Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
BMC Microbiol ; 24(1): 217, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902632

RESUMO

BACKGROUND: Rhizoctonia solani is an important plant pathogen worldwide, and causes serious tobacco target spot in tobacco in the last five years. This research studied the biological characteristics of four different anastomosis groups strains (AG-3, AG-5, AG-6, AG-1-IB) of R. solani from tobacco. Using metabolic phenotype technology analyzed the metabolic phenotype differences of these strains. RESULTS: The results showed that the suitable temperature for mycelial growth of four anastomosis group strains were from 20 to 30oC, and for sclerotia formation were from 20 to 25oC. Under different lighting conditions, R. solani AG-6 strains produced the most sclerotium, followed by R. solani AG-3, R. solani AG-5 and R. solani AG-1-IB. All strains had strong oligotrophic survivability, and can grow on water agar medium without any nitrutions. They exhibited three types of sclerotia distribution form, including dispersed type (R. solani AG-5 and AG-6), peripheral type (R. solani AG-1-IB), and central type (R. solani AG-3). They all presented different pathogenicities in tobacco leaves, with the most virulent was noted by R. solani AG-6, followed by R. solani AG-5 and AG-1-IB, finally was R. solani AG-3. R. solani AG-1-IB strains firstly present symptom after inoculation. Metabolic fingerprints of four anastomosis groups were different to each other. R. solani AG-3, AG-6, AG-5 and AG-1-IB strains efficiently metabolized 88, 94, 71 and 92 carbon substrates, respectively. Nitrogen substrates of amino acids and peptides were the significant utilization patterns for R. solani AG-3. R. solani AG-3 and AG-6 showed a large range of adaptabilities and were still able to metabolize substrates in the presence of the osmolytes, including up to 8% sodium lactate. Four anastomosis groups all showed active metabolism in environments with pH values from 4 to 6 and exhibited decarboxylase activities. CONCLUSIONS: The biological characteristics of different anastomosis group strains varies, and there were significant differences in the metabolic phenotype characteristics of different anastomosis group strains towards carbon source, nitrogen source, pH, and osmotic pressure.


Assuntos
Nicotiana , Fenótipo , Doenças das Plantas , Rhizoctonia , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Temperatura , Micélio/metabolismo , Micélio/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Virulência
2.
J Hazard Mater ; 474: 134807, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850939

RESUMO

Nanocrop protectants have attracted much attention as sustainable platforms for controlling pests and diseases and improving crop nutrition. Here, we reported the fungicidal activity and disease inhibition potential of pectin-coated metal-iron organic framework nanoparticles (Fe-MOF-PT NPs) against rice stripe blight (RSB). An in vitro bacterial inhibition assay showed that Fe-MOF-PT NPs (80 mg/L) significantly inhibited mycelial growth and nucleus formation. The Fe-MOF-PT NPs adsorbed to the surface of mycelia and induced toxicity by disrupting cell membranes, mitochondria, and DNA. The results of a nontargeted metabolomics analysis showed that the metabolites of amino acids and their metabolites, heterocyclic compounds, fatty acids, and nucleotides and their metabolites were significantly downregulated after treatment with 80 mg/L NPs. The difference in metabolite abundance between the CK and Fe-MOF-PT NPs (80 mg/L) treatment groups was mainly related to nucleotide metabolism, pyrimidine metabolism, purine metabolism, fatty acid metabolism, and amino acid metabolism. The results of the greenhouse experiment showed that Fe-MOF-PT NPs improved rice resistance to R. solani by inhibiting mycelial invasion, enhancing antioxidant enzyme activities, activating the jasmonic acid signaling pathway, and enhancing photosynthesis. These findings indicate the great potential of Fe-MOF-PT NPs as a new RSB disease management strategy and provide new insights into plant fungal disease management.


Assuntos
Ferro , Estruturas Metalorgânicas , Oryza , Pectinas , Doenças das Plantas , Rhizoctonia , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/microbiologia , Rhizoctonia/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Ferro/química , Ferro/metabolismo , Pectinas/química , Pectinas/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Resistência à Doença/efeitos dos fármacos
3.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891973

RESUMO

Transcription factors are key molecules involved in transcriptional and post-transcriptional regulation in plants and play an important regulatory role in resisting biological stress. In this study, we identified a regulatory factor, OsZF8, mediating rice response to Rhizoctonia solani (R. solani) AG1-IA infection. The expression of OsZF8 affects R. solani rice infection. OsZF8 knockout and overexpressed rice plants were constructed, and the phenotypes of mutant and wild-type (WT) plants showed that OsZF8 negatively regulated rice resistance to rice sheath blight. However, it was speculated that OsZF8 plays a regulatory role at the protein level. The interacting protein PRB1 of OsZF8 was screened using the yeast two-hybrid and bimolecular fluorescence complementation test. The results showed that OsZF8 effectively inhibited PRB1-induced cell death in tobacco cells, and molecular docking results showed that PRB1 had a strong binding effect with OsZF8. Further, the binding ability of OsZF8-PRB1 to ergosterol was significantly reduced when compared with the PRB1 protein. These findings provide new insights into elucidating the mechanism of rice resistance to rice sheath blight.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oryza , Doenças das Plantas , Proteínas de Plantas , Rhizoctonia , Oryza/microbiologia , Oryza/genética , Oryza/metabolismo , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Rhizoctonia/patogenicidade , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Simulação de Acoplamento Molecular , Ligação Proteica , Ergosterol/metabolismo , Plantas Geneticamente Modificadas
4.
Bioorg Med Chem Lett ; 108: 129813, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788964

RESUMO

Succinate dehydrogenase inhibitors are essential fungicides used in agriculture. To explore new pyrazole-carboxamides with high fungicidal activity, a series of N-substitutedphenyl-3-di/trifluoromethyl-1-methyl-1H-pyrazole-4-carboxamides bearing a branched alkyl ether moiety were designed and synthesized. The in vitro bioassay indicated that some target compounds displayed appreciable fungicidal activity. For example, compounds 5d and 5e showed high efficacy against S. sclerotiorum with EC50 values of 3.26 and 1.52 µg/mL respectively, and also exhibited excellent efficacy against R. solani with EC50 values of 0.27 and 0.06 µg/mL respectively, which were comparable or superior to penflufen. The further in vivo bioassay on cucumber leaves demonstrated that 5e provided strong protective activity of 94.3 % against S. sclerotiorum at 100 µg/mL, comparable to penflufen (99.1 %). Cytotoxicity assessment against human renal cell lines (239A cell) revealed that 5e had low cytotoxicity within the median effective concentrations. Docking study of 5e with succinate dehydrogenase illustrated that R-5e formed one hydrogen bond and two π-π stacking interactions with amino acid residues of target enzyme, while S-5e formed only one π-π stacking interaction with amino acid residue. This study provides a valuable reference for the design of new succinate dehydrogenase inhibitor.


Assuntos
Fungicidas Industriais , Simulação de Acoplamento Molecular , Pirazóis , Succinato Desidrogenase , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Humanos , Relação Estrutura-Atividade , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ascomicetos/efeitos dos fármacos , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Dose-Resposta a Droga , Éteres/química , Éteres/farmacologia , Éteres/síntese química , Rhizoctonia
5.
Sci Rep ; 14(1): 11228, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755187

RESUMO

Antimicrobial resistance in fungal pathogens (both human and plant) is increasing alarmingly, leading to massive economic crises. The existing anti-fungal agents are becoming ineffective, and the situation worsens on a logarithmic scale. Novel antifungals from unique natural sources are highly sought to cope sustainably with the situation. Metabolites from endophytic microbes are the best-fitted alternatives in this case. Endophytes are the untapped sources of 'plants' internal microbial population' and are promising sources of effective bio-therapeutic agents. Fungal endophytes were isolated from Tropaeolum majus and checked for antifungal activity against selected plant and human pathogens. Bioactive metabolites were identified through chromatographic techniques. The mode of action of those metabolites was evaluated through various spectroscopic techniques. The production of antifungal metabolite was optimized also. In particular VOCs (volatile organic compounds) of TML9 were tested in vitro for their anti-phytopathogenic activity. Ethyl acetate (EA) extract of cell-free culture components of Colletotrichum aenigma TML3 exhibited broad-spectrum antifungal activity against four species of Candida and the major constituents reported were 6-pentyl-2H-pyran-2-one, 2-Nonanone, 1 propanol 2-amino. The volatile metabolites, trans-ocimene, geraniol, and 4-terpinyl acetate, produced from Curvularia lunata TML9, inhibited the growth of some selected phyto pathogens. EA extract hampered the biofilm formation, minimised the haemolytic effect, and blocked the transformation of Candida albicans (MTCC 4748) from yeast to hyphal form with a Minimum Fungicidal Concentration (MFC) of 200-600 µg mL-1. Central carbohydrate metabolism, ergosterol synthesis, and membrane permeability were adversely affected and caused the lethal leakage of necessary macromolecules of C. albicans. Volatile metabolites inhibited the growth of phytopathogens i.e., Rhizoctonia solani, Alternaria alternata, Botrytis cinerea, Cercospora beticola, Penicillium digitatum, Aspergillus fumigatus, Ceratocystis ulmi, Pythium ultimum up to 89% with an IC50 value of 21.3-69.6 µL 50 mL-1 and caused leakage of soluble proteins and other intracellular molecules. Citrusy sweet odor volatiles of TML9 cultured in wheat-husk minimised the infections of Penicillium digitatum (green mold), in VOC-exposed sweet oranges (Citrus sinensis). Volatile and non-volatile antifungal metabolites of these two T. majus endophytes hold agricultural and pharmaceutical interests. Metabolites of TML3 have strong anti-Candida activity and require further assessment for therapeutic applications. Also, volatile metabolites of TML9 can be further studied as a source of antifungals. The present investigational outcomes bio-prospects the efficacy of fungal endophytes of Garden Nasturtium.


Assuntos
Antifúngicos , Endófitos , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/química , Antifúngicos/farmacologia , Antifúngicos/química , Endófitos/metabolismo , Endófitos/química , Testes de Sensibilidade Microbiana , Colletotrichum/efeitos dos fármacos , Fungos/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Humanos , Candida/efeitos dos fármacos
6.
J Agric Food Chem ; 72(20): 11308-11320, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720452

RESUMO

The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 µg/mL that was superior to that of the agricultural fungicide boscalid (2.2 µg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 µM that was superior to that of boscalid (7.9 µM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Fungicidas Industriais , Oximas , Pirazóis , Succinato Desidrogenase , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Relação Estrutura-Atividade , Oximas/química , Oximas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Rhizoctonia/efeitos dos fármacos , Éteres/química , Éteres/farmacologia , Estrutura Molecular
7.
J Agric Food Chem ; 72(17): 9599-9610, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646697

RESUMO

In the search for novel succinate dehydrogenase inhibitor (SDHI) fungicides to control Rhizoctonia solani, thirty-five novel pyrazole-4-carboxamides bearing either an oxime ether or an oxime ester group were designed and prepared based on the strategy of molecular hybridization, and their antifungal activities against five plant pathogenic fungi were also investigated. The results indicated that the majority of the compounds containing oxime ether demonstrated outstanding in vitro antifungal activity against R. solani, and some compounds also displayed pronounced antifungal activities against Sclerotinia sclerotiorum and Botrytis cinerea. Particularly, compound 5e exhibited the most promising antifungal activity against R. solani with an EC50 value of 0.039 µg/mL, which was about 20-fold better than that of boscalid (EC50 = 0.799 µg/mL) and 4-fold more potent than fluxapyroxad (EC50 = 0.131 µg/mL). Moreover, the results of the detached leaf assay showed that compound 5e could suppress the growth of R. solani in rice leaves with significant protective efficacies (86.8%) at 100 µg/mL, superior to boscalid (68.1%) and fluxapyroxad (80.6%), indicating promising application prospects. In addition, the succinate dehydrogenase (SDH) enzymatic inhibition assay revealed that compound 5e generated remarkable SDH inhibition (IC50 = 2.04 µM), which was obviously more potent than those of boscalid (IC50 = 7.92 µM) and fluxapyroxad (IC50 = 6.15 µM). Furthermore, SEM analysis showed that compound 5e caused a remarkable disruption to the characteristic structure and morphology of R. solani hyphae, resulting in significant damage. The molecular docking analysis demonstrated that compound 5e could fit into the identical binding pocket of SDH through hydrogen bond interactions as well as fluxapyroxad, indicating that they had a similar antifungal mechanism. The density functional theory and electrostatic potential calculations provided useful information regarding electron distribution and electron transfer, which contributed to understanding the structural features and antifungal mechanism of the lead compound. These findings suggested that compound 5e could be a promising candidate for SDHI fungicides to control R. solani, warranting further investigation.


Assuntos
Botrytis , Fungicidas Industriais , Oximas , Doenças das Plantas , Pirazóis , Rhizoctonia , Succinato Desidrogenase , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Pirazóis/farmacologia , Pirazóis/química , Relação Estrutura-Atividade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Oximas/química , Oximas/farmacologia , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/química , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
8.
Microb Biotechnol ; 17(4): e14441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568774

RESUMO

Rhizoctonia solani is a polyphagous necrotrophic fungal pathogen that causes sheath blight disease in rice. It deploys effector molecules as well as carbohydrate-active enzymes and enhances the production of reactive oxygen species for killing host tissues. Understanding R. solani ability to sustain growth under an oxidative-stress-enriched environment is important for developing disease control strategies. Here, we demonstrate that R. solani upregulates methionine biosynthetic genes, including Rs_MET13 during infection in rice, and double-stranded RNA-mediated silencing of these genes impairs the pathogen's ability to cause disease. Exogenous treatment with methionine restores the disease-causing ability of Rs_MET13-silenced R. solani and facilitates its growth on 10 mM H2O2-containing minimal-media. Notably, the Rs_MsrA gene that encodes methionine sulfoxide reductase A, an antioxidant enzyme involved in the repair of oxidative damage of methionine, is upregulated upon H2O2 treatment and also during infection in rice. Rs_MsrA-silenced R. solani is unable to cause disease, suggesting that it is important for the repair of oxidative damage in methionine during host colonization. We propose that spray-induced gene silencing of Rs_MsrA and designing of antagonistic molecules that block MsrA activity can be exploited as a drug target for effective control of sheath blight disease in rice.


Assuntos
Metionina Sulfóxido Redutases , Oryza , Rhizoctonia , Oryza/microbiologia , Metionina , Peróxido de Hidrogênio/farmacologia , Racemetionina/farmacologia , Doenças das Plantas/microbiologia
9.
Pol J Microbiol ; 73(1): 29-38, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437465

RESUMO

Fungal diseases form perforated disease spots in tobacco plants, resulting in a decline in tobacco yield and quality. The present study investigated the antagonistic effect of Bacillus subtilis CTXW 7-6-2 against Rhizoctonia solani, its ability to promote the growth of tobacco seedlings, and the expression of disease resistance-related genes for efficient and eco-friendly plant disease control. Our results showed that CTXW 7-6-2 had the most vigorous growth after being cultured for 96 h, and its rate of inhibition of R. solani growth in vitro was 94.02%. The volatile compounds produced by CTXW 7-6-2 inhibited the growth of R. solani significantly (by 96.62%). The fungal growthinhibition rate of the B. subtilis CTXW 7-6-2 broth obtained after high-temperature and no-high-temperature sterile fermentation was low, at 50.88% and 54.63%, respectively. The lipopeptides extracted from the B. subtilis CTXW 7-6-2 fermentation broth showed a 74.88% fungal growth inhibition rate at a concentration of 100 mg/l. Scanning and transmission electron microscopy showed some organelle structural abnormalities, collapse, shrinkage, blurring, and dissolution in the R. solani mycelia. In addition, CTXW 7-6-2 increased tobacco seedling growth and improved leaf and root weight compared to the control. After CTXW 7-6-2 inoculation, tobacco leaves showed the upregulation of the PDF1.2, PPO, and PAL genes, which are closely related to target spot disease resistance. In conclusion, B. subtilis CTXW 7-6-2 may be an efficient biological control agent in tobacco agriculture and enhance plant growth potential.


Assuntos
Bacillus subtilis , Nicotiana , Bacillus subtilis/genética , Resistência à Doença , Rhizoctonia
10.
Arch Virol ; 169(1): 15, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163823

RESUMO

Rhizoctonia solani endornavirus 8 (RsEV8) was isolated from strain XY175 of Rhizoctonia solani AG-1 IA. The full-length genome of RsEV8 is 16,147 nucleotides (nt) in length and contains a single open reading frame that encodes a large polyprotein of 5227 amino acids. The polyprotein contains four conserved domains: viral methyltransferase, putative DEAH box helicase, viral helicase, and RNA-dependent RNA polymerase (RdRp). RsEV8 has a shorter 3'-UTR (58 nt) and a longer 5'-UTR (404 nt). A multiple sequence alignment indicated that the RdRp of RsEV8 possesses eight typical RdRp motifs. According to a BLASTp analysis, RsEV8 shares 39.31% sequence identity with Rhizoctonia cerealis endornavirus-1084-7. Phylogenetic analysis demonstrated that RsEV8 clusters with members of the genus Betaendornavirus.


Assuntos
Micovírus , Vírus de RNA , Filogenia , Genoma Viral , Rhizoctonia/genética , RNA Polimerase Dependente de RNA/genética , Poliproteínas/genética , Fases de Leitura Aberta , RNA Viral/genética
11.
Int J Biol Macromol ; 259(Pt 2): 129278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211905

RESUMO

This study aimed to develop microencapsulation technology using alginate to improve the viability and performance of Trichoderma harzianum. The method of ionic gelation was used to prepare the microparticles, and the efficiency of encapsulation was estimated to be 99%. The average size of the prepared microspheres was 2600 µm (wet) and 1000 µm (dry). Scanning electron microscopy revealed that the microspheres were approximately spherical. Fourier transform infrared spectrophotometer analysis indicated an interaction between T. harzianum and the microspheres. The results of temperature resistance and light stability against ultraviolet radiation emphasized the positive impact of microencapsulation in improving the viability and resistance of T. harzianum compared to the non-microencapsulated state. The disease percentage of Rhizoctonia solani and Sclerotinia sclerotiorum in plants treated with microencapsulated T. harzianum microcapsules was 8.88 % and 20 % respectively, but in the control group was 73.33 % (p ≤ 0.05).


Assuntos
Ascomicetos , Hypocreales , Rhizoctonia , Solanum lycopersicum , Trichoderma , Alginatos , Raios Ultravioleta , Doenças das Plantas/prevenção & controle
12.
Pest Manag Sci ; 80(4): 2170-2178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38284497

RESUMO

BACKGROUND: Rhizoctonia solani Kühn is a pathogenic fungus causing tobacco target spot disease, and leads to great losses worldwide. At present, resistant varieties and effective control strategy on tobacco target spot disease are very limited. Host-induced gene silencing (HIGS) as well as the exogenous dsRNA can be used to suppress disease progression, and reveal the function of crucial genes involved in the growth and pathogenesis of the fungus. RESULTS: The silencing of endoPGs or RPMK1 in host plants by TRV-based HIGS resulted in a significant reduction in disease development in Nicotiana benthamiana. In vitro analysis validated that red fluorescence signals were consistently observed in the hyphae treated with Cy3-fluorescein-labeled dsRNA at 12, 24, 48 and 72 h postinoculation (hpi). Additionally, application of dsRNA-endoPGs, dsRNA-RPMK1 and dsRNA-PGMK (fusion of partial endoPGs and RPMK1 sequences) effectively inhibited the hyphal growth of R. solani YC-9 in vitro and suppressed disease progression in the leaves, and quantitative real-time PCR confirmed that the application of dsRNAs significantly reduced the expression levels of endoPGs and RPMK1. CONCLUSION: These results provide theoretical basis and new direction for RNAi approaches on the prevention and control of disease caused by R. solani. © 2024 Society of Chemical Industry.


Assuntos
Nicotiana , RNA de Cadeia Dupla , Nicotiana/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Rhizoctonia , Progressão da Doença
13.
Mol Plant Pathol ; 25(1): e13397, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37902589

RESUMO

Rhizoctonia solani AG-1 IA causes a necrotrophic rice disease and is a serious threat to rice production. To date, only a few effectors have been characterized in AG-1 IA. We previously identified RsIA_CtaG/Cox11 and showed that infiltration of the recombinant protein into rice leaves caused disease-like symptoms. In the present study, we further characterized the functionality of RsIA_CtaG/Cox11. RsIA_CtaG/Cox11 is an alternative transcript of cytochrome c oxidase copper chaperone Cox11 that starts from the second AUG codon, but contains a functional secretion signal peptide. RNA interference with RsIA_CtaG/Cox11 reduced the pathogenicity of AG-1 IA towards rice and Nicotiana benthamiana without affecting its fitness or mycelial morphology. Transient expression of the RsIA_CtaG/Cox11-GFP fusion protein demonstrated the localization of RsIA_CtaG/Cox11 to mitochondria. Agro-infiltration of RsIA_CtaG/Cox11 into N. benthamiana leaves inhibited cell death by BAX and INF1. In contrast to rice, agro-infiltration of RsIA_CtaG/Cox11 did not induce cell death in N. benthamiana. However, cell death was observed when it was coinfiltrated with Os_CoxVIIa, which encodes a subunit of cytochrome c oxidase. Os_CoxVIIa appeared to interact with RsIA_CtaG/Cox11. The cell death triggered by coexpression of RsIA_CtaG/Cox11 and Os_CoxVIIa is independent of the leucine-rich repeat receptor kinases BAK1/SOBIR1 and enhanced the susceptibility of N. benthamiana to AG-1 IA. Two of the three evolutionarily conserved cysteine residues at positions 25 and 126 of RsIA_CtaG/Cox11 were essential for its immunosuppressive activity, but not for cell death induction. This report suggests that RsIA_CtaG/Cox11 appears to have a dual role in immunosuppression and cell death induction during pathogenesis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Oryza , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oryza/genética , Oryza/metabolismo , Mitocôndrias/metabolismo , Rhizoctonia/genética , Rhizoctonia/metabolismo , Imunidade Vegetal/genética , Morte Celular , Doenças das Plantas/genética
14.
Pestic Biochem Physiol ; 197: 105681, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072538

RESUMO

Rhizoctonia solani is a widespread and devastating plant pathogenic fungus that infects many important crops. This pathogen causes tobacco target spot, a disease that is widespread in many tobacco-growing countries and is destructive to tobacco. To identify antagonistic microorganisms with biocontrol potential against this disease, we isolated Streptomyces strains from forest inter-root soil and screened a promising biocontrol strain, ZZ-21. Based on in vitro antagonism assays, ZZ-21 showed a significant inhibitory effect on R. solani and various other phytopathogens. ZZ-21 was identified as Streptomyces olivoreticuli by its phenotypic, genetic, physiological and biochemical properties. Complete genome sequencing revealed that ZZ-21 harbored numerous antimicrobial biosynthesis gene clusters. ZZ-21 significantly reduced the lesion length in detached inoculated leaf assays and reduced the disease index under greenhouse and field conditions. Based on an in vitro antagonistic assay of ZZ-21 culture, the strain exhibited an antifungal activity against R. solani in a dose-dependent manner. The culture filtrate could impair membrane integrity, possibly through membrane lipid peroxidation. ZZ-21 could secrete multiple extracellular enzymes and siderophores. According to a series of antifungal assays, the extracellular metabolites of ZZ-21 contained antimicrobial bioactive compounds composed of proteins/peptides extracted using ammonium sulfate precipitation, which were stable under stress caused by high temperature and protease K. The EC50 value for ammonium sulfate precipitation was determined to be 21.11 µg/mL in this study. Moreover, the proteins/peptides also exhibited biocontrol ability and were observed to alter the plasma membrane integrity of R. solani which were evaluated by biocontrol efficacy assays on detached tobacco leaves and PI staining. Overall, strain ZZ-21 shows the potential to be developed into a biopesticide against tobacco target spot disease.


Assuntos
Antifúngicos , Streptomyces , Antifúngicos/farmacologia , Sulfato de Amônio/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Rhizoctonia , Nicotiana , Peptídeos/farmacologia
15.
Pestic Biochem Physiol ; 197: 105682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072539

RESUMO

High-performance pesticide formulations are essential for sustainable agriculture. Among these, nano-pesticides exhibit great advantages in pest control because of their unique size effects. However, the direct effects of nano-formulation fungicides on fungal pathogens remain largely unexplored. In this study, three qualified formulations, suspension concentrate (SC), microcapsules (CS), and nanocapsules (NCS) of pyraclostrobin (PYR) were prepared and utilized to reveal their biocontrol activities against Rhizoctonia solani. Among these three formulations, NCS exhibited notable biocontrol efficacy against R. solani exemplified by an EC50 of 0.319 mg/L for mycelia, distortion of mycelia and abnormalities in cell ultrastructure. Moreover, NCS displayed excellent internalization within R. solani mycelia, contributing to severe damage to cell membrane permeability. Importantly, an equivalent quantity of NCS-PYR showed potent inhibitory effects on the target pathogen, as indicated by reduced adenosine triphosphate (ATP) content and mitochondrial Complex III activity. The NCS consistently exhibited superior in vivo protective and curative activities against R. solani compared to those of CS and SC in rice and faba bean. In summary, we uncovered the strength of rapid efficacy and biocontrol activity of NCS against R. solani and elucidated the advantages of NCS-PYR from the perspective of the target pathogen in agriculture.


Assuntos
Nanocápsulas , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Rhizoctonia
16.
Sci Rep ; 13(1): 19823, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963959

RESUMO

Environmental pollution due to the improper use of the chemical fungicides represents a vital ecological problem, which affects human and animal health, as well as the microbial biodiversity and abundance in the soil. In this study, an endophytic fungus Aspergillus oryzae YRA3, isolated from the wild plant Atractylis carduus (Forssk.) C.Chr, was tested for its biocontrol activity against Rhizoctonia root rot of sorghum. The antagonistic potential of A. oryzae YRA3 was tested against Rhizoctonia solani in vitro. A full inhibition in the growth of R. solani was recorded indicating a strong antagonistic potential for this endophyte. To investigate the chemical composition of its metabolites, GC/MS analysis was used and thirty-two compounds in its culture filtrate were identified. Among these metabolites, some compounds with an antifungal background were detected including palmitic acid, 2-heptanone, and 2,3-butanediol. To these antifungal metabolites the antagonistic activity of A. oryzae YRA3 can be attributed. In the greenhouse experiment, treating of the infected sorghum plants with A. oryzae YRA3 significantly reduced severity of the Rhizoctonia root rot by 73.4%. An upregulation of the defensive genes (JERF3), (POD) and (CHI II) was recorded in sorghum roots when were inoculated with A. oryzae YRA3. In addition, an increment in the activity of peroxidase and polyphenol oxidase, as well as the total phenolic content in the sorghum roots was also recorded. Furthermore, the results obtained from the greenhouse experiment revealed a growth-promoting effect for inoculating the sorghum plants with A. oryzae YRA3. It can be concluded that A. oryzae YRA3 can be a probable biological agent to control this disease in sorghum. However, its evaluation under field conditions is highly needed in the future studies.


Assuntos
Aspergillus oryzae , Sorghum , Animais , Humanos , Antifúngicos/farmacologia , Endófitos/fisiologia , Sorghum/metabolismo , Antioxidantes/farmacologia , Aspergillus oryzae/metabolismo , Transcriptoma , Rhizoctonia/fisiologia , Grão Comestível/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
17.
Viruses ; 15(10)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896865

RESUMO

Rhizoctonia solani virus717 (RhsV717) was isolated from the Rhizoctonia solani (R. solani) AG-2 strain Rhs717. This study isolated a virus designated as Rhizoctonia solani partitivirus BS-5 (RsPV-BS5) from the R. solani AG-3 strain BS-5, the causal agent of tobacco target spot disease. The virus was identified as a strain of RhsV717. Transmission electron microscopy (TEM) images showed that RsPV-BS5 had virus particles with a diameter of approximately 40 nm. Importantly, it can be horizontally transmitted through hyphal anastomosis and vertically transmitted via sexual basidiospores. Furthermore, this study demonstrated that RsPV-BS5 infection significantly impedes mycelial growth and induces hypovirulence in tobacco leaves. Thus, RsPV-BS5 presents a promising avenue for biocontrolling tobacco target spot disease. Transcriptome analysis unveiled differential expression of four genes related to cell wall-degrading enzymes between two isogenic strains, 06-2-15V and 06-2-15. These findings shed light on the molecular mechanism through which RsPV-BS5 reduces host pathogenicity.


Assuntos
Micovírus , Vírus de RNA , Micovírus/genética , Vírus de RNA/genética , Rhizoctonia , Nicotiana
18.
BMC Plant Biol ; 23(1): 403, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620786

RESUMO

BACKGROUND: The spreading of root rot disease of faba bean plant (Vichia faba L, VF) in Egypt is still of great challenge faced researchers since VF is an important legume in Egypt, because their seeds are used for human feeding. Fungicides are used for treatment of either seeds or soil; unfortunately they cause environmental pollution. Therefore, there is a need to continue research to find out safe natural solutions. In this regard, Arbuscular mycorrhizal fungi (AMF) and chitosan (micro or nanoform) were used as an inhibitory product against Rhizoctonia solani OM918223 (R.solani) either singly or in combinations. RESULTS: The results employed herein have exhibited that R.solani caused root rot disease of VF plants in more than 80% of the plants under investigation. Chitosan nanoparticles (Chitosan NPs) were prepared by ionic gelatin method and characterized by using dynamic light scattering (DLS), transmission electron microscopy (TEM) imaging and Fourier transform infra-red (FTIR). Chitosan NPs are spherical with a diameter of 78.5 nm and exhibited the presence of different functional groups. The inhibitory natural products against R.solani were arranged according to their ability to inhibit the pathogen used in the following descending manner; combination of AMF with Chitosan NPs, AMF with micro chitosan and single AMF, respectively. Where, Chitosan NPs showed a potent influence on R.solani pathogen and reduced the pre-and post-emergence of R. solani. In addition, Chitosan NPs reduced Disease Incidence (DI %) and Disease Severity (DS %) of root rot disease and are widely functional through mixing with AMF by about 88% and 89%. Further, Chitosan NPs and micro chitosan were proved to increase the growth parameters of VF plants such as nutritional status (mineral, soluble sugar, and pigment content), and defense mechanisms including total phenol, peroxidase, and polyphenol oxidase in mycorrhizal plants more than non-mycorrhizal one either in infected or healthy plants. Moreover, activity of AMF as an inhibitory against R.solani and improvement natural agent for VF growth parameters was enhanced through its fusing with Chitosan NPs. CONCLUSIONS: The use of AMF and Chitosan NPs increased faba bean plant resistance against the infection of root rot R. solani, with both prevention and cure together. Therefore, this research opens the door to choose natural and environmental friendly treatments with different mechanisms of plant resistance to disease.


Assuntos
Quitosana , Micorrizas , Vicia faba , Humanos , Rhizoctonia
19.
J Basic Microbiol ; 63(11): 1293-1304, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37310378

RESUMO

A decline in common bean production and the ineffectiveness of synthetic chemical products in managing plant pathogens has led to exploiting Kenyan soda lakes as an alternative search for biocontrol agents. This study aimed to identify phylogenetically Bacillus spp. from Lake Magadi and their antagonistic activity against Rhizoctonia solani under in vitro and in vivo conditions. The 16 S ribosomal RNA (rRNA) subunit sequences of six bacterial strains isolated from Lake Magadi showed diversity similar to the Bacillus genus; Bacillus velezensis, Bacillus subtilis, and Bacillus pumilus. In vitro, antagonism showed varied mycelium inhibition rates of fungi in the coculture method. Enzymatic assays showed the varied ability of isolates to produce phosphatase, pectinase, chitinase, protease, indole-3-acetic acid (IAA), and hydrogen cyanide (HCD). The in vivo assay showed M09 (B. velezensis) with the lowest root mortality and incidence of postemergence wilt. Pre-emergence wilt incidence was recorded as lowest in M10 (B. subtilis). Isolate M10 had the highest phenylalanine ammonia-lyase (PAL) for defense enzymes, while polyphenol oxidase (PPO) and peroxidase were recorded as highest in M09. For the phenolic content, M10 recorded the highest phenolic content. In conclusion, Lake Magadi harbors Bacillus spp, which can be used as a potential biocontrol of R. solani.


Assuntos
Bacillus , Phaseolus , Quênia , Lagos , Bacillus/genética , Bacillus subtilis/genética , Rhizoctonia/fisiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
20.
J Agric Food Chem ; 71(24): 9255-9265, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37283465

RESUMO

A series of novel pyrazole-4-carboxamides bearing an ether group were designed and synthesized on the basis of the structure of commercial succinate dehydrogenase inhibitor (SDHI) fungicide flubeneteram via scaffold hopping and evaluated for their antifungal activities against five fungi. The bioassay results showed that most of the target compounds exhibited excellent in vitro antifungal activity against Rhizoctonia solani and some compounds exerted remarkable antifungal activities against Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium graminearum, and Alternaria alternate. Particularly, compounds 7d and 12b displayed outstanding antifungal activity against R. solani, with an EC50 value of 0.046 µg/mL, far superior to that of boscalid (EC50 = 0.741 µg/mL) and fluxapyroxad (EC50 = 0.103 µg/mL). Meanwhile, compound 12b also presented a broader fungicidal spectrum than other compounds. Moreover, in vivo anti-R. solani results showed that compounds 7d and 12b could significantly inhibit the growth of R. solani in rice leaves with excellent protective and curative efficacies. In addition, the results of the succinate dehydrogenase (SDH) enzymatic inhibition assay showed that compound 7d generated significant SDH inhibition, with an IC50 value of 3.293 µM, which was about 2 times better than that of boscalid (IC50 = 7.507 µM) and fluxapyroxad (IC50 = 5.991 µM). Furthermore, scanning electron microscopy (SEM) analysis indicated that compounds 7d and 12b significantly destroyed the typical structure and morphology of R. solani hyphae. The molecular docking study revealed that compounds 7d and 12b could embed into the binding pocket of SDH and form hydrogen bond interactions with TRP173 and TRY58 at the activity site of SDH, which was in line with fluxapyroxad, indicating that they had a similar mechanism of action. These results demonstrated that compounds 7d and 12b could be promising candidates of SDHI fungicides, which deserved further investigation.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/farmacologia , Antifúngicos/química , Relação Estrutura-Atividade , Éter , Succinato Desidrogenase , Simulação de Acoplamento Molecular , Fungicidas Industriais/química , Rhizoctonia , Pirazóis/farmacologia , Pirazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA