Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(5): 130, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652336

RESUMO

KEY MESSAGE: We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.


Assuntos
Arabidopsis , Proteínas de Bactérias , Nicotiana , Doenças das Plantas , Espécies Reativas de Oxigênio , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Citrus/microbiologia , Citrus/genética , Citrus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Liberibacter/patogenicidade , Liberibacter/fisiologia , Interações Hospedeiro-Patógeno , Plantas Geneticamente Modificadas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizobiaceae/fisiologia , Resistência à Doença/genética
2.
Phytopathology ; 113(9): 1708-1715, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37665323

RESUMO

'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited pathogen associated with devastating diseases in members of the Solanaceae and Apiaceae and vectored by several psyllid species. Different Lso haplotypes have been identified, and LsoA and LsoB are responsible for diseases in Solanaceae crops. Our efforts are aimed at identifying pathogenicity factors used by this bacterium to thrive in different hosts. Bacterial secreted proteins can play a role in host colonization or the manipulation of the host immune responses; these proteins are called effectors. In this study, we identified six LsoB-specific proteins with a conserved secretion motif as well as a conserved N-terminal domain in the mature protein. These proteins had different expression and secretion patterns but a similar subcellular localization in Nicotiana benthamiana leaves, suggesting that they play different roles regardless of their conserved secretion motif. One of these proteins, CKC_04425, was expressed at high levels in the insect vector and the host plant, indicating that it could play a role in both the plant and insect hosts, whereas the others were mainly expressed in the plant. One protein, CKC_05701, was able to efficiently suppress programmed cell death and reactive oxygen species production, suggesting that it may have a virulence role in LsoB-specific pathogenesis.


Assuntos
Hemípteros , Rhizobiaceae , Animais , Liberibacter , Haplótipos , Doenças das Plantas/microbiologia , Hemípteros/microbiologia , Produtos Agrícolas , Rhizobiaceae/fisiologia
3.
Mol Plant Microbe Interact ; 35(12): 1067-1080, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35952362

RESUMO

Climate change is predicted to increase the prevalence of vector-borne disease due to expansion of insect populations. 'Candidatus Liberibacter solanacearum' is a phloem-limited pathogen associated with multiple economically important diseases in solanaceous crops. Little is known about the strategies and pathogenicity factors 'Ca. L. solanacearum' uses to colonize its vector and host. We determined the 'Ca. L. solanacearum' effector repertoire by predicting proteins secreted by the general secretory pathway across four different 'Ca. L. solanacearum' haplotypes, investigated effector localization in planta, and profiled effector expression in the vector and host. The localization of 'Ca. L. solanacearum' effectors in Nicotiana spp. revealed diverse eukaryotic subcellular targets. The majority of tested effectors were unable to suppress plant immune responses, indicating they possess unique activities. Expression profiling in tomato and the psyllid Bactericera cockerelli indicated 'Ca. L. solanacearum' differentially interacts with its host and vector and can switch effector expression in response to these environments. This study reveals 'Ca. L. solanacearum' effectors possess complex expression patterns, target diverse host organelles and the majority are unable to suppress host immune responses. A mechanistic understanding of 'Ca. L. solanacearum' effector function will reveal novel targets and provide insight into phloem biology. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Hemípteros , Rhizobiaceae , Animais , Rhizobiaceae/fisiologia , Hemípteros/microbiologia , Liberibacter , Doenças das Plantas/microbiologia
4.
Proc Natl Acad Sci U S A ; 117(7): 3492-3501, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015115

RESUMO

Early detection and rapid response are crucial to avoid severe epidemics of exotic pathogens. However, most detection methods (molecular, serological, chemical) are logistically limited for large-scale survey of outbreaks due to intrinsic sampling issues and laboratory throughput. Evaluation of 10 canines trained for detection of a severe exotic phytobacterial arboreal pathogen, Candidatus Liberibacter asiaticus (CLas), demonstrated 0.9905 accuracy, 0.8579 sensitivity, and 0.9961 specificity. In a longitudinal study, cryptic CLas infections that remained subclinical visually were detected within 2 wk postinfection compared with 1 to 32 mo for qPCR. When allowed to interrogate a diverse range of in vivo pathogens infecting an international citrus pathogen collection, canines only reacted to Liberibacter pathogens of citrus and not to other bacterial, viral, or spiroplasma pathogens. Canines trained to detect CLas-infected citrus also alerted on CLas-infected tobacco and periwinkle, CLas-bearing psyllid insect vectors, and CLas cocultured with other bacteria but at CLas titers below the level of molecular detection. All of these observations suggest that canines can detect CLas directly rather than only host volatiles produced by the infection. Detection in orchards and residential properties was real time, ∼2 s per tree. Spatiotemporal epidemic simulations demonstrated that control of pathogen prevalence was possible and economically sustainable when canine detection was followed by intervention (i.e., culling infected individuals), whereas current methods of molecular (qPCR) and visual detection failed to contribute to the suppression of an exponential trajectory of infection.


Assuntos
Citrus/microbiologia , Cães/fisiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Olfato , Animais , Hemípteros/microbiologia , Hemípteros/fisiologia , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Estudos Longitudinais , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação
5.
J Mol Microbiol Biotechnol ; 28(3): 116-127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30176677

RESUMO

Citrus greening disease, or huanglongbing, may entirely eradicate all varieties of citrus cultivars worldwide in the near future. This disease is caused by non-cultivable bacteria of the genus Liberibacter; among them, the more pathogenic being Liberibacter asiaticus. The complexity of the host-pathogen relationship, associated with the impossibility of performing research using axenic cultures, has severely hindered the basic research on microbiology. Since its genome sequence was published in 2009, most of the scientific publications in the field were dedicated to in silico analysis and selection of targets to design early detection methods. The knowledge gained with these approaches felt short to articulate effective methods to control the disease progression. There is a critical need to understand the basic biology of bacteria to design effective strategies to inactivate central mechanisms of pathogenesis. In this review, we summarize the scientific progress made by studying L. asiaticus' biology through direct experimentation. The evidence collected thus far is not enough to understand L. -asiaticus' fundamental biology. It is imperiously necessary to increase the basic research to identify relevant biological clues to control citrus greening. The gained knowledge may also help to prevent potential catastrophic diseases in other crops of significant importance caused by other unculturable Liberibacter species.


Assuntos
Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Rhizobiaceae/fisiologia , Rhizobiaceae/patogenicidade , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Sequência de Bases , Proteínas de Transporte/genética , Citrus , Genoma Bacteriano , Genômica , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Proteínas de Membrana , Metagenômica , Translocases Mitocondriais de ADP e ATP , Peroxidase , Peroxirredoxinas , Imunidade Vegetal , Prófagos , Proteômica , Serina Endopeptidases , Transcriptoma , Sistemas de Secreção Tipo V , Zinco/metabolismo
6.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29311247

RESUMO

"Candidatus Liberibacter asiaticus" is the causative bacterium associated with citrus greening disease. "Ca Liberibacter asiaticus" is transmitted by Diaphorina citri more efficiently when it is acquired by nymphs rather than adults. Why this occurs is not known. We compared midguts of D. citri insects reared on healthy or "Ca Liberibacter asiaticus"-infected citrus trees using quantitative PCR, confocal microscopy, and mitochondrial superoxide staining for evidence of oxidative stress. Consistent with its classification as propagative, "Ca Liberibacter asiaticus" titers were higher in adults than in nymphs. Our previous work showed that adult D. citri insects have basal levels of karyorrhexis (fragmentation of the nucleus) in midgut epithelial cells, which is increased in severity and frequency in response to "Ca Liberibacter asiaticus." Here, we show that nymphs exhibit lower levels of early-stage karyorrhexis than adults and are refractory to the induction of advanced karyorrhexis by "Ca Liberibacter asiaticus" in the midgut epithelium. MitoSox Red staining showed that guts of infected adults, particularly males, experienced oxidative stress in response to "Ca Liberibacter asiaticus." A positive correlation between the titers of "Ca Liberibacter asiaticus" and the Wolbachia endosymbiont was observed in adult and nymph midguts, suggesting an interplay between these bacteria during development. We hypothesize that the resistance of the nymph midgut to late-stage karyorrhexis through as yet unknown molecular mechanisms benefits "Ca Liberibacter asiaticus" for efficient invasion of midgut epithelial cells, which may be a factor explaining the developmental dependency of "Ca Liberibacter asiaticus" acquisition by the vector.


Assuntos
Células Epiteliais/microbiologia , Hemípteros/microbiologia , Ninfa/microbiologia , Rhizobiaceae/fisiologia , Animais , Feminino , Microbioma Gastrointestinal , Hibridização in Situ Fluorescente , Masculino , Microscopia Confocal , Estresse Oxidativo , Fenótipo
7.
J Econ Entomol ; 111(1): 327-336, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29186612

RESUMO

Long-term, sustainable management of zebra chip disease of potato, caused by 'Candidatus Liberibacter solanacearum' (Lso) and vectored by potato psyllids (Bactericera cockerelli Sulc [Hemiptera: Triozidae]), requires development of cultivars resistant or tolerant to infection or capable of reducing spread or both. We examined the influence that five experimental breeding clones of potato had on potato psyllids and their ability to vector Lso. The ability of these potato clones to resist aphids (green peach aphids, Myzus persicae Sulzer [Hemiptera: Aphididae]) also was examined. Due to the importance of host chemistry on plant-insect interactions, levels of primary metabolites of amino acids and sugars, as well as secondary metabolites including polyphenolics, terpenoids, and alkaloids were compared between breeding clones and a commercial cultivar. Findings for compound levels then were associated with observed changes in host susceptibility to psyllids or aphids. Psyllids oviposited less on three breeding clones than Atlantic, but no significant effects of breeding clones on psyllid feeding or choice were observed. Aphid reproduction was reduced on two clones relative to Atlantic. A05379-211 had greater sugar levels and postpsyllid amino acid levels than Atlantic. Total alkaloid and phenolic levels were greater in all breeding clones than Atlantic. Total terpenoid levels were greater in PALB03016-3 and PALB03016-6 than Atlantic, which might explain, in part, the observed resistance to psyllid oviposition and aphid reproduction. Overall, these results suggest that increased levels of certain metabolites in breeding clones could affect psyllid and aphid reproduction.


Assuntos
Antibiose , Hemípteros/fisiologia , Herbivoria , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Solanum tuberosum/química , Animais , Afídeos/fisiologia , Folhas de Planta/química , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Solanum tuberosum/fisiologia
8.
Environ Sci Pollut Res Int ; 25(30): 29943-29952, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29288304

RESUMO

Allorhizobium (Agrobacterium) vitis is a host-specific pathogenic bacterium that causes grapevine crown gall disease, affecting vine growth and production worldwide. The antibacterial activities of different aromatic plant essential oils were tested in vitro and in planta against A. vitis. Among the essential oils tested, those of Origanum compactum and Thymus vulgaris showed the most significant in vitro antibacterial activities, with a MIC of 0.156 and 0.312 mg/mL, respectively. A synergistic effect of these two essential oils (1:1) was observed and confirmed by the checkerboard test. Carvacrol (61.8%) and thymol (47.8%) are, respectively, the major compounds in the essential oils of O. compactum and T. vulgaris and they have been shown to be largely responsible for the antibacterial activities of their corresponding essential oils. Results obtained in vitro were reinforced by an in planta pathogenicity test. A mixture of O. compactum and T. vulgaris essential oils (1:1), inoculated into the injured stem of a tomato plant and a grapevine at 0.312 mg/mL as a preventive treatment, reduced both the number of plants developing gall symptoms and the size of the tumors.


Assuntos
Antibacterianos/farmacologia , Óleos Voláteis/farmacologia , Origanum/química , Doenças das Plantas/microbiologia , Óleos de Plantas/farmacologia , Thymus (Planta)/química , Vitis/microbiologia , Cimenos , Testes de Sensibilidade Microbiana , Monoterpenos/análise , Monoterpenos/farmacologia , Doenças das Plantas/prevenção & controle , Rhizobiaceae/efeitos dos fármacos , Rhizobiaceae/fisiologia , Timol/análise , Timol/farmacologia
9.
Microb Biotechnol ; 10(3): 642-656, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378385

RESUMO

Liberibacter asiaticus is an unculturable parasitic bacterium of the alphaproteobacteria group hosted by both citrus plants and a psyllid insect vector (Diaphorina citri). In the citrus tree, the bacteria thrive only inside the phloem, causing a systemically incurable and deadly plant disease named citrus greening or Huanglongbing. Currently, all commercial citrus cultivars in production are susceptible to L. asiaticus, representing a serious threat to the citrus industry worldwide. The technical inability to isolate and culture L. asiaticus has hindered progress in understanding the biology of this bacterium directly. Consequently, a deep understanding of the biological pathways involved in the regulation of host-pathogen interactions becomes critical to rationally design future and necessary strategies of control. In this work, we used surrogate strains to evaluate the biochemical characteristics and biological significance of CLIBASIA_03135. This gene, highly induced during early stages of plant infection, encodes a 23 kDa protein and was renamed in this work as LotP. This protein belongs to an uncharacterized family of proteins with an overall structure resembling the LON protease N-terminus. Co-immunoprecipitation assays allowed us to identify the Liberibacter chaperonin GroEL as the main LotP-interacting protein. The specific interaction between LotP and GroEL was reconstructed and confirmed using a two-hybrid system in Escherichia coli. Furthermore, it was demonstrated that LotP has a native molecular weight of 44 kDa, corresponding to a dimer in solution with ATPase activity in vitro. In Liberibacter crescens, LotP is strongly induced in response to conditions with high osmolarity but repressed at high temperatures. Electrophoretic mobility shift assay (EMSA) results suggest that LotP is a member of the LdtR regulon and could play an important role in tolerance to osmotic stress.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Rhizobiaceae/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chaperonina 60/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Imunoprecipitação , Peso Molecular , Pressão Osmótica , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Rhizobiaceae/genética , Rhizobiaceae/fisiologia , Estresse Fisiológico , Técnicas do Sistema de Duplo-Híbrido
10.
Sci Rep ; 6: 33418, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27630042

RESUMO

Candidatus Liberibacter asiaticus (CLas) is a phloem-limited, gram-negative, fastidious bacterium that is associated with the development of citrus greening disease, also known as Huanglongbing (HLB). CLas is transmitted by the Asian citrus psyllid (ACP) Diaphorina citri, in a circulative manner. Two major barriers to transmission within the insect are the midgut and the salivary glands. We performed a thorough microscopic analysis within the insect midgut following exposure to CLas-infected citrus trees. We observed changes in nuclear architecture, including pyknosis and karyorrhexis as well as changes to the actin cytoskeleton in CLas-exposed midgut cells. Further analyses showed that the changes are likely due to the activation of programmed cell death as assessed by Annexin V staining and DNA fragmentation assays. These results suggest that exposure to CLas-infected trees induces apoptotic responses in the psyllid midgut that should be further investigated. Understanding the adaptive significance of the apoptotic response has the potential to create new approaches for controlling HLB.


Assuntos
Citrus/parasitologia , Sistema Digestório/microbiologia , Sistema Digestório/patologia , Hemípteros/citologia , Hemípteros/microbiologia , Rhizobiaceae/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Anexina A5/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Morte Celular , Núcleo Celular/metabolismo , DNA/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Hibridização in Situ Fluorescente , Rhizobiaceae/imunologia
11.
PLoS One ; 11(8): e0161016, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525703

RESUMO

'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited bacterium that severely affects important Solanaceae and Apiaceae crops, including potato, tomato, pepper, tobacco, carrot and celery. This bacterium is transmitted to solanaceous species by potato psyllid, Bactericera cockerelli, and to Apiaceae by carrot psyllids, including Trioza apicalis and Bactericera trigonica. Five haplotypes of Lso have so far been described, two are associated with solanaceous species and potato psyllids, whereas the other three are associated with carrot and celery crops and carrot psyllids. Little is known about cross-transmission of Lso to carrot by potato psyllids or to potato by carrot psyllids. Thus, the present study assessed whether potato psyllid can transmit Lso to carrot and whether Lso haplotypes infecting solanaceous species can also infect carrot and lead to disease symptom development. In addition, the stylet probing behavior of potato psyllid on carrot was assessed using electropenetrography (EPG) technology to further elucidate potential Lso transmission to Apiaceae by this potato insect pest. Results showed that, while potato psyllids survived on carrot for several weeks when confined on the plants under controlled laboratory and field conditions, the insects generally failed to infect carrot plants with Lso. Only three of the 200 carrot plants assayed became infected with Lso and developed characteristic disease symptoms. Lso infection in the symptomatic carrot plants was confirmed by polymerase chain reaction assay and Lso in the carrots was determined to be of the haplotype B, which is associated with solanaceous species. EPG results further revealed that potato psyllids readily feed on carrot xylem but rarely probe into the phloem tissue, explaining why little to no Lso infection occurred during the controlled laboratory and field cage transmission trials. Results of our laboratory and field transmission studies, combined with our EPG results, suggest that the risk of Lso infection and spread between psyllid-infested solanaceous and Apiaceae crops is likely to be negligible under normal field conditions.


Assuntos
Daucus carota/microbiologia , Hemípteros/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Animais , Comportamento Animal , Laboratórios , Funções Verossimilhança , Solanum tuberosum/microbiologia
12.
Indian J Exp Biol ; 54(4): 286-90, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27295926

RESUMO

Heavy metal contamination, particularly of cultivable lands, is a matter of concern. Bioremediation helps in reversing such contamination to certain extent. Here, we report isolation, polyphasic identification and the role of siderophore producing rhizobacteria Alcaligenes feacalis RZS2 and Pseudomonas aeruginosa RZS3 in bioremediation of heavy metal contaminated soil and plant growth promotion activity in such contaminated soil. Siderophore produced by A. feacalis RZS2 and P. aeruginosa RZS3 strains chelated various heavy metal ions like MnCl2.4H2O, NiCl2.6H2O, ZnCl2, CuCl2 and CoCl2 other than FeCl3.6H2O at batch scale. Their bioremediation potential was superior over the chemical ion chelators like EDTA and citric acid. These isolates also promoted growth of wheat and peanut seeds sown in heavy metal contaminated soil. Effective root colonizing ability of these isolates was observed in wheat and peanut plants.


Assuntos
Biodegradação Ambiental , Recuperação e Remediação Ambiental , Metais Pesados/metabolismo , Desenvolvimento Vegetal/fisiologia , Rhizobiaceae/fisiologia , Poluentes do Solo/metabolismo
13.
Environ Entomol ; 44(4): 1065-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26314051

RESUMO

Plant pathogens can influence the behavior and performance of insect herbivores. Studies of these associations typically focus on tripartite interactions between a plant host, a plant pathogen, and its insect vector. An unrelated herbivore or pathogen might influence such interactions. This study used a model system consisting of Tobacco mosaic virus (TMV), the psyllid Bactericera cockerelli Sulc, and tomatoes to investigate multipartite interactions among a pathogen, a nonvector, and a plant host, and determine whether shifts in host physiology were behind potential interactions. Additionally, the ability of TMV to affect the success of another pathogen, 'Candidatus Liberibacter solanacearum,' which is transmitted by the psyllid, was studied. In choice trials, psyllids preferred nearly fourfold noninfected plants to TMV-infected plants. No-choice bioassays demonstrated that there was no difference in psyllid development between TMV-infected and control plants; oviposition was twice as high on control plants. Following inoculation by psyllids, 'Candidatus Liberibacter solanacearum' titers were lower in TMV-infected plants than control plants. TMV-infected plants had lower levels of amino acids and sugars but little differences in phenolics and terpenoids, relative to control plants. Possibly, these changes in sugars are associated with a reduction in psyllid attractiveness in TMV-infected tomatoes resulting in decreased infection of 'Candidatus Liberibacter solanacearum.'


Assuntos
Hemípteros/microbiologia , Hemípteros/fisiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Solanum lycopersicum/microbiologia , Vírus do Mosaico do Tabaco/fisiologia , Animais , Comportamento Alimentar , Hemípteros/crescimento & desenvolvimento , Hemípteros/virologia , Solanum lycopersicum/virologia , Doenças das Plantas/virologia
14.
Environ Sci Technol ; 48(19): 11487-96, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25203592

RESUMO

Here we report on the growth, accumulation performances of, and leaf proteomic changes in Eucalyptus camaldulensis plants harvested for different periods of time in an industrial, heavy metals (HMs)-contaminated site in the presence or absence of soil microorganism (AMs/PGPRs) additives. Data were compared to those of control counterparts grown in a neighboring nonpolluted district. Plants harvested in the contaminated areas grew well and accumulated HMs in their leaves. The addition of AMs/PGPRs to the polluted soil determined plant growth and metal accumulation performances that surpassed those observed in the control. Comparative proteomics suggested molecular mechanisms underlying plant adaptation to the HMs challenge. Similarly to what was observed in laboratory-scale investigations on other metal hyperaccumulators but not on HMs-sensitive plants, eucalyptus grown in the contaminated areas showed an over-representation of enzymes involved in photosynthesis and the Calvin cycle. AMs/PGPRs addition to the soil increased the activation of these energetic pathways, suggesting the existence of signaling mechanisms that address the energy/reductive power requirement associated with augmented growth performances. HMs-exposed plants presented an over-representation of antioxidant enzymes, chaperones, and proteins involved in glutathione metabolism. While some antioxidant enzymes/chaperones returned to almost normal expression values in the presence of AMs/PGPRs or in plants exposed to HMs for prolonged periods, proteins guaranteeing elevated glutathione levels were constantly over-represented. These data suggest that glutathione (and related phytochelatins) could act as key molecules for ensuring the effective formation of HMs-chelating complexes that are possibly responsible for the observed plant tolerance to metal stresses. Overall, these results suggest potential genetic traits for further selection of phytoremediating plants based on dedicated cloning or breeding programs.


Assuntos
Eucalyptus/metabolismo , Metais Pesados/toxicidade , Micorrizas/fisiologia , Proteômica/métodos , Rhizobiaceae/fisiologia , Poluentes do Solo/toxicidade , Biodegradação Ambiental/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Metabolismo Energético/efeitos dos fármacos , Meio Ambiente , Eucalyptus/efeitos dos fármacos , Eucalyptus/imunologia , Glutationa/metabolismo , Micorrizas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/anatomia & histologia , Rhizobiaceae/efeitos dos fármacos , Solo/química , Microbiologia do Solo , Estresse Fisiológico/efeitos dos fármacos
15.
BMC Genomics ; 15: 268, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24708309

RESUMO

BACKGROUND: Recently it has been shown that Ensifer adhaerens can be used as a plant transformation technology, transferring genes into several plant genomes when equipped with a Ti plasmid. For this study, we have sequenced the genome of Ensifer adhaerens OV14 (OV14) and compared it with those of Agrobacterium tumefaciens C58 (C58) and Sinorhizobium meliloti 1021 (1021); the latter of which has also demonstrated a capacity to genetically transform crop genomes, albeit at significantly reduced frequencies. RESULTS: The 7.7 Mb OV14 genome comprises two chromosomes and two plasmids. All protein coding regions in the OV14 genome were functionally grouped based on an eggNOG database. No genes homologous to the A. tumefaciens Ti plasmid vir genes appeared to be present in the OV14 genome. Unexpectedly, OV14 and 1021 were found to possess homologs to chromosomal based genes cited as essential to A. tumefaciens T-DNA transfer. Of significance, genes that are non-essential but exert a positive influence on virulence and the ability to genetically transform host genomes were identified in OV14 but were absent from the 1021 genome. CONCLUSIONS: This study reveals the presence of homologs to chromosomally based Agrobacterium genes that support T-DNA transfer within the genome of OV14 and other alphaproteobacteria. The sequencing and analysis of the OV14 genome increases our understanding of T-DNA transfer by non-Agrobacterium species and creates a platform for the continued improvement of Ensifer-mediated transformation (EMT).


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Genoma de Planta , Rhizobiaceae/fisiologia , Transformação Genética , Agrobacterium tumefaciens/genética , Sistemas de Secreção Bacterianos , Genes Bacterianos , Interações Hospedeiro-Patógeno , Filogenia , Plasmídeos Indutores de Tumores em Plantas/genética , Rhizobiaceae/classificação , Virulência/genética
16.
Mol Plant ; 6(2): 301-10, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23292880

RESUMO

Huanglongbing (HLB) is a devastating citrus disease that is associated with bacteria of the genus 'Candidatus Liberibacter' (Ca. L.). Powerful diagnostic tools and management strategies are desired to control HLB. Host small RNAs (sRNA) play a vital role in regulating host responses to pathogen infection and are used as early diagnostic markers for many human diseases, including cancers. To determine whether citrus sRNAs regulate host responses to HLB, sRNAs were profiled from Citrus sinensis 10 and 14 weeks post grafting with Ca. L. asiaticus (Las)-positive or healthy tissue. Ten new microRNAs (miRNAs), 76 conserved miRNAs, and many small interfering RNAs (siRNAs) were discovered. Several miRNAs and siRNAs were highly induced by Las infection, and can be potentially developed into early diagnosis markers of HLB. miR399, which is induced by phosphorus starvation in other plant species, was induced specifically by infection of Las but not Spiroplasma citri that causes citrus stubborn-a disease with symptoms similar to HLB. We found a 35% reduction of phosphorus in Las-positive citrus trees compared to healthy trees. Applying phosphorus oxyanion solutions to HLB-positive sweet orange trees reduced HLB symptom severity and significantly improved fruit production during a 3-year field trial in south-west Florida. Our molecular, physiological, and field data suggest that phosphorus deficiency is linked to HLB disease symptomology.


Assuntos
Citrus sinensis/metabolismo , Citrus sinensis/microbiologia , Fósforo/deficiência , Doenças das Plantas/microbiologia , RNA de Plantas/genética , RNA não Traduzido/genética , Citrus sinensis/genética , Citrus sinensis/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , MicroRNAs/genética , Fósforo/farmacologia , Rhizobiaceae/fisiologia
17.
Braz. j. microbiol ; 43(4): 1604-1612, Oct.-Dec. 2012. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-665848

RESUMO

This study evaluated 26 pigeonpea rhizobial isolates according to their cultural characteristics, intrinsic antibiotic resistance, salt and temperature tolerance, carbon source utilization and amylolytic activity. The cultural characterization showed that the majority of them presented the ability to acidify the YMA. Among the 27 isolates evaluated, 25 were able to grow when incubated at 42° C and 11 showed tolerance to 3% (w/v) of NaCl in YMA medium. The patterns of carbon sources utilization was very diverse among the isolates. It was observed the capacity of three strains to metabolize all the carbon sources evaluated and a total of 42% of the bacterial isolates was able to grow in the culture medium supplemented with at least, six carbon sources. The carbon sources mannitol (control) and sucrose were metabilized by all isolates evaluated. The profile of intrinsic resistance to antibiotics showed that the isolates were mostly resistant to streptomycin and ampicillin, but susceptible to kanamycin and chloranphenicol. High amylolytic activity of, at least, four isolates was also demonstrated, especially for isolated 47.3b, which showed the highest enzymatic index. These results indicate the metabolic versatility of the pigeonpea rhizobia, and indicates the isolate 47.3b to further studies regarding the amylase production and characterization.


Assuntos
Antibacterianos/análise , Resistência Microbiana a Medicamentos , Estreptomicina/isolamento & purificação , Variação Genética , Fixação de Nitrogênio , Fenótipo , Rhizobiaceae/fisiologia , Rhizobiaceae/isolamento & purificação , Biotecnologia , Metodologia como Assunto
18.
PLoS One ; 7(9): e46447, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029520

RESUMO

Huanglongbing (HLB) is presently the most devastating citrus disease worldwide. As an intracellular plant pathogen and insect symbiont, the HLB bacterium, 'Candidatus Liberibacter asiaticus' (Las), retains the entire flagellum-encoding gene cluster in its significantly reduced genome. Las encodes a flagellin and hook-associated protein (Fla) of 452 amino acids that contains a conserved 22 amino acid domain (flg22) at positions 29 to 50 in the N-terminus. The phenotypic alteration in motility of a Sinorhizobium meliloti mutant lacking the fla genes was partially restored by constitutive expression of Fla(Las). Agrobacterium-mediated transient expression in planta revealed that Fla(Las) induced cell death and callose deposition in Nicotiana benthamiana, and that the transcription of BAK1 and SGT1, which are associated with plant innate immunity, was upregulated. Amino acid substitution experiments revealed that residues 38 (serine) and 39 (aspartate) of Fla(Las) were essential for callose induction. The synthetic flg22(Las) peptide could not induce plant cell death but retained the ability to induce callose deposition at a concentration of 20 µM or above. This demonstrated that the pathogen-associated molecular pattern (PAMP) activity of flg22 in Las was weaker than those in other well-studied plant pathogenic bacteria. These results indicate that Fla(Las) acts as a PAMP and may play an important role in triggering host plant resistance to the HLB bacteria.


Assuntos
Citrus/microbiologia , Flagelina/genética , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Morte Celular , Citrus/imunologia , Sequência Conservada , Resistência à Doença , Flagelina/biossíntese , Teste de Complementação Genética , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Doenças das Plantas/imunologia , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Rhizobiaceae/fisiologia , Análise de Sequência de DNA , Nicotiana/citologia , Nicotiana/metabolismo , Nicotiana/microbiologia
19.
PLoS One ; 7(5): e37345, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615987

RESUMO

Zebra complex (ZC) disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs), an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Sulc). The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin) and tuber storage proteins (e.g., patatins), indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants.


Assuntos
Hemípteros/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Solanum tuberosum/metabolismo , Animais , Hidrolases de Éster Carboxílico/biossíntese , Catecol Oxidase/metabolismo , Ciclofilinas/biossíntese , Insetos Vetores/fisiologia , Proteínas de Plantas/biossíntese , Caules de Planta/metabolismo , Solanum tuberosum/microbiologia , Amido/metabolismo
20.
Int J Syst Evol Microbiol ; 61(Pt 9): 2123-2128, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20870886

RESUMO

A Gram-negative-staining, motile, rod-shaped, aerobic bacterial strain, designated MJ02(T), was isolated from sludge of a leachate treatment plant in Daejeon (South Korea) and was characterized to determine its taxonomic position by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ02(T) belonged to the family Rhizobiaceae, class Alphaproteobacteria, and was most closely related to Shinella yambaruensis MS4(T) (97.6 % sequence similarity) and Shinella fusca DC-196(T) (97.5 %). The G+C content of the genomic DNA of strain MJ02(T) was 64.3 mol%. The detection of a quinone system with ubiquinone Q-10 as the predominant respiratory lipoquinone and a fatty acid profile with C18:1ω7c (45.8 %) and C16:0 (21.8 %) as the major components supported the affiliation of strain MJ02(T) to the genus Shinella. However, strain MJ02(T) exhibited relatively low levels of DNA-DNA relatedness with respect to S. fusca DSM 21319(T) (17±7 %) and S. yambaruensis KACC 14483(T) (12±6 %), showing clearly that the isolate constituted a new genospecies. Strain MJ02(T) could be clearly differentiated from its phylogenetic neighbours on the basis of several phenotypic, genotypic and chemotaxonomic features. Therefore, strain MJ02(T) is considered to represent a novel species of the genus Shinella, for which the name Shinella daejeonensis sp. nov. is proposed. The type strain is MJ02(T) ( = KCTC 22450(T) = JCM 16236(T)).


Assuntos
Nitratos/metabolismo , Rhizobiaceae/classificação , Rhizobiaceae/isolamento & purificação , Esgotos/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Coreia (Geográfico) , Locomoção , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Oxirredução , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Rhizobiaceae/fisiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA