Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Agric Food Chem ; 72(20): 11308-11320, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720452

RESUMO

The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 µg/mL that was superior to that of the agricultural fungicide boscalid (2.2 µg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 µM that was superior to that of boscalid (7.9 µM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Fungicidas Industriais , Oximas , Pirazóis , Succinato Desidrogenase , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Relação Estrutura-Atividade , Oximas/química , Oximas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Rhizoctonia/efeitos dos fármacos , Éteres/química , Éteres/farmacologia , Estrutura Molecular
2.
Sci Rep ; 14(1): 11228, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755187

RESUMO

Antimicrobial resistance in fungal pathogens (both human and plant) is increasing alarmingly, leading to massive economic crises. The existing anti-fungal agents are becoming ineffective, and the situation worsens on a logarithmic scale. Novel antifungals from unique natural sources are highly sought to cope sustainably with the situation. Metabolites from endophytic microbes are the best-fitted alternatives in this case. Endophytes are the untapped sources of 'plants' internal microbial population' and are promising sources of effective bio-therapeutic agents. Fungal endophytes were isolated from Tropaeolum majus and checked for antifungal activity against selected plant and human pathogens. Bioactive metabolites were identified through chromatographic techniques. The mode of action of those metabolites was evaluated through various spectroscopic techniques. The production of antifungal metabolite was optimized also. In particular VOCs (volatile organic compounds) of TML9 were tested in vitro for their anti-phytopathogenic activity. Ethyl acetate (EA) extract of cell-free culture components of Colletotrichum aenigma TML3 exhibited broad-spectrum antifungal activity against four species of Candida and the major constituents reported were 6-pentyl-2H-pyran-2-one, 2-Nonanone, 1 propanol 2-amino. The volatile metabolites, trans-ocimene, geraniol, and 4-terpinyl acetate, produced from Curvularia lunata TML9, inhibited the growth of some selected phyto pathogens. EA extract hampered the biofilm formation, minimised the haemolytic effect, and blocked the transformation of Candida albicans (MTCC 4748) from yeast to hyphal form with a Minimum Fungicidal Concentration (MFC) of 200-600 µg mL-1. Central carbohydrate metabolism, ergosterol synthesis, and membrane permeability were adversely affected and caused the lethal leakage of necessary macromolecules of C. albicans. Volatile metabolites inhibited the growth of phytopathogens i.e., Rhizoctonia solani, Alternaria alternata, Botrytis cinerea, Cercospora beticola, Penicillium digitatum, Aspergillus fumigatus, Ceratocystis ulmi, Pythium ultimum up to 89% with an IC50 value of 21.3-69.6 µL 50 mL-1 and caused leakage of soluble proteins and other intracellular molecules. Citrusy sweet odor volatiles of TML9 cultured in wheat-husk minimised the infections of Penicillium digitatum (green mold), in VOC-exposed sweet oranges (Citrus sinensis). Volatile and non-volatile antifungal metabolites of these two T. majus endophytes hold agricultural and pharmaceutical interests. Metabolites of TML3 have strong anti-Candida activity and require further assessment for therapeutic applications. Also, volatile metabolites of TML9 can be further studied as a source of antifungals. The present investigational outcomes bio-prospects the efficacy of fungal endophytes of Garden Nasturtium.


Assuntos
Antifúngicos , Endófitos , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/química , Antifúngicos/farmacologia , Antifúngicos/química , Endófitos/metabolismo , Endófitos/química , Testes de Sensibilidade Microbiana , Colletotrichum/efeitos dos fármacos , Fungos/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Humanos , Candida/efeitos dos fármacos
3.
J Agric Food Chem ; 72(17): 9599-9610, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646697

RESUMO

In the search for novel succinate dehydrogenase inhibitor (SDHI) fungicides to control Rhizoctonia solani, thirty-five novel pyrazole-4-carboxamides bearing either an oxime ether or an oxime ester group were designed and prepared based on the strategy of molecular hybridization, and their antifungal activities against five plant pathogenic fungi were also investigated. The results indicated that the majority of the compounds containing oxime ether demonstrated outstanding in vitro antifungal activity against R. solani, and some compounds also displayed pronounced antifungal activities against Sclerotinia sclerotiorum and Botrytis cinerea. Particularly, compound 5e exhibited the most promising antifungal activity against R. solani with an EC50 value of 0.039 µg/mL, which was about 20-fold better than that of boscalid (EC50 = 0.799 µg/mL) and 4-fold more potent than fluxapyroxad (EC50 = 0.131 µg/mL). Moreover, the results of the detached leaf assay showed that compound 5e could suppress the growth of R. solani in rice leaves with significant protective efficacies (86.8%) at 100 µg/mL, superior to boscalid (68.1%) and fluxapyroxad (80.6%), indicating promising application prospects. In addition, the succinate dehydrogenase (SDH) enzymatic inhibition assay revealed that compound 5e generated remarkable SDH inhibition (IC50 = 2.04 µM), which was obviously more potent than those of boscalid (IC50 = 7.92 µM) and fluxapyroxad (IC50 = 6.15 µM). Furthermore, SEM analysis showed that compound 5e caused a remarkable disruption to the characteristic structure and morphology of R. solani hyphae, resulting in significant damage. The molecular docking analysis demonstrated that compound 5e could fit into the identical binding pocket of SDH through hydrogen bond interactions as well as fluxapyroxad, indicating that they had a similar antifungal mechanism. The density functional theory and electrostatic potential calculations provided useful information regarding electron distribution and electron transfer, which contributed to understanding the structural features and antifungal mechanism of the lead compound. These findings suggested that compound 5e could be a promising candidate for SDHI fungicides to control R. solani, warranting further investigation.


Assuntos
Botrytis , Fungicidas Industriais , Oximas , Doenças das Plantas , Pirazóis , Rhizoctonia , Succinato Desidrogenase , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Pirazóis/farmacologia , Pirazóis/química , Relação Estrutura-Atividade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Oximas/química , Oximas/farmacologia , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/química , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
4.
Eur J Med Chem ; 227: 113912, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34653771

RESUMO

The diversity of drimane hydroquinones was significantly expanded by the facile construction of (+)-chromazonarol relevant natural products, isomers, and analogues for the discovery of new pharmaceutical leads. The structure-activity relationship of (+)-chromazonarol relevant (non)-natural products was delineated via the synergistic interaction of the programmable synthesis and bioactivity-guided screening. The first divergent derivatization of (+)-chromazonarol demonstrated that the phenolic hydroxyl group is one inviolable requirement for antifungal effect. Pinpoint modification of (+)-yahazunol manifested the position of hydroxyl group was crucial for both antifungal and antitumor activities. (+)-Albaconol, (+)-neoalbaconol, and two (+)-yahazunol isomers (24 and 25) proved to be the novel pharmaceutical leads. The probable macromolecular targets were estimated to deliver new information about the biological potentials resident in (+)-yahazunol relevant products. This work also featured the first synthesis of (+)-albaconol and (+)-neoalbaconol, the first biological exploration of (+)-dictyvaric acid and improved preparation of (+)-8-epi-puupehedione and a promising pelorol analogue.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Xantenos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Xantenos/síntese química , Xantenos/química
5.
Chem Biodivers ; 18(12): e2100633, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34643056

RESUMO

The increasing resistance of plant diseases caused by phytopathogenic fungi highlights the need for highly effective and environmentally benign agents. The antifungal activities of Cnidium monnieri fruit extracts and five isolated compounds as well as structurally related coumarins against five plant pathogenic fungi were evaluated. The acetone extract, which contained the highest amount of five coumarins, showed strongest antifungal activity. Among the coumarin compounds, we found that 4-methoxycoumarin exhibited stronger and broader antifungal activity against five phytopathogenic fungi, and was more potent than osthol. Especially, it could significantly inhibit the growth of Rhizoctonia solani mycelium with an EC50 value of 21 µg mL-1 . Further studies showed that 4-methoxycoumarin affected the structure and function of peroxisomes, inhibited the ß-oxidation of fatty acids, decreased the production of ATP and acetyl coenzyme A, and then accumulated ROS by damaging MMP and the mitochondrial function to cause the cell death of R. solani mycelia. 4-Methoxycoumarin presented antifungal efficacy in a concentration- dependent manner in vivo and could be used to prevent the potato black scurf. This study laid the foundation for the future development of 4-methoxycournamin as an alternative and friendly biofungicide.


Assuntos
Antifúngicos/farmacologia , Cnidium/química , Cumarínicos/farmacologia , Frutas/química , Rhizoctonia/efeitos dos fármacos , Acetilcoenzima A/antagonistas & inibidores , Acetilcoenzima A/biossíntese , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Antifúngicos/química , Antifúngicos/isolamento & purificação , Cumarínicos/química , Cumarínicos/isolamento & purificação , Ácidos Graxos/antagonistas & inibidores , Ácidos Graxos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Rhizoctonia/crescimento & desenvolvimento
6.
J Agric Food Chem ; 68(49): 14426-14437, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33216530

RESUMO

The pyrazole-4-carboxamide scaffold containing a flexible amide chain has emerged as the molecular skeleton of highly efficient agricultural fungicides targeting succinate dehydrogenase (SDH). Based on the above vital structural features of succinate dehydrogenase inhibitors (SDHI), three types of novel pyrazole-4-formylhydrazine derivatives bearing a diphenyl ether moiety were rationally conceived under the guidance of a virtual docking comparison between bioactive molecules and SDH. Consistent with the virtual verification results of a molecular docking comparison, the in vitro antifungal bioassays indicated that the skeleton structure of title compounds should be optimized as an N'-(4-phenoxyphenyl)-1H-pyrazole-4-carbohydrazide scaffold. Strikingly, N'-(4-phenoxyphenyl)-1H-pyrazole-4-carbohydrazide derivatives 11o against Rhizoctonia solani, 11m against Fusarium graminearum, and 11g against Botrytis cinerea exhibited excellent antifungal effects, with corresponding EC50 values of 0.14, 0.27, and 0.52 µg/mL, which were obviously better than carbendazim against R. solani (0.34 µg/mL) and F. graminearum (0.57 µg/mL) as well as penthiopyrad against B. cinerea (0.83 µg/mL). The relative studies on an in vivo bioassay against R. solani, bioactive evaluation against SDH, and molecular docking were further explored to ascertain the practical value of compound 11o as a potential fungicide targeting SDH. The present work provided a non-negligible complement for the structural optimization of antifungal leads targeting SDH.


Assuntos
Proteínas Fúngicas/antagonistas & inibidores , Fungicidas Industriais/química , Hidrazinas/química , Éteres Fenílicos/química , Pirazóis/química , Succinato Desidrogenase/antagonistas & inibidores , Botrytis/efeitos dos fármacos , Botrytis/enzimologia , Desenho de Fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/enzimologia , Hidrazinas/farmacologia , Simulação de Acoplamento Molecular , Éteres Fenílicos/farmacologia , Pirazóis/farmacologia , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/enzimologia , Relação Estrutura-Atividade , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo
7.
J Agric Food Chem ; 68(34): 9052-9060, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32806117

RESUMO

The low utilization rate of pesticides causes serious problems such as food safety and environmental pollution. Stimulus-responsive release can effectively improve the utilization rate of pesticides. Reactive oxygen species (ROS) burst, as an early event of plant-pathogen interaction, can stimulate the release of pesticides. In this work, a polymeric micelle with ROS-responsive was prepared and then Validamycin (Vail) was loaded into polymeric micelle to prepare Vail-loaded polymeric micelle. The Vail-loaded polymeric micelle displayed excellent ROS-dependent release kinetics. In vitro and in vivo antifungal experiments confirmed that the Vail-loaded polymeric micelle could improve antifungal efficacy against Rhizoctonia solani than with the Vail reagent. Therefore, as a biostimulation and controlled release system, ROS-responsive polymeric micelles can improve the utilization rate of pesticides and alleviate the problem of food safety and environmental pollution.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Fungicidas Industriais/química , Inositol/análogos & derivados , Polímeros/química , Espécies Reativas de Oxigênio/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Fungicidas Industriais/farmacologia , Inositol/química , Inositol/farmacologia , Cinética , Micelas , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento
8.
Anal Biochem ; 598: 113645, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105739

RESUMO

New lanthanide complexes (1-3) of the general formulae [Ln(L)(NO3)(H2O)] have been synthesized by reaction of Ln(NO3)3 {Ln = La (1), Sm (2) and Yb (3)} with 2,2'-(((1E,1'E)-thiophene-2,5-diylbis(methaneylylidene))bis(azaneylylidene))diphenol (H2L). Based on elemental analysis, spectroscopic studies (UV-Vis., FT-IR, ESI-MS, 1H/13C NMR), molar conductance and thermogravimetric analysis, the Schiff base ligand was suggested to coordinate Ln(III) ions through the azomethine nitrogens, deprotonated hydroxyl groups, and thiophene sulphur atom. The interaction of the synthetic compounds with CT-DNA has been studied by the electronic spectroscopy, fluorometric competition studies with ethidium bromide and DNA viscosity measurements. Furthermore, due to the ligand and its Ln(III) complexes exhibit good DNA binding affinity, it is considered worthwhile to investigate their antioxidant activity. The data have shown that, the complexes are more effective inhibitors towards reactive oxygen species (ROS), such as superoxide anion and hydroxyl radical. The activity of test compounds in ascending order (1) > (2) > (3) > H2L in terms of IC50 value. The anticancer activities of the complexes have also been studied towards human colon carcinoma cancer (HCT-116) and human breast cancer (MCF-7) cell lines.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , Elementos da Série dos Lantanídeos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Aspergillus flavus/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , DNA/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Elementos da Série dos Lantanídeos/química , Células MCF-7 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Superóxidos/antagonistas & inibidores , Viscosidade
9.
Microbiol Res ; 230: 126347, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31586859

RESUMO

Biocontrol has emerged in recent years as an alternative to pesticides. Given the importance of environmental preservation using biocontrol, in this study two antagonistic bacteria against phytopathogenic fungi were isolated and evaluated. These bacterial strains, identified as Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24, inhibited (70 to 80%) the development of two phytopathogens of economic importance: the fungus Rhizoctonia solani RhCh-14, isolated from chili pepper, and the oomycete Pythium ultimum PyFr-14, isolated from tomato. The spectrum was not limited to the previous pathogens, but also to other phytopathogenic fungus, some bacteria and other oomycetes. Fungi-bacteria microcultures observed with optical and scanning electron microscopy revealed hyphae disintegration and pores formation. The antifungal activity was found also in the supernatant, suggesting a diffusible compound is present. Innocuous tests on tobacco leaves, blood agar, bean seed germination and in Galleria mellonella larvae showed that strain NMA1017 has the potential to be a biocontrol agent. Greenhouse experiments with bean plants inoculated with P. polymyxa exhibited the efficacy to inhibit the growth of R. solani and P. ultimum. Furthermore, P. polymyxa NMA1017 showed plant growth promotion activities, such as siderophore synthesis and nitrogen fixation which can contribute to the crop development.


Assuntos
Antifúngicos/farmacologia , Burkholderia cenocepacia/química , Paenibacillus polymyxa/química , Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Pythium/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Antifúngicos/metabolismo , Burkholderia cenocepacia/metabolismo , Paenibacillus polymyxa/metabolismo , Pythium/crescimento & desenvolvimento , Pythium/fisiologia , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/fisiologia , Nicotiana/crescimento & desenvolvimento , Nicotiana/microbiologia
10.
Phytochemistry ; 148: 57-62, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29421511

RESUMO

The Asteraceae plant Ageratina adenophora (also called Eupatorium adenophorum) has became the most destructive invasive species in China, especially the southwestern region, and is gravely threatening the native biodiversity. Its high reproductive capacity is partly due to the developed root system. From the roots of A. adenophora, ten compounds including three previously undescribed benzofuran derivatives (7-hydroxy-dehydrotremetone, 7,10,11-trihydroxy dehydrotremetone, 10-oxo-7-hydroxy-nordehydrotremetone), a previously undescribed chromene derivative (5-ß-glucosyl-7-demethoxy-encecalin) and a previously undescribed monoterpene glucoside (8-hydroxy-8-ß-glucosyl-2-carene) were isolated and identified. The previously undescribed structures were established by spectroscopic studies including 1D and 2D-NMR and HR-MS analyses. Antifungal activity of six compounds against one strain of pathogenic fungus of A. adenophora, Alternaria alternata, and other four strains of agricultural pathogenic fungi, Colletotrichum gloeosporioides, C. musae, Rhizoctonia solani and Fusarium oxysporum f. sp. niveum were investigated. The most abundant compound we isolated from A. adenophora roots was 7-hydroxy-dehydrotremetone, which showed significant broad-spectral inhibitory activity against the growth of all tested fungal strains, with diameter of inhibitory zones ranging from 13.90 ±â€¯1.05 mm to 17.28 ±â€¯0.46 mm at 50 µg/disk (nystatin: 24.76 ±â€¯1.19 mm to 36.64 ±â€¯0.85 mm). Encecalin also showed weak inhibitory activity against F. oxysporum f. sp. niveum, while other compounds were not active. Our results suggested that 7-hydroxy-dehydrotremetone might function as a constitutive defense compound in the roots of A. adenophora against pathogenic fungi.


Assuntos
Ageratina/química , Alternaria , Antifúngicos/química , Antifúngicos/farmacologia , China , Fusarium/efeitos dos fármacos , Raízes de Plantas/química , Rhizoctonia/efeitos dos fármacos
11.
Bol. latinoam. Caribe plantas med. aromát ; 17(1): 30-35, ene. 2018. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-914997

RESUMO

Chemical characterization of the essential oils of two Lippia species by GC-MS and NMR spectroscopy revealed that limonene (84.3%) and ß-caryophyllene (6.1%) were the most abundant components in Lippia turbinata while (6S,7S,10S)-trans-davanone (99.1%) predominated in Lippia integrifolia. Antifungal activity of the essential oils was determined by headspace volatile exposure assay against the fungal phytopathogenic Sclerotinia sclerotiorum, Sclerotium rolfsii and Rhizoctonia solani. The essential oil of L. turbinata showed potent antifungal activity against the panel of fungi tested while that the oil of L. integrifolia significantly inhibited the mycelial growth of S. rolfsii and R. solani.


La caracterización química de los aceites esenciales de dos especies de Lippia por cromatografía gaseosa-espectrometría de masas (CG-EM) y espectroscopia de RMN reveló que limoneno (84,3%) y ß-cariofileno (6,1%) fueron los componentes más abundantes de Lippia turbinata mientras que (6S,7S,10S)-trans-davanona (99,1%) predominó en Lippia integrifolia. La actividad antifúngica de los aceites esenciales se determinó por el ensayo de exposición a los vapores frente a los hongos fitopatógenos Sclerotinia sclerotiorum, Sclerotium rolfsii y Rhizoctonia solani. El aceite esencial de L. turbinata mostró una potente actividad antifúngica frente al panel de hongos ensayados, mientras que el aceite de L. integrifolia inhibió significativamente el crecimiento micelial de S. rolfsii y R. solani.


Assuntos
Ascomicetos/efeitos dos fármacos , Óleos Voláteis/farmacologia , Lippia/química , Antifúngicos/farmacologia , Rhizoctonia/efeitos dos fármacos , Terpenos/análise , Óleos Voláteis/química , Espectroscopia de Ressonância Magnética , Cromatografia Gasosa-Espectrometria de Massas , Antifúngicos/química
12.
Microb Pathog ; 113: 218-224, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29074434

RESUMO

Serratia marcescens PRNK-1, which has strong chitinolytic activity, was isolated from cockroaches (Periplaneta americana L.). The chitinase from S. marcescens PRNK-1 was characterized after incubation in a 0.5% colloidal chitin medium at 30 °C for 3 days. The molecular weights of three bands after staining for chitinase activity were approximately 34, 41, and 48 kDa on an SDS-PAGE gel. S. marcescens PRNK-1 strain strongly inhibited hyphal growth of Rhizoctonia solani and Fusarium oxysporum. Thin-layer chromatography (TLC) and high performance liquid chromatograph (HPLC) analyses were conducted to investigate the degradation patterns of N-acetyl-chitooligosaccharides by PRNK-1 chitinase. The N-acetyl-chitooligosaccharides: N-acetyl-chitin dimer (GlcNAc)2, N-acetyl-chitin trimer (GlcNAc)3, and N-acetyl-chitin tetramer (GlcNAc)4 were degraded to (GlcNAc)1-3 on a TLC plate. In an additional experiment, (GlcNAc)6 was degraded to (GlcNAc)1-4 on a TLC plate. The optimal temperature for chitinase activity of the PRNK-1 was 50 °C, producing 32.8 units/mL. As seen via TLC, the highest degradation of (GlcNAc)4 by PRNK-1 chitinase occurred with 50 °C incubation. The optimal pH for chitinase activity of PRNK-1 was pH 5.5, producing 24.6 units/mL. As seen via TLC, the highest degradation of (GlcNAc)4 by PRNK-1 chitinase occurred at pH 5.0-6.0. These results indicate that chitinase produced from S. marcescens PRNK-1 strain showed strong antifungal activity and potential of production of N-acetyl-chitooligosaccharides.


Assuntos
Antifúngicos/farmacologia , Quitina/análogos & derivados , Quitinases/metabolismo , Quitinases/farmacologia , Serratia marcescens/enzimologia , Animais , Quitina/química , Quitina/metabolismo , Quitinases/química , Quitinases/isolamento & purificação , Quitosana , Baratas/microbiologia , Ensaios Enzimáticos , Estabilidade Enzimática , Fusarium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Metiltransferases , Peso Molecular , Oligossacarídeos , Filogenia , Rhizoctonia/efeitos dos fármacos , Serratia marcescens/classificação , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação , Temperatura
13.
Fitoterapia ; 123: 23-28, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28958956

RESUMO

A new chaetoglobosin, penochalasin K (1) bearing an unusual six-cyclic 6/5/6/5/6/13 fused ring system, along with the known analogues, chaetoglobosin C (2), penochalasin I (3), and chaetoglobosin A (4) were isolated from the solid culture of the mangrove endophytic fungus Penicillium chrysogenum V11. Their structures were elucidated by 1D, 2D NMR spectroscopic analysis and high resolution mass spectroscopic data. The absolute configuration of compound 1 was determined by comparing the theoretical and experimental electronic circular dichroism curves. Compound 1 displayed significant inhibitory activities against Colletotrichum gloeosporioides and Rhizoctonia solani (MICs=6.13, 12.26µM, respectively), which was better than those of carbendazim, and exhibited potent cytotoxicity against MDA-MB-435, SGC-7901 and A549 cells (IC50<10µM). An effective biomimetic transformation of chaetoglobosin C (2)/chaetoglobosin A (4) into penochalasin K (1)/penochalasin I (3) was developed, which provided a simple method for the semi-synthesis of chaetoglobosins with a six-cyclic 6/5/6/5/6/13 fused system formed by the connectivity of C-5 and C-2' from their corresponding epoxide analogues.


Assuntos
Alcaloides Indólicos/química , Penicillium chrysogenum/química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Linhagem Celular Tumoral , Colletotrichum/efeitos dos fármacos , Endófitos/química , Humanos , Alcaloides Indólicos/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Rhizoctonia/efeitos dos fármacos
14.
Genet Mol Res ; 16(1)2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28362991

RESUMO

Ocimum gratissimum L. or clove basil, belongs to the Lamiaceae family, has various desirable uses and applications. Beyond its aromatic, seasoning, and medicinal applications, this plant also has antimicrobial activity. This study was aimed at assessing the antifungal activity, yield, and composition of the essential oil (EO) of O. gratissimum. The species was cultivated in garden beds with dystrophic red latosol soil type containing high organic-matter content. The EO was obtained by hydrodistillation of dried leaves in a modified Clevenger apparatus, followed by determination of its content. Chemical characterization was carried out by gas chromatography-mass spectrometry (GC-MS). Microbial activity was assessed using the broth microdilution method, by determining the minimum inhibitory concentration (MIC), in order to compare the antimicrobial effect of EO in 10 isolates-Fusarium oxysporum f. sp tracheiphilum (CMM-0033), F. oxysporum f. sp. cubense (CMM-0813 and CMM-2819), F. oxysporum f. sp lycopersici (CMM-1104), F. solani (CMM-3828), Rhizoctonia solani (CMM-3274), and Macrophomina phaseolina (CMM-2715, CMM-3875, CMM-3615, and CMM-3650). The EO was a highly effective inhibitor of the studied phytopathogenic fungi, with MICs varying from 31.25 to 125 µg/mL. F. oxysporum f. sp lycopersici and R. solani were the most sensitive; both were inhibited at an MIC of 31.25 µg/mL. The EO content in the plant extract was 0.18%. Thirty chemical compounds were detected via GC-MS, with linalool (32.9%) being the major compound followed by 1,8-cineole (21.9%), both oxygenated monoterpenes. It can be concluded that clove basil EO is a highly effective antifungal agent, and therefore, a potential alternative for the control of plant pathogenic diseases.


Assuntos
Ascomicetos/efeitos dos fármacos , Fungos Mitospóricos/efeitos dos fármacos , Ocimum/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Ascomicetos/classificação , Fusarium/classificação , Fusarium/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Fungos Mitospóricos/classificação , Folhas de Planta/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Rhizoctonia/efeitos dos fármacos
15.
Pharm Biol ; 55(1): 590-595, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27937112

RESUMO

CONTEXT: Plants harbor endophytes with potential bioactivity. Markhamia tomentosa (Benth) K. Schum ex. Engl. (Bignoniaceae) is reported to possess antioxidant, anti-inflammatory and anticancer activities. OBJECTIVE: The antifungal and antiproliferative properties of endophytic fungi extracts and fractions from M. tomentosa were evaluated. MATERIAL AND METHODS: Endophytic fungi were isolated from the leaves of M. tomentosa and identified by ITS-rDNA sequence analysis. The antagonistic effect of the fungal strains was investigated against pathogenic fungi viz, Fusarium oxysporum, Sclerotinia sclerotiorium, Rhizoctonia solani, and Botrytis cinerea using the dual culture assay for 5-7 days. Antiproliferative effect of the fungal extracts and fractions (3.91-250 µg/mL) on HeLa cancer cell line was tested and IC50 was calculated. Poisoning food assay and antifeedant activity against the pathogenic fungi and Spodoptera litura larvae, for 7 days and 2 h, respectively, was also tested at concentrations of 250, 500 and 1000 µg/mL. RESULTS: Fungal endophytes Trichoderma longibrachiatum and Syncephalastrum racemosum were isolated from the leaves of M. tomentosa. Isolated endophytic fungal strains and solvent extracts showed MIC value of 1000 µg/mL against tested pathogenic fungi in the dual culture and poisoning food assays. Methanol fraction of S. racemosum isolate showed the most effective antiproliferative activity with IC50 of 43.56 µg/mL. Minimal feeding deterrent activity against S. litura larvae was also observed. DISCUSSION AND CONCLUSION: These findings showed that the leaves of Markhamia tomentosa harbor strains of endophytic fungi with promising health benefits, and suggest their antifungal and antiproliferative effects against pathogenic fungi and HeLa cancer cell line.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Bignoniaceae/microbiologia , Proliferação de Células/efeitos dos fármacos , Endófitos/metabolismo , Mucorales/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/microbiologia , Trichoderma/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antifúngicos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Bignoniaceae/química , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Endófitos/isolamento & purificação , Feminino , Fermentação , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Células HeLa , Humanos , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mucorales/isolamento & purificação , Fitoterapia , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Plantas Medicinais , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento , Fatores de Tempo , Trichoderma/isolamento & purificação , Neoplasias do Colo do Útero/patologia
16.
Appl Microbiol Biotechnol ; 101(3): 1073-1084, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27587300

RESUMO

Psc-AFP, isolated from the seeds of Psoralea corylifolia L., is an antimicrobial protein with trypsin inhibitor activity. Its encoding gene was cloned by 3'- rapid amplification of cDNA ends (RACE) combined with Y-shaped adaptor-dependent extension (YADE) method. The gene Psc-AFP encodes a protein of 203 amino acids with a deduced signal peptide of 24 residues. The growth inhibition effect exerted by the heterologously expressed Psc-AFP in Pichia pastoris revealed that the recombinant Psc-AFP inhibited mycelium growth of Aspergillus niger, Rhizoctonia solani, and Alternaria brassicae and conidial germination of Alternaria alternata. The recombinant Psc-AFP also showed protease inhibitor activity manifested by the inhibition of trypsin. The transgenic tobacco bioassays confirmed that overexpressing Psc-AFP significantly enhanced the disease resistance of tobacco and that some of the transgenic lines were almost fully tolerant to Ralstonia solanacearum and A. alternata, whereas no apparent alteration in plant growth and development was observed. Collectively, these results indicate that the recombinant Psc-AFP is an active antimicrobial protein, with protease inhibitor activity that can be successfully produced in the yeast and tobacco and, therefore, maybe a potential antimicrobial candidate for practical use.


Assuntos
Antifúngicos/farmacologia , Nicotiana/microbiologia , Pichia/genética , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Psoralea/genética , Sequência de Aminoácidos , Antifúngicos/química , Antifúngicos/isolamento & purificação , Aspergillus niger/efeitos dos fármacos , Clonagem Molecular , Biologia Computacional , Resistência à Doença , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Psoralea/anatomia & histologia , Psoralea/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Rhizoctonia/efeitos dos fármacos , Análise de Sequência de Proteína , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/farmacologia
17.
Nat Prod Res ; 30(16): 1875-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27498832

RESUMO

This work was aimed to evaluate the essential oil from root of medicinally important plant Senecio amplexicaulis for chemical composition, antifungal and phytotoxic activity. The chemical composition analysed by GC/GC-MS showed the presence of monoterpene hydrocarbons in high percentage with marker compounds as α-phellandrene (48.57%), o-cymene (16.80%) and ß-ocimene (7.61%). The essential oil exhibited significant antifungal activity against five phytopathogenic fungi, Sclerotium rolfsii, Macrophomina phaseolina, Rhizoctonia solani, Pythium debaryanum and Fusarium oxysporum. The oil demonstrated remarkable phytotoxic activity in tested concentration and significant reduction in seed germination percentage of Phalaris minor and Triticum aestivum at higher concentrations. The roots essential oil showed high yield for one of its marker compound (α-phellandrene) which makes it important natural source of this compound.


Assuntos
Antifúngicos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Senécio/química , Monoterpenos Acíclicos , Alcenos/análise , Altitude , Antifúngicos/química , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Monoterpenos Cicloexânicos , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Cromatografia Gasosa-Espectrometria de Massas , Germinação/efeitos dos fármacos , Índia , Monoterpenos/análise , Phalaris/efeitos dos fármacos , Phalaris/crescimento & desenvolvimento , Raízes de Plantas/química , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/patogenicidade , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
18.
Int J Mol Sci ; 16(7): 16216-41, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26193260

RESUMO

Metacaspases, a class of cysteine-dependent proteases like caspases in animals, are important regulators of programmed cell death (PCD) during development and stress responses in plants. The present study was focused on comprehensive analyses of expression patterns of the rice metacaspase (OsMC) genes in response to abiotic and biotic stresses and stress-related hormones. Results indicate that members of the OsMC family displayed differential expression patterns in response to abiotic (e.g., drought, salt, cold, and heat) and biotic (e.g., infection by Magnaporthe oryzae, Xanthomonas oryzae pv. oryzae and Rhizoctonia solani) stresses and stress-related hormones such as abscisic acid, salicylic acid, jasmonic acid, and 1-amino cyclopropane-1-carboxylic acid (a precursor of ethylene), although the responsiveness to these stresses or hormones varies to some extent. Subcellular localization analyses revealed that OsMC1 was solely localized and OsMC2 was mainly localized in the nucleus. Whereas OsMC3, OsMC4, and OsMC7 were evenly distributed in the cells, OsMC5, OsMC6, and OsMC8 were localized in cytoplasm. OsMC1 interacted with OsLSD1 and OsLSD3 while OsMC3 only interacted with OsLSD1 and that the zinc finger domain in OsMC1 is responsible for the interaction activity. The systematic expression and biochemical analyses of the OsMC family provide valuable information for further functional studies on the biological roles of OsMCs in PCD that is related to abiotic and biotic stress responses.


Assuntos
Caspases/metabolismo , Oryza/enzimologia , Oryza/fisiologia , Mapeamento de Interação de Proteínas , Estresse Fisiológico , Caspases/genética , Secas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Magnaporthe/efeitos dos fármacos , Magnaporthe/fisiologia , Oryza/genética , Oryza/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Regiões Promotoras Genéticas/genética , Transporte Proteico/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Temperatura , Xanthomonas/efeitos dos fármacos , Xanthomonas/fisiologia
19.
Nat Prod Commun ; 10(6): 1037-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26197546

RESUMO

The in vitro antifungal activity was determined of an ethanolic extract of Vitis vinifera L. tendrils (TVV) against ten plant pathogenic fungi, using the agar dilution method; activity was shown against all tested fungi. Fusarium species were the most sensitive with MIC values ranging from 250 to 300 ppm, while the basidiomycete fungus Rhizoctonia solani was the most resistant, with a MIC value of 500 ppm. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) was used to obtain qualitative information on the main components of TVV. The high amount of polyphenolic compounds contained in TVV is likely to contribute significantly to its antifungal activity.


Assuntos
Antifúngicos/farmacologia , Extratos Vegetais/farmacologia , Vitis/química , Antifúngicos/química , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Extratos Vegetais/química , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Espectrometria de Massas por Ionização por Electrospray
20.
Int J Mol Sci ; 16(4): 7861-75, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25860944

RESUMO

Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Emodina/análogos & derivados , Líquens/química , Extratos Vegetais/farmacologia , Antibacterianos/química , Antifúngicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Emodina/química , Emodina/farmacologia , Feminino , Humanos , Células MCF-7 , Extratos Vegetais/química , Rhizoctonia/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA