theta = 0.10 except D17S804 and D17S926, theta = 0.20). These data provide definitive evidence for the localization of an ADRP gene on chromosome 17p. The human recoverin gene has been localized to 17p13.1 and was consequently a prime candidate for ADRP in the family studied. However, mutation screening of the three exons of this gene failed to produce any evidence of recoverin being the gene involved in the pathogenesis of ADRP in this SA family.


Assuntos
Cromossomos Humanos Par 17 , Proteínas do Olho , Genes Dominantes , Lipoproteínas , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Retinose Pigmentar/genética , Proteínas de Ligação ao Cálcio/genética , Mapeamento Cromossômico , DNA/sangue , DNA/genética , Éxons , Feminino , Ligação Genética , Marcadores Genéticos , Hipocalcina , Humanos , Proteínas de Filamentos Intermediários/genética , Escore Lod , Masculino , Linhagem , Periferinas , Recoverina , Retinaldeído/genética , Retinose Pigmentar/sangue , Rodopsina/genética , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA