Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Hazard Mater ; 477: 135239, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39053060

RESUMO

Bisphenol-A (BPA) is an emerging hazardous contaminant, which is ubiquitous in the environment and can cause endocrine disruptor and cancer risks. Therefore, biodegradation of BPA is an essential issue to mitigate the associated human health. In this work, a bacterial strain enables of degrading BPA, named BPA-LRH8 (identified as Xenophilus sp.), was newly isolated from activated sludge and embedded onto walnut shell biochar (WSBC) to form a bio-composite (BCM) for biodegradation of BPA in water. The Langmuir maximum adsorption capacity of BPA by WSBC was 21.7 mg g-1. The free bacteria of BPA-LRH8 showed high BPA degradation rate (∼100 %) at pH 5-11, while it was lower (<20 %) at pH 3. The BCM eliminated all BPA (∼100 %) at pH 3-11 and 25-45 °C when the BPA level was ≤ 25 mg L-1. The spectrometry investigations suggested two possible degradation routes of BPA by Xenophilus sp. In one route, BPA (C15H16O3) was oxidized to C15H16O3, and then broken into C9H12O3 through chain scission. In another route, BPA was likely hydroxylated, oxidized, and cleaved into C9H10O4P4, which was further metabolized into CO2 and H2O in the TCA cycle. This study concluded that the novel isolated bacteria (BPA-LRH8) embedded onto WSBC is a promising and new method for the effective removal of BPA and similar hazardous substances from contaminated water under high concentrations and wide range of pH and temperature.


Assuntos
Compostos Benzidrílicos , Biodegradação Ambiental , Carvão Vegetal , Fenóis , Poluentes Químicos da Água , Fenóis/metabolismo , Carvão Vegetal/química , Compostos Benzidrílicos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Adsorção , Rhizobiaceae/metabolismo
2.
J Exp Bot ; 74(15): 4670-4684, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37166404

RESUMO

Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium 'Candidatus Liberibacter asiaticus' (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. 'Wanjincheng' orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symptom expression via suppressing host immunity responses. SDE4405 interacts with the ATG8-family of proteins (ATG8s), and their interactions activate autophagy in Nicotiana benthamiana. The occurrence of autophagy is also significantly enhanced in SDE4405-transgenic citrus plants. Interrupting NbATG8s-SDE4405 interaction by silencing of NbATG8c reduces Pseudomonas syringae pv. tomato strain DC3000ΔhopQ1-1 (Pst DC3000ΔhopQ1-1) proliferation in N. benthamiana, and transient overexpression of CsATG8c and SDE4405 in citrus promotes Xanthomonas citri subsp. citri (Xcc) multiplication, suggesting that SDE4405-ATG8s interaction negatively regulates plant defense. These results demonstrate the role of the CLas effector protein in manipulating autophagy, and provide new molecular insights into the interaction between CLas and citrus hosts.


Assuntos
Infecções Bacterianas , Citrus , Hemípteros , Rhizobiaceae , Animais , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Liberibacter/genética , Plantas Geneticamente Modificadas/genética , Citrus/genética , Doenças das Plantas/microbiologia , Hemípteros/fisiologia
3.
Mol Plant Microbe Interact ; 35(3): 257-273, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931906

RESUMO

The lipopolysaccharides (LPS) of gram-negative bacteria trigger a nitrosative and oxidative burst in both animals and plants during pathogen invasion. Liberibacter crescens strain BT-1 is a surrogate for functional genomic studies of the uncultured pathogenic 'Candidatus Liberibacter' spp. that are associated with severe diseases such as citrus greening and potato zebra chip. Structural determination of L. crescens LPS revealed the presence of a very long chain fatty acid modification. L. crescens LPS pretreatment suppressed growth of Xanthomonas perforans on nonhost tobacco (Nicotiana benthamiana) and X. citri subsp. citri on host orange (Citrus sinensis), confirming bioactivity of L. crescens LPS in activation of systemic acquired resistance (SAR). L. crescens LPS elicited a rapid burst of nitric oxide (NO) in suspension cultured tobacco cells. Pharmacological inhibitor assays confirmed that arginine-utilizing NO synthase (NOS) activity was the primary source of NO generation elicited by L. crescens LPS. LPS treatment also resulted in biological markers of NO-mediated SAR activation, including an increase in the glutathione pool, callose deposition, and activation of the salicylic acid and azelaic acid (AzA) signaling networks. Transient expression of 'Ca. L. asiaticus' bacterioferritin comigratory protein (BCP) peroxiredoxin in tobacco compromised AzA signaling, a prerequisite for LPS-triggered SAR. Western blot analyses revealed that 'Ca. L. asiaticus' BCP peroxiredoxin prevented peroxynitrite-mediated tyrosine nitration in tobacco. 'Ca. L. asiaticus' BCP peroxiredoxin (i) attenuates NO-mediated SAR signaling and (ii) scavenges peroxynitrite radicals, which would facilitate repetitive cycles of 'Ca. L. asiaticus' acquisition and transmission by fecund psyllids throughout the limited flush period in citrus.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Citrus , Rhizobiaceae , Proteínas de Bactérias , Citrus/microbiologia , Grupo dos Citocromos b , Ferritinas , Liberibacter , Lipopolissacarídeos/metabolismo , Estresse Nitrosativo , Peroxirredoxinas/metabolismo , Doenças das Plantas/microbiologia , Rhizobiaceae/metabolismo
4.
Microbiology (Reading) ; 167(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33656438

RESUMO

The compound 17α-ethinylestradiol (EE2) is a synthetic oestrogen which is classified as a group 1 carcinogen by the World Health Organization. Together with other endocrine disruptor compounds, EE2 has been included in the surface water Watch List by the European Commission, since it causes severe adverse effects in ecosystems. Thus, it became a high priority to find or improve processes such as biodegradation of EE2 to completely remove this drug from the wastewater treatment plants (WWTPs). The present study aimed at the isolation of bacteria capable of degrading EE2 using environmental samples, namely a sludge from the Faro Northwest WWTP. Four isolates with ability to grow in the presence of 50 mg l-1 EE2 were obtained. The analysis of 16SrRNA gene sequences identified the isolated bacteria as Acinetobacter bouvetii, Acinetobacter kookii, Pantoea agglomerans and Shinella zoogloeoides. The results of biodegradation assays showed that Acinetobacter bouvetii, Acinetobacter kookii, Pantoea agglomerans and Shinella zoogloeoides were able to degrade 47±4 %, 55±3 %, 64±4% and 35±4 %, respectively of 13 mg l-1 EE2 after 168 h at 28 °C. To the best of our knowledge, these bacterial isolates were identified as EE2 degraders for the first time. In a preliminary experiment on the identification of metabolic products resulting from EE2 degradation products such as estrone (E1), γ-lactone compounds, 2-pentanedioic acid and 2-butenedioic acid an intermediate metabolite of the TCA cycle, were detected.


Assuntos
Acinetobacter/metabolismo , Estrogênios/metabolismo , Etinilestradiol/metabolismo , Pantoea/metabolismo , Rhizobiaceae/metabolismo , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Acinetobacter/genética , Acinetobacter/isolamento & purificação , Biodegradação Ambiental , Pantoea/genética , Pantoea/isolamento & purificação , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação
5.
Ecotoxicol Environ Saf ; 205: 111333, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979802

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are a specific category of microbes that improve plant growth and promote greater tolerance to metal stress through their interactions with plant roots. We evaluated the effects of phytoremediation combining the cadmium accumulator Solanum nigrum L. and two Cd- and Pb-resistant bacteria isolates. To understand the interaction between PGPR and their host plant, we conducted greenhouse experiments with inoculation treatments at Nanjing Agricultural University (Jiangsu Province, China), in June 2018. Two Cd- and Pb-resistant PGPR with various growth-promoting properties were isolated from heavy metal-contaminated soil. 16S rRNA analyses indicated that the two isolates were Bacillus genus, and they were named QX8 and QX13. Pot experiments demonstrated that inoculation may improve the rhizosphere soil environment and promote absorption of Fe and P by plants. Inoculation with QX8 and QX13 also enhanced the dry weight of shoots (1.36- and 1.7-fold, respectively) and roots (1.42- and 1.96-fold) of plants growing in Cd- and Pb-contaminated soil, and significantly increased total Cd (1.28-1.81 fold) and Pb (1.08-1.55 fold) content in aerial organs, compared to non-inoculated controls. We also detected increases of 23% and 22% in the acid phosphatase activity of rhizosphere soils inoculated with QX8 and QX13, respectively. However, we did not detect significant differences between inoculated and non-inoculated treatments in Cd and Pb concentrations in plants and available Cd and Pb content in rhizosphere soils. We demonstrated that PGPR-assisted phytoremediation is a promising technique for remediating heavy metal-contaminated soils, with the potential to enhance phytoremediation efficiency and improve soil quality.


Assuntos
Cádmio/análise , Chumbo/análise , Rhizobiaceae/metabolismo , Microbiologia do Solo , Poluentes do Solo/análise , Solanum nigrum/efeitos dos fármacos , Biodegradação Ambiental , Cádmio/metabolismo , China , Chumbo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , RNA Ribossômico 16S , Rizosfera , Solo/química , Poluentes do Solo/metabolismo , Solanum nigrum/crescimento & desenvolvimento , Solanum nigrum/metabolismo
6.
Chemosphere ; 241: 125027, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31606002

RESUMO

The aim of this study was to investigate whether the plant-growth-promoting rhizobacteria (PGPR) could enhance phytoremediation efficiency of Scirpus triqueter (S.triqueter) in the pyrene-Ni co-contaminated soil. We also expected to reveal the possible mechanism for the affected phytoremediation efficiency induced by PGPR. We used three kinds of contaminated soils (Ni-contaminated soil, pyrene-contaminated soil and pyrene-Ni co-contaminated soil) to conduct this pot study. After harvest, plants growth indicators, polyphenol oxidase (PPO) activity and soil microbial community structure of each treatment were investigated to explain the different dissipation rates of pyrene and removal rates of Ni between treatments with and without PGPR. The results showed that PGPR-inoculated S. triqueter increased dissipation rates of pyrene and removal rates of Ni in all three contaminated soils, among which Ni removal rates in Ni single contaminated soil was elevated most significantly, from 0.895‰ to 8.8‰, increasing nearly 9 folds. However, Ni removal rate efficiency in co-contaminated soil was weakened because more toxic and complicated co-contaminated soil restrained plant growth and Ni absorption. We also observed that co-contamination harmed the soil microbial community more severely than that in single pyrene or Ni contaminated soil through phospholipid fatty acids analysis. Furthermore, dissipation rates of pyrene and removal rates of Ni were found positively correlated to the PPO activity and the abundance of branched and saturated fatty acids reflected by Pearson correlation analysis.


Assuntos
Biodegradação Ambiental , Cyperaceae/efeitos dos fármacos , Pirenos , Rhizobiaceae/metabolismo , Poluentes do Solo/química , Cyperaceae/crescimento & desenvolvimento , Cinética , Microbiota/efeitos dos fármacos , Níquel/toxicidade , Desenvolvimento Vegetal/efeitos dos fármacos , Pirenos/análise , Pirenos/toxicidade , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/farmacologia
7.
Int J Mol Sci ; 20(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752214

RESUMO

'Candidatus Liberibacter asiaticus' (CLas) is one of the causal agents of citrus Huanglongbing (HLB), a bacterial disease of citrus trees that greatly reduces fruit yield and quality. CLas strains produce an array of currently uncharacterized Sec-dependent secretory proteins. In this study, the conserved chromosomally encoded protein CLIBASIA_03875 was identified as a novel Sec-dependent secreted protein. We show that CLIBASIA_03875 contains a putative Sec- secretion signal peptide (SP), a 29 amino acid residue located at the N-terminus, with a mature protein (m3875) of 22 amino acids found to localize in multiple subcellular components of the leaf epidermal cells of Nicotiana benthamiana. When overexpressed via a Potato virus X (PVX)-based expression vector in N. benthamiana, m3875 suppressed programmed cell death (PCD) and the H2O2 accumulation triggered by the pro-apoptotic mouse protein BAX and the Phytophthora infestans elicitin INF1. Overexpression also resulted in a phenotype of dwarfing, leaf deformation and mosaics, suggesting that m3875 has roles in plant immune response, growth, and development. Substitution mutagenesis of the charged amino acid (D7, R9, R11, and K22) with alanine within m3875 did not recover the phenotypes for PCD and normal growth. In addition, the transiently overexpressed m3875 regulated the transcriptional levels of N. benthamiana orthologs of CNGCs (cyclic nucleotide-gated channels), BI-1 (Bax-inhibitor 1), and WRKY33 that are involved in plant defense mechanisms. To our knowledge, m3875 is the first PCD suppressor identified from CLas. Studying the function of this protein provides insight as to how CLas attenuates the host immune responses to proliferate and cause Huanglongbing disease in citrus plants.


Assuntos
Proteínas de Bactérias/genética , Nicotiana/citologia , Rhizobiaceae/metabolismo , Apoptose , Proteínas de Bactérias/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Mutação , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/metabolismo , Sinais Direcionadores de Proteínas , Nicotiana/genética , Nicotiana/metabolismo , Transfecção
8.
J Food Sci ; 84(10): 2925-2931, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31546283

RESUMO

This study provides phenotypic and molecular analyses of the antibiotic resistance of Ensifer adhaerens strain YX1 (CICC 11008s), a strain that was identified using a polyphasic taxonomy approach. The antibiotic resistance profile of E. adhaerens YX1 was assessed using the Clinical & Laboratory Standards Inst. (CLSI) method. The strain was susceptible to ciprofloxacin, levofloxacin, norfloxacin, ofloxacin, gentamicin, tobramycin, chloramphenicol, tetracycline, imipenem, and ceftazidime, and resistant to kanamycin, streptomycin, fosfomycin, and nitrofurantoin. The antibiotic resistance genes nsfA, nsfB, fosA, aph, and aadA1 were not detected in E. adhaerens YX1 via PCR using gene-specific primers. Subsequently, the genome sequence of E. adhaerens was screened for antibiotic genes. Although no antibiotic resistance genes were identified using the ResFinder database, five genes copies of one resistance gene, adeF, were detected using the Comprehensive Antibiotic Resistance Database (CARD). The results of this study will be useful for understanding the phenotypic and genotypic aspects of E. adhaerens antibiotic resistance. No safety issues were identified for E. adhaerens YX1 in terms of antibiotic resistance. Performing similar studies will be conducive to the safety assessment and control of the use of E. adhaerens in the food and feed industry. PRACTICAL APPLICATION: Few relevant reports are currently available regarding antibiotic resistance assessments or other safety evaluations for Ensifer adhaerens. Because of a lack of relevant information on the safety of this bacterium, including the genetic basis of antibiotic resistance in the production strain, it has not been recommended for use in the "qualified presumption of safety" (QPS) list and subsequent updated lists. The current study shows no safety issue of E. adhaerens YX1 in terms of its antibiotic resistance. These results are important as they provide an initial basis for an understanding of the antibiotic resistance/susceptibility of E. adhaerens YX1 (CICC 11008s), which produces vitamin B12 and is widely used in the food and feed industry.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Rhizobiaceae/efeitos dos fármacos , Vitamina B 12/metabolismo , Ração Animal/microbiologia , Cloranfenicol/farmacologia , Ciprofloxacina/farmacologia , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Rhizobiaceae/metabolismo , Tetraciclina/farmacologia
9.
FEBS J ; 286(17): 3450-3472, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31063259

RESUMO

The amino acid-binding receptors, a component of ABC transporters, have evolved to cater to different specificities and functions. Of particular interest are cystine-binding receptors, which have shown broad specificity. In the present study, a putative periplasmic cystine-binding protein from Candidatus Liberibacter asiaticus (CLasTcyA) was characterized. Analysis of the CLasTcyA sequence and crystal structures in the ligand-bound state revealed novel features of CLasTcyA in comparison to related proteins. One of the unique features found in CLasTcyA structure was the positioning of the C-terminal extended loop of one chain very close to the substrate-binding site of the adjacent monomer in the asymmetric unit. The presence of a disulphide bond, unique to Candidatus Liberibacter family, holds the C-terminal extended loop in position. Analysis of the substrate-binding pocket of CLasTcyA suggested a broad specificity and a completely different orientation of the bound substrates in comparison to related protein structures. The open conformation for one of the two chains of the asymmetric unit in the Arg-bound structure revealed a limited open state (18.4°) for CLasTcyA as compared to open state of other related proteins (~ 60°). The strong interaction between Asp126 on helix-α5 of small domain and Arg82 (bigger domain) restricts the degree of opening in ligand-free open state. The dissociation constant of 1.26 µm by SPR and 3.7 µm by MST exhibited low affinity for the cystine. This is the first structural characterization of an l-cystine ABC transporter from plant pathogen and our results suggest that CLasTcyA may have evolved to cater to its specific needs for its survival in the host.


Assuntos
Proteínas de Bactérias/química , Cisteína/metabolismo , Simulação de Acoplamento Molecular , Rhizobiaceae/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ligação Proteica , Rhizobiaceae/metabolismo , Especificidade por Substrato
10.
Braz J Microbiol ; 50(2): 459-469, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30830602

RESUMO

Plant growth-promoting rhizobacteria are under extensive investigation to supplement the chemical fertilizers due to cost-effective and eco-friendly nature. However, their consistency in heterogeneous soil and diverse ecological settings is unclear. The current study presents in vitro and field evaluation of pre-characterized PGPR strain Enterobacter sp. Fs-11 (GenBank accession # GQ179978) in terms of its potential to enhance sunflower yield and oil contents under diverse environmental conditions. Under in vitro conditions, strain Fs-11 showed optimal growth at a range of temperature (15 to 40 °C) and pH values (6.5 to 8.5). Extracellular and intracellular localizations of the strain Fs-11 in sunflower root cortical cells through transmission electron microscopy confirmed its epiphytic and endophytic colonization patterns, respectively. In field experiments, conducted at three different agro-climatic locations, inoculation of strain Fs-11 at 50% reduced NP fertilizer resulted in a significant increase in growth, achene yield, nutrient uptake, and oil contents. Inoculation also responded significantly in terms of increase in mono- and polyunsaturated fatty acids (oleic and linoleic acids, respectively) without rising saturated fatty acid (palmitic and stearic acids) contents. We concluded that Enterobacter sp. Fs-11 is a potential candidate for biofertilizer formulations to supplement chemical fertilizer requirements of sunflower crop under diverse climatic conditions.


Assuntos
Enterobacter/metabolismo , Fertilizantes/análise , Helianthus/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rhizobiaceae/metabolismo , Enterobacter/classificação , Ácidos Graxos/metabolismo , Helianthus/metabolismo , Paquistão , Raízes de Plantas/metabolismo
11.
ISME J ; 12(9): 2335-2338, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29899508

RESUMO

In this study, the three-dimensional spatial distributions of a number of metabolites involved in regulating symbiosis and biological nitrogen fixation (BNF) within soybean root nodules were revealed using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). While many metabolites exhibited distinct spatial compartmentalization, some metabolites were asymmetrically distributed throughout the nodule (e.g., S-adenosylmethionine). These results establish a more complex metabolic view of plant-bacteria symbiosis (and BNF) within soybean nodules than previously hypothesized. Collectively these findings suggest that spatial perspectives in metabolic regulation should be considered to unravel the overall complexity of interacting organisms, like those relating to associations of nitrogen-fixing bacteria with host plants.


Assuntos
Glycine max/metabolismo , Rhizobiaceae/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Fixação de Nitrogênio , Glycine max/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Simbiose
12.
Chemosphere ; 190: 234-242, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28992475

RESUMO

A pot experiment was conducted to evaluate the potential of two plant growth promoting rhizobacteria (PGPR) viz. Bacillus sp. CIK-516 and Stenotrophomonas sp. CIK-517Y for improving the growth and Ni uptake of radish (Raphanus sativus) in the presence of four different levels of Ni contamination (0, 50, 100, 150 mg Ni kg-1 soil). Plant growth, dry biomass, chlorophyll and nitrogen contents were significantly reduced by the exogenous application of Ni, however, bacterial inoculation diluted the negative impacts of Ni stress on radish by improving these parameters. PGPR strain CIK-516 increased root length (9-27%), shoot length (8-27%), root dry biomass (2-32%), shoot dry biomass (9-51%), root girth (6-48%), total chlorophyll (4-38%) and shoot nitrogen contents (11-15%) in Ni contaminated and non-contaminated soils. Positive regulation of chlorophyll and nitrogen contents by the inoculated plants shows plant tolerance mechanism of Ni stress. Bacterial strain (CIK-516) exhibited indole acetic acid and 1-amino-cyclopropane-1-carboxylate deaminase potentials which would have helped radish plant to stabilize in Ni contaminated soil and thereby increased Ni uptake (24-257 in shoot and 58-609 in root mg kg-1 dry biomass) and facilitated accumulation in radish (bioaccumulation factor = 0.6-1.7) depending upon soil Ni contamination. Based on the findings of this study, it might be suggested that inoculation with bacterial strain CIK-516 could be an efficient tool for enhanced Ni phytoextraction in radish.


Assuntos
Recuperação e Remediação Ambiental/métodos , Níquel/isolamento & purificação , Raphanus/microbiologia , Poluentes do Solo/isolamento & purificação , Inoculantes Agrícolas , Bacillus/metabolismo , Clorofila/análise , Níquel/farmacologia , Nitrogênio/análise , Desenvolvimento Vegetal/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raphanus/crescimento & desenvolvimento , Rhizobiaceae/metabolismo , Poluentes do Solo/farmacocinética
13.
Appl Microbiol Biotechnol ; 101(21): 8053-8061, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28963627

RESUMO

Xylose is the second most abundant sugar derived from lignocellulose; it is considered less desirable than glucose for fermentation, and strategies that specifically increase xylose utilization in wild-type cells are goals for biofuel production. Xylose consumption, butanol production, and hydrogen production increased in both Clostridium beijerinckii and a novel solventogenic bacterium (strain DC-1) when anthraquinone-2,6,-disulfonate (AQDS) or riboflavin were used as redox mediators to transfer electrons to poorly crystalline Fe(OH)3 as an extracellular electron sink. Strain DC-1 was most closely related to Rhizobiales bacterium Mfc52 based on 95% 16S rRNA gene sequence similarity, which demonstrates that this response is not limited to a single genus of xylose-fermenting bacteria. Xylose utilization and butanol production were negligible in control incubations containing cells plus 3% (w/v) xylose alone during a 10-day batch fermentation, for both strains tested (n-butanol titers of 0.05 g L-1). Micromolar concentrations of AQDS and riboflavin were added as electron shuttling compounds with poorly crystalline Fe(OH)3 as an insoluble electron acceptor, and respective n-butanol titers increased to 6.35 and 7.46 g L-1. Increases in xylose consumption for the iron treatments were relatively high, from less than 0.49 g L-1 (xylose alone, no iron or electron shuttling molecules) to 25.98 and 29.15 g L-1 for the AQDS and riboflavin treatments, respectively. Hydrogen production was also 3.68 times greater for the AQDS treatment and 5.27 greater for the riboflavin treatment relative to controls. Strain DC-1 data were similar, again indicating that the effects are not specific to the genus Clostridium.


Assuntos
Butanóis/metabolismo , Clostridium beijerinckii/metabolismo , Transporte de Elétrons , Compostos Férricos/metabolismo , Rhizobiaceae/metabolismo , Xilose/metabolismo , Antraquinonas/metabolismo , Análise por Conglomerados , Meios de Cultura/química , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fermentação , Filogenia , RNA Ribossômico 16S/genética , Rhizobiaceae/classificação , Rhizobiaceae/genética , Riboflavina/metabolismo , Análise de Sequência de DNA , Açúcares/análise
14.
Mol Plant Microbe Interact ; 30(8): 620-630, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28488467

RESUMO

Pathogens from the fastidious, phloem-restricted 'Candidatus Liberibacter' species cause the devastating Huanglongbing (HLB) disease in citrus worldwide and cause diseases on many solanaceous crops and plants in the Apiaceae family. However, little is known about the pathogenic mechanisms due to the difficulty in culturing the corresponding 'Ca. Liberibacter' species. Here, we report that the citrus HLB pathogen 'Ca. L. asiaticus' uses an active salicylate hydroxylase SahA to degrade salicylic acid (SA) and suppress plant defenses. Purified SahA protein displays strong enzymatic activity to degrade SA and its derivatives. Overexpression of SahA in transgenic tobacco plants abolishes SA accumulation and hypersensitive response (HR) induced by nonhost pathogen infection. By degrading SA, 'Ca. L. asiaticus' not only enhances the susceptibility of citrus plants to both nonpathogenic and pathogenic Xanthomonas citri but also attenuates the responses of citrus plants to exogenous SA. In addition, foliar spraying of 2,1,3-benzothiadiazole and 2,6-dichloroisonicotinic acid, SA functional analogs not degradable by SahA, displays comparable (and even better) effectiveness with SA in suppressing 'Ca. L. asiaticus' population growth and HLB disease progression in infected citrus trees under field conditions. This study demonstrates one or more pathogens suppress plant defenses by degrading SA and establish clues for developing novel SA derivatives-based management approaches to control the associated plant diseases.


Assuntos
Citrus/imunologia , Citrus/microbiologia , Oxigenases de Função Mista/metabolismo , Rhizobiaceae/metabolismo , Ácido Salicílico/metabolismo , Sequência de Aminoácidos , Animais , Citrus/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Insetos/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Nicotiana/genética , Regulação para Cima/genética
15.
Proc Natl Acad Sci U S A ; 114(19): 5041-5046, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28438996

RESUMO

In legume nodules, rhizobia differentiate into nitrogen-fixing forms called bacteroids, which are enclosed by a plant membrane in an organelle-like structure called the symbiosome. In the Inverted Repeat-Lacking Clade (IRLC) of legumes, this differentiation is terminal due to irreversible loss of cell division ability and is associated with genome amplification and different morphologies of the bacteroids that can be swollen, elongated, spherical, and elongated-branched, depending on the host plant. In Medicago truncatula, this process is orchestrated by nodule-specific cysteine-rich peptides (NCRs) delivered into developing bacteroids. Here, we identified the predicted NCR proteins in 10 legumes representing different subclades of the IRLC with distinct bacteroid morphotypes. Analysis of their expression and predicted sequences establishes correlations between the composition of the NCR family and the morphotypes of bacteroids. Although NCRs have a single origin, their evolution has followed different routes in individual lineages, and enrichment and diversification of cationic peptides has resulted in the ability to impose major morphological changes on the endosymbionts. The wide range of effects provoked by NCRs such as cell enlargement, membrane alterations and permeabilization, and biofilm and vesicle formation is dependent on the amino acid composition and charge of the peptides. These effects are strongly influenced by the rhizobial surface polysaccharides that affect NCR-induced differentiation and survival of rhizobia in nodule cells.


Assuntos
Proteínas de Bactérias/metabolismo , Medicago truncatula/microbiologia , Peptídeos/metabolismo , Rhizobiaceae/metabolismo , Rizoma/microbiologia , Simbiose/fisiologia , Proteínas de Bactérias/genética , Peptídeos/genética , Rhizobiaceae/genética
16.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039132

RESUMO

Insect-transmitted plant-pathogenic bacteria may alter their vectors' fitness, survival, behavior, and metabolism. Because these pathogens interact with their vectors on the cellular and organismal levels, potential changes at the biochemical level might occur. "Candidatus Liberibacter asiaticus" (CLas) is transmitted in a persistent, circulative, and propagative manner. The genome of CLas revealed the presence of an ATP translocase that mediates the uptake of ATP and other nucleotides from medium to achieve its biological processes, such as growth and multiplication. Here, we showed that the levels of ATP and many other nucleotides were significantly higher in CLas-infected than healthy psyllids. Gene expression analysis showed upregulation for ATP synthase subunits, while ATPase enzyme activity showed a decrease in ATPase activity. These results indicated that CLas stimulated Diaphorina citri to produce more ATP and many other energetic nucleotides, while it may inhibit their consumption by the insect. As a result of ATP accumulation, the adenylated energy charge (AEC) increased and the AMP/ATP and ADP/ATP ratios decreased in CLas-infected D. citri psyllids. Survival analysis confirmed a shorter life span for CLas-infected D. citri psyllids. In addition, electropenetrography showed a significant reduction in total nonprobing time, salivation time, and time from the last E2 (phloem ingestion) to the end of recording, indicating that CLas-infected psyllids were at a higher hunger level and they tended to forage more often. This increased feeding activity reflects the CLas-induced energetic stress. In conclusion, CLas alters the energy metabolism of its psyllid vector, D. citri, in order to secure its need for energetic nucleotides.IMPORTANCE Insect transmission of plant-pathogenic bacteria involves propagation and circulation of the bacteria within their vectors. The transmission process is complex and requires specific interactions at the molecular and biochemical levels. The growth of the plant-pathogenic bacteria in the hemolymph of their vectors indicated that the hemolymph contains all the necessary nutrients for their growth. In addition to nutrients, "Candidatus Liberibacter asiaticus" (CLas) can take up energetic nucleotides, such as ATP, from its vector, Diaphorina citri, using ATP translocase. In this study, we found that the CLas pathogen manipulates the energy metabolism of its insect vector. The accumulation of ATP in CLas-infected D. citri psyllids indicated that CLas induces ATP production to fulfill its need for this energetic compound. As a result of ATP accumulation, a shorter life span and altered feeding behavior were observed. These findings increase our knowledge of insect transmission of the persistent-circulative-propagative type of plant pathogens vectored by insects.


Assuntos
Metabolismo Energético , Hemípteros/metabolismo , Hemípteros/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Rhizobiaceae/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Citrus/microbiologia , Ensaios Enzimáticos , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica , Hemípteros/genética , Hemolinfa/metabolismo , Hemolinfa/microbiologia , Nucleotídeos/metabolismo , Doenças das Plantas/microbiologia , Rhizobiaceae/crescimento & desenvolvimento , Rhizobiaceae/patogenicidade , Sobrevida
17.
Appl Microbiol Biotechnol ; 100(23): 10019-10029, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27568381

RESUMO

Nornicotine is a natural alkaloid produced by plants in the genus Nicotiana and is structurally related to nicotine. Importantly, nornicotine is the direct precursor of tobacco-specific nitrosamine N'-nitrosonornicotine, which is a highly potent human carcinogen. Microbial detoxification and degradation of nicotine have been well characterized; however, until now, there has been no information on the molecular mechanism of nornicotine degradation. In this study, we demonstrate the transformation of nornicotine by the nicotine-degrading strain Shinella sp. HZN7. Three transformation products were identified as 6-hydroxy-nornicotine, 6-hydroxy-myosmine, and 6-hydroxy-pseudooxy-nornicotine by UV spectroscopy, high-resolution mass spectrometry, nuclear magnetic resonance, and Fourier transform-infrared spectroscopy analyses. The two-component nicotine dehydrogenase genes nctA1 and nctA2 were cloned, and their product, NctA, was confirmed to be responsible for the conversion of nornicotine into 6-hydroxy-nornicotine as well as nicotine into 6-hydroxy-nicotine. The 6-hydroxy-nicotine oxidase, NctB, catalyzed the oxidation of 6-hydroxy-nornicotine to 6-hydroxy-myosmine, and it spontaneously hydrolyzed into 6-hydroxy-pseudooxy-nornicotine. However, 6-hydroxy-pseudooxy-nornicotine could not be further degraded by strain HZN7. This study demonstrated that nornicotine is partially transformed by strain HZN7 via nicotine degradation pathway.


Assuntos
Alcaloides/metabolismo , Inseticidas/metabolismo , Nicotina/análogos & derivados , Rhizobiaceae/metabolismo , Biotransformação , Clonagem Molecular , Nicotina/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Rhizobiaceae/enzimologia , Rhizobiaceae/genética , Análise Espectral
18.
Rev. latinoam. enferm ; 22(6): 950-958, 16/12/2014. tab
Artigo em Inglês | LILACS, BDENF - Enfermagem | ID: lil-732948

RESUMO

OBJECTIVES: to analyze the prevalence of satisfaction at work and identify associated factors in Psychosocial Care Centers. METHOD: cross-sectional study involving 546 workers from 40 Psychosocial Care Centers in the South of Brazil. The satisfaction was identified based on the Assessment Scale of Satisfaction in the Mental Health Team and a logistic regression model was used for the adjusted data analysis. RESULTS: the prevalence of satisfaction at work corresponded to 66.4%. Factors directly associated with satisfaction: higher-level function (except physicians and psychologists), work time of six months or less, making a larger number of home visits, good supervision by the team, possibility to make collective choices and take courses. CONCLUSIONS: the satisfaction is associated with the work organization and conditions and demonstrates the need to invest in team supervisions, in process that democratize the services and in the workers' training. .


OBJETIVOS: analisar a prevalência de satisfação no trabalho e identificar fatores associados em Centros de Atenção Psicossocial. MÉTODO: estudo transversal com 546 trabalhadores de 40 Centros de Atenção Psicossocial, da Região Sul do Brasil. A satisfação foi identificada a partir da Escala de Avaliação da Satisfação da Equipe de Saúde Mental e a análise ajustada dos dados, realizada por modelo de regressão logística. RESULTADOS: prevalência de satisfação no trabalho de 66,4%. Fatores diretamente associados à satisfação: função de nível superior (excetuando médicos e psicólogos), tempo de trabalho menor ou igual a seis meses, realização de maior número de visitas domiciliares, boa supervisão pela equipe, possibilidade de fazer escolhas coletivas e cursos. CONCLUSÕES: a satisfação está associada à organização e às condições do trabalho e demonstra necessidade de se investir em supervisão pelas equipes, em processos que democratizem os serviços e, também, na formação de seus trabalhadores. .


OBJETIVOS: analizar la prevalencia de satisfacción en el trabajo e identificar factores asociados en Centros de Atención Psicosocial. MÉTODO: estudio trasversal con 546 trabajadores de 40 Centros de Atención Psicosocial de la región Sur de Brasil. La satisfacción fue identificada a partir de la Escala de Evaluación de la Satisfacción del Equipo de Salud Mental y el análisis ajustado de los datos efectuado mediante un modelo de regresión logística. RESULTADOS: prevalencia de satisfacción en el trabajo de 66,4%. Factores directamente asociados a la satisfacción: función de nivel superior (excepto médicos y psicólogos), tiempo de trabajo menor o igual a seis meses, efectuar mayor número de visitas a domicilio, boa supervisión por el equipo, posibilidad de hacer opciones colectivas y cursos. CONCLUSIONES: la satisfacción está asociada a la organización y a las condiciones del trabajo y demuestra la necesidad de invertir en supervisión por los equipos, en procesos que democraticen los servicios y también en la formación de sus trabajadores. .


Assuntos
Citratos/metabolismo , Quelantes de Ferro/metabolismo , Rhizobiaceae/metabolismo , Ácido Cítrico , Compostos Férricos/farmacocinética , Quelantes de Ferro/análise , Sideróforos
19.
Appl Microbiol Biotechnol ; 98(6): 2625-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24026891

RESUMO

Nicotine is a significant toxic waste generated in tobacco manufacturing. Biological methods for the degradation of nicotine waste are in high demand. In this study, we report the identification and characterization of the novel nicotine-degrading strain Shinella sp. HZN7. This strain can degrade 500 mg/L nicotine completely within 3 h at 30 °C and pH values of 6.5 ∼ 8.0. The biodegradation of nicotine by Shinella sp. HZN7 involves five intermediate metabolites: 6-hydroxy-nicotine (6HN), 6-hydroxy-N-methylmyosmine, 6-hydroxypseudooxynicotine (6HPON), 6-hydroxy-3-succinoyl-pyridine (HSP), and 2,5-dihydroxypyridine, as detected by ultraviolet spectrophotometry, HPLC, and LC-MS. We generated three mutants, N7-W18, N7-X5, and N7-M17, by transposon mutagenesis, in which the nicotine-degrading pathway terminated at 6HN, 6HPON, and HSP, respectively. The production of the five intermediate metabolites and their order in the degradation pathway were confirmed in the three mutants, indicating that strain HZN7 degrades nicotine via a variant of the pyridine and pyrrolidine pathways. The mutant gene from strain N7-X5, orf2, was cloned by self-formed adaptor PCR, but the nucleotide and amino acid sequence showed no similarity to any gene or gene product with defined function. However, orf2 disruption and complementation suggested that the orf2 gene is essential for the conversion of 6HPON to HSP in strain HZN7. This is the first study to provide genetic evidence for this variant nicotine degradation pathway.


Assuntos
Redes e Vias Metabólicas/genética , Mutagênese Insercional , Nicotina/metabolismo , Rhizobiaceae/isolamento & purificação , Rhizobiaceae/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Elementos de DNA Transponíveis , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Análise de Sequência de DNA , Espectrofotometria Ultravioleta , Temperatura , Fatores de Tempo
20.
World J Microbiol Biotechnol ; 28(4): 1367-73, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22805917

RESUMO

Bioremediation, a strategy mediated by microorganisms, is a promising way used in the degradation or removal of organic contaminants from soil or aquatic system. Exopolysaccharide (EPS) which was produced by a variety of Gram-negative bacteria has been demonstrated to be a potential bioemulsifier used in the degradation of hydrocarbons. In the present study, attempts were made to optimize the production of EPS from our newly isolates by adjusting the culture conditions and medium components. Besides, the performance of diesel oil emulsification using partially purified EPS derived from different conditions was also demonstrated. Out of 40 root nodulating bacteria the better emulsifying abilities were recorded from three strains namely Rhizobium miluonense CC-B-L1, Burkholderia seminalis CC-IDD2w and Ensifer adhaerens CC-GSB4, as can be seen from their emulsification index (E(24)) 66, 64 and 60%, respectively. These three strains produced 212, 203 and 198 mg l(-1) of EPS, respectively, in yeast extract mannitol (YEM) medium. After modifying culture conditions, better performances can be achieved from these three strains, with increases of 21.7, 21.4, 16.7% in the EPS production and 12.1, 10.9, 8.3% in E(24), respectively. When considered for strain CC-B-L1 and CC-IDD2w, the addition of 1.5% (v/v) of mannitol and 0.1% (v/v) of asparagine in YEM enhanced 42.9 and 34.7% in EPS production along with 28.8 and 37.5% higher in E(24). The supplement of 2.0% (v/v) glucose and 0.2% (v/v) asparagine in YEM increased 65.2% of EPS and 38.3% of E(24) in strain CC-GSB4. This is the first report demonstrating the optimization of diesel emulsification by EPS from root nodulating isolates, and these microbial agents might be used in the remediation of hydrocarbon contaminated soils in a near future.


Assuntos
Emulsificantes/metabolismo , Gasolina , Óleos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Rhizobiaceae/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Asparagina/metabolismo , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , Manitol/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA