Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 158: 103956, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196906

RESUMO

ATP synthase plays an essential role in mitochondrial metabolism, being responsible for the production of ATP in oxidative phosphorylation. However, recent results have shown that it may also be present in the cell membrane, involved in lipophorin binding to its receptors. Here, we used a functional genetics approach to investigate the roles of ATP synthase in lipid metabolism in the kissing bug Rhodnius prolixus. The genome of R. prolixus encodes five nucleotide-binding domain genes of the ATP synthase α and ß family, including the α and ß subunits of ATP synthase (RpATPSynα and RpATPSynß), and the catalytic and non-catalytic subunits of the vacuolar ATPase (RpVha68 and RpVha55). These genes were expressed in all analyzed organsn highest in the ovaries, fat body and flight muscle. Feeding did not regulate the expression of ATP synthases in the posterior midgut or fat body. Furthermore, ATP synthase is present in the fat body's mitochondrial and membrane fractions. RpATPSynß knockdown by RNAi impaired ovarian development and reduced egg-laying by approximately 85%. Furthermore, the lack of RpATPSynß increased the amount of triacylglycerol in the fat body due to increased de novo fatty acid synthesis and reduced transfer of lipids to lipophorin. RpATPSynα knockdown had similar effects, with altered ovarian development, reduced oviposition, and triacylglycerol accumulation in the fat body. However, ATP synthases knockdown had only a slight effect on the amount of ATP in the fat body. These results support the hypothesis that ATP synthase has a direct role in lipid metabolism and lipophorin physiology, which are not directly due to changes in energy metabolism.


Assuntos
Rhodnius , Feminino , Animais , Rhodnius/genética , Rhodnius/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo Energético , Triglicerídeos/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Gen Comp Endocrinol ; 332: 114184, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455643

RESUMO

Prothoracicotropic hormone (PTTH) is a central regulator of insect development that regulates the production of the steroid moulting hormones (ecdysteroids) from the prothoracic glands (PGs). Rhodnius PTTH was the first brain neurohormone discovered in any animal almost 100 years ago but has eluded identification and no homologue of Bombyx mori PTTH occurs in its genome. Here, we report Rhodnius PTTH is the first noggin-like PTTH found. It differs in important respects from known PTTHs and is the first PTTH from the Hemimetabola (Exopterygota) to be fully analysed. Recorded PTTHs are widespread in Holometabola but close to absent in hemimetabolous orders. We concluded Rhodnius PTTH likely differed substantially from the known ones. We identified one Rhodnius gene that coded a noggin-like protein (as defined by Molina et al., 2009) that had extensive similarities with known PTTHs but also had two additional cysteines. Sequence and structural analysis showed known PTTHs are closely related to noggin-like proteins, as both possess a growth factor cystine knot preceded by a potential cleavage site. The gene is significantly expressed only in the brain, in a few cells of the dorsal protocerebrum. We vector-expressed the sequence from the potential cleavage site to the C-terminus. This protein was strongly steroidogenic on PGs in vitro. An antiserum to the protein removed the steroidogenic protein released by the brain. RNAi performed on brains in vitro showed profound suppression of transcription of the gene and of production and release of PTTH and thus of ecdysteroid production by PGs. In vivo, the gene is expressed throughout development, in close synchrony with PTTH release, ecdysteroid production by PGs and the ecdysteroid titre. The Rhodnius PTTH monomer is 17kDa and immunoreactive to anti-PTTH of Bombyx mori (a holometabolan). Bombyx PTTH also mildly stimulated Rhodnius PGs. The two additional cysteines form a disulfide at the tip of finger 2, causing a loop of residues to protrude from the finger. A PTTH variant without this loop failed to stimulate PGs, showing the loop is essential for PTTH activity. It is considered that PTTHs of Holometabola evolved from a noggin-like protein in the ancestor of Holometabola and Hemiptera, c.400ma, explaining the absence of holometabolous-type PTTHs from hemimetabolous orders and the differences of Rhodnius PTTH from them. Noggin-like proteins studied from Hemiptera to Arachnida were homologous with Rhodnius PTTH and may be common as PTTHs or other hormones in lower insects.


Assuntos
Bombyx , Hormônios de Inseto , Rhodnius , Animais , Ecdisteroides/metabolismo , Rhodnius/genética , Rhodnius/metabolismo , Ritmo Circadiano/fisiologia , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Larva/metabolismo
3.
Insect Biochem Mol Biol ; 150: 103848, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191853

RESUMO

Insulin-like peptides (ILPs) are vital hormones involved in a wide range of physiological processes in all organisms. In insects, insulin signaling has a key role in detecting and interpreting nutrient levels for egg production. Based on publicly available transcriptomes, a new ILP named gonadulin has been reported and suggested to be expressed by the gonads (hence its name). Although the identification of gonadulin establishes its existence, its physiological relevance remains poorly understood. Rhodnius prolixus is an obligate hematophagous insect and a primary vector of Trypanosoma cruzi, the etiological agent of Chagas disease. In this study, we report for the first time the participation of gonadulin in reproductive performance of an hemipteran. By quantitative PCR and fluorescence in situ hybridization (FISH), we find that the R. prolixus gonadulin transcript is highly expressed in the reproductive system, particularly in the calyx, a structure through which eggs move into the lumen of the lateral oviducts during ovulation. The putative gonadulin receptor, a member of the leucine-rich repeat-containing G protein-coupled receptor subfamily (LGR3), is most highly expressed in the central nervous system with lower levels in the reproductive tissue and other tissues. Interestingly, when the gonadulin signaling cascade is impaired using RNA interference (RNAi), eggs are retained primarily in the ovarioles and calyx, indicating that ovulation and oviposition are inhibited. Understanding the physiological processes involved in reproduction in R. prolixus will shed light on potential targets for effective production of biopesticides by translational research, thereby controlling insect populations and transmission of the disease.


Assuntos
Doença de Chagas , Rhodnius , Feminino , Animais , Rhodnius/genética , Oviposição , Insulina/genética , Hibridização in Situ Fluorescente , Peptídeos/genética , Ovulação
4.
Dev Genes Evol ; 231(1-2): 33-45, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33704576

RESUMO

The morphology and physiology of the oogenesis have been well studied in the vector of Chagas disease Rhodnius prolixus. However, the molecular interactions that regulate the process of egg formation, key for the reproductive cycle of the vector, is still largely unknown. In order to understand the molecular and cellular basis of the oogenesis, we examined the function of the gene Bicaudal C (BicC) during oogenesis and early development of R. prolixus. We show that R. prolixus BicC (Rp-BicC) gene is expressed in the germarium, with cytoplasmic distribution, as well as in the follicular epithelium of the developing oocytes. RNAi silencing of Rp-BicC resulted in sterile females that lay few, small, non-viable eggs. The ovaries are reduced in size and show a disarray of the follicular epithelium. This indicates that Rp-BicC has a central role in the regulation of oogenesis. Although the follicular cells are able to form the chorion, the uptake of vitelline by the oocytes is compromised. We show evidence that the polarity of the follicular epithelium and the endocytic pathway, which are crucial for the proper yolk deposition, are affected. This study provides insights into the molecular mechanisms underlying oocyte development and show that Rp-BicC is important for de developmental of the egg and, therefore, a key player in the reproduction of this insect.


Assuntos
Proteínas de Insetos/metabolismo , Oogênese , Proteínas de Ligação a RNA/metabolismo , Rhodnius/metabolismo , Animais , Células Epiteliais/metabolismo , Feminino , Proteínas de Insetos/genética , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Proteínas de Ligação a RNA/genética , Rhodnius/genética , Rhodnius/crescimento & desenvolvimento
5.
Insect Biochem Mol Biol ; 127: 103488, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33080312

RESUMO

Cysteine peptidases (CP) play a role as digestive enzymes in hemipterans similar to serine peptidases in most other insects. There are two major CPs: cathepsin L (CAL), which is an endopeptidase and cathepsin B (CAB) that is both an exopeptidase and a minor endopeptidase. There are thirteen putative CALs in Dysdercus peruvianus, which in some cases were confirmed by cloning their encoding genes. RNA-seq data showed that DpCAL5 is mainly expressed in the anterior midgut (AM), DpCAL10 in carcass (whole body less midgut), suggesting it is a lysosomal enzyme, and the other DpCALs are expressed in middle (MM) and posterior (PM) midgut. The expression data were confirmed by qPCR and enzyme secretion to midgut lumen by a proteomic approach. Two CAL activities were isolated by chromatography from midgut samples with similar kinetic properties toward small substrates. Docking analysis of a long peptide with several DpCALs modeled with digestive Tenebrio molitor CAL (TmCAL3) as template showed that on adapting to luminal digestion DpCALs (chiefly DpCAL5) changed in relation to their ancestral lysosomal enzyme (DpCAL10) mainly at its S2 subsite. A similar conclusion arrived from structure alignment-based clustering of DpCALs based on structural similarity of the modeled structures. Changes mostly on S2 subsite could mean the enzymes turn out less peptide-bond selective, as described in TmCALs. R. prolixus CALs changed on adapting to luminal digestion, although less than DpCALs. Both D. peruvianus and R. prolixus have two digestive CABs which are expressed in the same extension as CALs, in the first digestive section of the midgut, but less than in the other midgut sections. Mahanarva fimbriolata does not seem to have digestive CALs and their digestive CABs are mainly expressed in the first digestive section of the midgut and do not diverge much from their lysosomal counterparts. The data suggest that CABs are necessary at the initial stage of digestion in CP-dependent Hemipterans, which action is completed by CALs with low peptide-bond selectivity in Heteroptera species. In M. fimbriolata protein digestion is supposed to be associated with the inactivation of sap noxious proteins, making CAB sufficient as digestive CP. Hemipteran genomes and transcriptome data showed that CALs have been recruited as digestive enzymes only in heteropterans, whereas digestive CABs occur in all hemipterans.


Assuntos
Catepsina B/genética , Catepsina L/genética , Hemípteros/fisiologia , Proteínas de Insetos/genética , Sequência de Aminoácidos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Sequência de Bases , Catepsina B/química , Catepsina B/metabolismo , Catepsina L/química , Catepsina L/metabolismo , Digestão , Hemípteros/enzimologia , Hemípteros/genética , Heterópteros/enzimologia , Heterópteros/genética , Heterópteros/fisiologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Rhodnius/enzimologia , Rhodnius/genética , Rhodnius/fisiologia
6.
PLoS Negl Trop Dis ; 14(1): e0008012, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986144

RESUMO

Follicular atresia is the mechanism by which the oocyte contents are degraded during oogenesis in response to stress conditions, allowing the energetic resources stored in the developing oocytes to be reallocated to optimize female fitness. Autophagy is a conserved intracellular degradation pathway where double-membrane vesicles are formed around target organelles leading to their degradation after lysosome fusion. The autophagy-related protein 8 (ATG8) is conjugated to the autophagic membrane and has a key role in the elongation and closure of the autophagosome. Here we identified one single isoform of ATG8 in the genome of the insect vector of Chagas Disease Rhodnius prolixus (RpATG8) and found that it is highly expressed in the ovary during vitellogenesis. Accordingly, autophagosomes were detected in the vitellogenic oocytes, as seen by immunoblotting and electron microscopy. To test if autophagosomes were important for follicular atresia, we silenced RpATG8 and elicited atresia in vitellogenic females by Zymosan-A injections. We found that silenced females were still able to trigger the same levels of follicle atresia, and that their atretic oocytes presented a characteristic morphology, with accumulated brown aggregates. Regardless of the difference in morphology, RpATG8-silenced atretic oocytes presented the same levels of protein, TAG and PolyP, as detected in control atretic oocytes, as well as the same levels of acidification of the yolk organelles. Because follicular atresia has the ultimate goal of restoring female fitness, we tested if RpATG8-silenced atresia would result in female physiology and behavior changes. Under insectarium conditions, we found that atresia-induced control and RpATG8-silenced females present no changes in blood meal digestion, survival, oviposition, TAG content in the fat body, haemolymph amino acid levels and overall locomotor activity. Altogether, we found that autophagosomes are formed during oogenesis and that the silencing of RpATG8 impairs autophagosome biogenesis in the oocytes. Nevertheless, regarding major macromolecule degradation and adaptations to the fitness costs imposed by triggering an immune response, we found that autophagic organelles are not essential for follicle atresia in R. prolixus.


Assuntos
Autofagossomos , Atresia Folicular/fisiologia , Inativação Gênica , Proteínas de Insetos/metabolismo , Rhodnius/fisiologia , Animais , Feminino , Atresia Folicular/genética , Proteínas de Insetos/genética , Oócitos , Ovulação/fisiologia , Rhodnius/genética , Vitelogênese
7.
Rev. Soc. Bras. Med. Trop ; 53: e20190503, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1101448

RESUMO

Abstract Introduction: The genus Rhodnius in the subfamily Triatominae comprises 20 species, which can transmit Trypanosoma cruzi and Trypanosoma rangeli. Due to the development of molecular techniques, Triatominae species can now be characterized by mitochondrial and nuclear markers, making it possible to verify and/or correct the existing data on these species. The results achieved in this study provide a more detailed and accurate differentiation of the Rhodnius species, helping the establishment of a more appropriate classification. Methods: Data collection was performed by DNA analysis, morphological and morphometric studies to distinguish four populations of R. neglectus and four of R. prolixus. Phylogenetic data were compared to morphological and morphometric data. Results: The analysis of Cytb fragments suggests that the four colonies designated to Rhodnius neglectus as well as those of R. prolixus were correctly identified. Conclusions: The morphological characters observed in the specimens of the colonies originally identified as R. prolixus and R. neglectus, such as the presence or absence of collar in the eggs, the patterns of the median process of the pygophore, and anterolateral angle, are consistent with the species. Geometric morphometrics also show an intraspecific variability in R. prolixus.


Assuntos
Animais , Masculino , Rhodnius/classificação , Insetos Vetores/anatomia & histologia , Filogenia , Rhodnius/anatomia & histologia , Rhodnius/genética , Especificidade da Espécie , Doença de Chagas/transmissão , Análise de Sequência de DNA , Insetos Vetores/classificação , Insetos Vetores/genética
8.
PLoS One ; 13(8): e0202425, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114273

RESUMO

In this study, a long neuropeptide F receptor of the blood-feeding hemipteran, Rhodnius prolixus (RhoprNPFR) has been cloned and characterized. Approximately 70% of the RhoprNPFR deduced protein sequence is identical to that of other hemipteran NPFRs. RhoprNPFR has seven highly-conserved transmembrane domains, two cysteine residues in the 2nd and 3rd extracellular loops that likely form a disulfide bond integral for maintaining the structure of the receptor, and a conserved DRY motif after the third transmembrane domain. All of these characteristics are typical of class A rhodopsin-like GPCRs. The receptor transcript is predominantly expressed in the central nervous system (CNS) and gut of both fifth instar and adult R. prolixus. Using fluorescent in situ hybridization (FISH), we identified six bilaterally-paired large median neurosecretory cells (approximately 30µm in diameter) in the brain that express the RhoprNPFR mRNA transcript. We also found RhoprNPFR transcript expression in endocrine cells in the anterior midgut of fifth instars, as well as in putative pre-follicular cells present in the germarium and between developing oocytes, and in the nutritive cord. These results suggest that RhoprNPFR may play a role within the CNS, and in digestion and possibly egg production and/or egg development in R. prolixus.


Assuntos
Proteínas de Insetos/genética , Insetos Vetores/genética , Receptores de Neuropeptídeos/genética , Rhodnius/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Doença de Chagas/transmissão , Humanos , Proteínas de Insetos/análise , Insetos Vetores/química , Fases de Leitura Aberta , Filogenia , Receptores de Neuropeptídeos/análise , Rhodnius/química , Alinhamento de Sequência , Transcriptoma
9.
PLoS Negl Trop Dis ; 12(5): e0006507, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29768406

RESUMO

In oviparous animals, the egg yolk is synthesized by the mother in a major metabolic challenge, where the different yolk components are secreted to the hemolymph and delivered to the oocytes mostly by endocytosis. The yolk macromolecules are then stored in a wide range of endocytic-originated vesicles which are collectively referred to as yolk organelles and occupy most of the mature oocytes cytoplasm. After fertilization, the contents of these organelles are degraded in a regulated manner to supply the embryo cells with fundamental molecules for de novo synthesis. Yolk accumulation and its regulated degradation are therefore crucial for successful development, however, most of the molecular mechanisms involved in the biogenesis, sorting and degradation of targeted yolk organelles are still poorly understood. ATG6 is part of two PI3P-kinase complexes that can regulate the recruitment of the endocytic or the autophagy machineries. Here, we investigate the role of RpATG6 in the endocytosis of the yolk macromolecules and in the biogenesis of the yolk organelles in the insect vector Rhodnius prolixus. We found that vitellogenic females express high levels of RpATG6 in the ovaries, when compared to the levels detected in the midgut and fat body. RNAi silencing of RpATG6 resulted in yolk proteins accumulated in the vitellogenic hemolymph, as a consequence of poor uptake by the oocytes. Accordingly, the silenced oocytes are unviable, white (contrasting to the control pink oocytes), smaller (62% of the control oocyte volume) and accumulate only 40% of the yolk proteins, 80% of the TAG and 50% of the polymer polyphosphate quantified in control oocytes. The cortex of silenced oocytes present atypical smaller vesicles indicating that the yolk organelles were not properly formed and/or sorted, which was supported by the lack of endocytic vesicles near the plasma membrane of silenced oocytes as seen by TEM. Altogether, we found that RpATG6 is central for the mechanisms of yolk accumulation, emerging as an important target for further investigations on oogenesis and, therefore, reproduction of this vector.


Assuntos
Proteína Beclina-1/genética , Gema de Ovo/metabolismo , Proteínas de Insetos/genética , Insetos Vetores/embriologia , Rhodnius/embriologia , Animais , Proteína Beclina-1/metabolismo , Feminino , Inativação Gênica , Proteínas de Insetos/metabolismo , Insetos Vetores/metabolismo , Organelas/genética , Organelas/metabolismo , Rhodnius/genética , Rhodnius/metabolismo
10.
Rev. Soc. Bras. Med. Trop ; 50(5): 629-637, Sept.-Oct. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-897012

RESUMO

Abstract INTRODUCTION: Trypanosoma cruzi, the etiologic agent of Chagas disease, is widely distributed in nature, circulating between triatomine bugs and sylvatic mammals, and has large genetic diversity. Both the vector species and the genetic lineages of T. cruzi present a varied geographical distribution. This study aimed to verify the influence of sympatry in the interaction of T. cruzi with triatomines. Methods: The behavior of the strains PR2256 (T. cruzi II) and AM14 (T. cruzi IV) was studied in Triatoma sordida (TS) and Rhodnius robustus (RR). Eleven fifth-stage nymphs were fed by artificial xenodiagnosis with 5.6 × 103 blood trypomastigotes/0.1mL of each T. cruzi strain. Every 20 days, their excreta were examined for up to 100 days, and every 30 days, the intestinal content was examined for up to 120 days, by parasitological (fresh examination and differential count with Giemsa-stained smears) and molecular (PCR) methods. Rates of infectivity, metacyclogenesis and mortality, and mean number of parasites per insect and of excreted parasites were determined. RESULTS: Sympatric groups RR+AM14 and TS+PR2256 showed higher values of the four parameters, except for mortality rate, which was higher (27.3%) in the TS+AM14 group. General infectivity was 72.7%, which was mainly proven by PCR, showing the following decreasing order: RR+AM14 (100%), TS+PR2256 (81.8%), RR+PR2256 (72.7%) and TS+AM14 (36.4%). CONCLUSIONS: Our working hypothesis was confirmed once higher infectivity and vector capacity (flagellate production and elimination of infective metacyclic forms) were recorded in the groups that contained sympatric T. cruzi lineages and triatomine species.


Assuntos
Humanos , Animais , Vetores Artrópodes/fisiologia , Rhodnius/fisiologia , Triatoma/fisiologia , Trypanosoma cruzi/fisiologia , Simpatria , Vetores Artrópodes/genética , Vetores Artrópodes/patogenicidade , Rhodnius/genética , Rhodnius/patogenicidade , Especificidade da Espécie , Fatores de Tempo , Triatoma/genética , Triatoma/patogenicidade , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade , Sangue/parasitologia , Brasil , Reação em Cadeia da Polimerase , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Xenodiagnóstico/métodos , Interações Hospedeiro-Parasita/fisiologia , Intestinos/parasitologia , Camundongos
11.
Cell Signal ; 28(9): 1152-1162, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27237375

RESUMO

Rhodnius prolixus, the vector of human Chagas disease, is a hemipteran insect that undergoes rapid post-feeding diuresis following ingestion of a blood meal that can be up to 10 times its initial body weight. Corticotropin-releasing factor-related diuretic hormone (Rhopr-CRF/DH) and serotonin are neurohormones that are synergistic in increasing rates of fluid secretion by Malpighian tubules during this rapid post-feeding diuresis. A Rhopr-CRF/DH receptor transcript has now been isolated and characterized from fifth instar R. prolixus. The receptor is a family B1 (secretin) G protein-coupled receptor (GPCR) and was deorphaned in a heterologous cellular system using Chinese hamster ovary (CHO) cells stably expressing a promiscuous G-protein (Gα16). This assay was also used to demonstrate the presence of Rhopr-CRF/DH in the haemolymph of R. prolixus in response to blood-gorging. Two additional cell lines were used in this heterologous assay to verify that the cyclic adenosine monophosphate (cAMP) pathway and not the inositol triphosphate (IP3) pathway was stimulated upon activation of the receptor. Lastly, quantitative PCR demonstrated strong receptor expression in digestive tissues, upper Malpighian tubules and reproductive tissues. Identification of the Rhopr-CRF/DH receptor now provides tools for a more detailed understanding into the precise coordination of diuresis and other physiological processes in R. prolixus.


Assuntos
Receptores de Hormônio Liberador da Corticotropina/isolamento & purificação , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Rhodnius/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , DNA Complementar/genética , Comportamento Alimentar , Perfilação da Expressão Gênica , Células HEK293 , Hemolinfa/metabolismo , Humanos , Modelos Biológicos , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Hormônio Liberador da Corticotropina/química , Rhodnius/genética , Alinhamento de Sequência , Análise de Sequência de Proteína
12.
Proc Biol Sci ; 283(1825): 20160042, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911963

RESUMO

RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects.


Assuntos
Marcação de Genes/métodos , Interferência de RNA , RNA de Cadeia Dupla/genética , Rhodnius/genética , Rhodococcus/genética , Tisanópteros/genética , Animais , Rhodnius/microbiologia , Análise de Sequência de DNA , Simbiose , Tisanópteros/microbiologia
13.
Rev. Soc. Bras. Med. Trop ; 49(1): 57-67, Jan.-Feb. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-776528

RESUMO

Abstract: INTRODUCTION Natural and artificial ecotope infestation by the kissing bug triatomines and their colonization and infection by Trypanosoma cruzi , the Chagas disease agent, were evaluated in nine municipalities of the State of Rio Grande do Norte, Brazil. METHODS Following identification, triatomine intestinal contents were analyzed by direct microscopic examination, xenoculture, and polymerase chain reaction (PCR) for parasite detection. Trypanosoma cruzi isolates were genotyped using three different markers. RESULTS Of 842 triatomines captured, 65% were Triatoma brasiliensis , 17.8% Triatoma pseudomaculata , 12.5% Panstrongylus lutzi , and 4.7% Rhodnius nasutus . Triatoma brasiliensis and P. lutzi adults were found in the intradomicile. T. brasiliensis, T. pseudomaculata , and R. nasutus nymphs and adults were found in the peridomicile and wild environment. Intradomiciliary and peridomiciliary infestation indexes were 5.6% and 33.7%, respectively. In the peridomicile, chicken coops were the most infested ecotope. The T. cruzi triatomine infection rate was 30.2%, of which PCR detected 29%. P . lutzi (78.1%), T . brasiliensis (24.5%), and T . pseudomaculata (22.7%) were the most infected species. TcII and III genotypes were detected in T. brasiliensis and TcIII in P. lutzi . CONCLUSIONS T. brasiliensis was found in all environments and most ecotopes with high T. cruzi infection rates. High infection rates were also detected in T . pseudomaculata and P. lutzi , suggesting their role in the interchange between the wild and peridomestic transmission cycles. The combination of PCR, microscopic examination, and xenoculture contributed to improving T. cruzi infection evaluation in triatomine bugs. The TcII and TcIII genotypes were predominant in the study area.


Assuntos
Animais , Panstrongylus/parasitologia , Rhodnius/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi/isolamento & purificação , Insetos Vetores/parasitologia , Panstrongylus/genética , Rhodnius/genética , Triatoma/genética , Brasil , Reação em Cadeia da Polimerase , Doença de Chagas/transmissão , Genótipo , Insetos Vetores/classificação
14.
Insect Biochem Mol Biol ; 69: 1-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26226651

RESUMO

Availability of complete genomes provides a means to explore the evolution of enormous developmental, morphological, and behavioral diversity among insects. Hemipterans in particular show great diversity of both morphology and life history within a single order. To better understand the role of transcription regulators in the diversification of hemipterans, using sequence profile searches and hidden Markov models we computationally analyzed transcription factors (TFs) and chromatin proteins (CPs) in the recently available Rhodnius prolixus genome along with 13 other insect and 4 non-insect arthropod genomes. We generated a comprehensive collection of TFs and CPs across arthropods including 303 distinct types of domains in TFs and 139 in CPs. This, along with the availability of two hemipteran genomes, R. prolixus and Acyrthosiphon pisum, helped us identify possible determinants for their dramatic morphological and behavioral divergence. We identified five domain families (i.e. Pipsqueak, SAZ/MADF, THAP, FLYWCH and BED finger) as having undergone differential patterns of lineage-specific expansion in hemipterans or within hemipterans relative to other insects. These expansions appear to be at least in part driven by transposons, with the DNA-binding domains of transposases having provided the raw material for emergence of new TFs. Our analysis suggests that while R. prolixus probably retains a state closer to the ancestral hemipteran, A. pisum represents a highly derived state, with the emergence of asexual reproduction potentially favoring genome duplication and transposon expansion. Both hemipterans are predicted to possess active DNA methylation systems. However, in the course of their divergence, aphids seem to have expanded the ancestral hemipteran DNA methylation along with a distinctive linkage to the histone methylation system, as suggested by expansion of SET domain methylases, including those fused to methylated CpG recognition domains. Thus, differential use of DNA methylation and histone methylation might have played a role in emergence of polyphenism and cyclic parthenogenesis from the ancestral hemipteran.


Assuntos
Cromatina/genética , Genoma de Inseto , Hemípteros/genética , Fatores de Transcrição/genética , Animais , Afídeos/genética , Artrópodes/genética , Evolução Biológica , Cromatina/química , Metilação de DNA , Elementos de DNA Transponíveis , Hemípteros/anatomia & histologia , Hemípteros/classificação , Histonas , Cadeias de Markov , Filogenia , Proteoma/genética , Reprodução Assexuada/genética , Rhodnius/genética
15.
Insect Biochem Mol Biol ; 69: 105-14, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26392061

RESUMO

The selenium-dependent glutathione peroxidase (SeGPx) is a well-studied enzyme that detoxifies organic and hydrogen peroxides and provides cells or extracellular fluids with a key antioxidant function. The presence of a SeGPx has not been unequivocally demonstrated in insects. In the present work, we identified the gene and studied the function of a Rhodnius prolixus SeGPx (RpSeGPx). The RpSeGPx mRNA presents the UGA codon that encodes the active site selenocysteine (Sec) and a corresponding Sec insertion sequence (SECIS) in the 3' UTR region. The encoded protein includes a signal peptide, which is consistent with the high levels of GPx enzymatic activity in the insect's hemolymph, and clusters phylogenetically with the extracellular mammalian GPx03. This result contrasts with all other known insect GPxs, which use a cysteine residue instead of Sec and cluster with the mammalian phospholipid hydroperoxide GPx04. RpSeGPx is widely expressed in insect organs, with higher expression levels in the fat body. RNA interference (RNAi) was used to reduce RpSeGPx gene expression and GPx activity in the hemolymph. Adult females were apparently unaffected by RpSeGPx RNAi, whereas first instar nymphs showed a three-day delay in ecdysis. Silencing of RpSeGPx did not alter the gene expression of the antioxidant enzymes catalase, xanthine dehydrogenase and a cysteine-GPx, but it reduced the levels of the dual oxidase and NADPH oxidase 5 transcripts that encode for enzymes releasing extracellular hydrogen peroxide/superoxide. Collectively, our data suggest that RpSeGPx functions in the regulation of extracellular (hemolymph) redox homeostasis of R. prolixus.


Assuntos
Glutationa Peroxidase/química , Glutationa Peroxidase/genética , Rhodnius/enzimologia , Rhodnius/genética , Selênio/química , Animais , Feminino , Inativação Metabólica/genética , Muda , Filogenia , Interferência de RNA , Coelhos , Rhodnius/crescimento & desenvolvimento , Selenocisteína/química
16.
Parasitol Res ; 114(12): 4503-11, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26337269

RESUMO

Insects possess both cellular and humoral immune responses. The latter makes them capable to recognize and control invading pathogens after synthesis of a variety of small proteins, also known as antimicrobial peptides. Defensins, cysteine-rich cationic peptides with major activity against Gram-positive bacteria, are one ubiquitous class of antimicrobial peptides, widely distributed in different animal and plant taxa. Regarding triatomines in each of the so far analyzed species, various defensin gene isoforms have been identified. In the present study, these genes were sequenced and used as a molecular marker for phylogenetic analysis. Considering the vectors of Chagas disease the authors are reporting for the first time the presence of these genes in Triatoma sordida (Stål, 1859), Rhodnius nasutus (Stål, 1859), and Panstrongylus megistus (Burmeister, 1835). Members of the Triatoma brasiliensis species complex were included into the study to verify the genetic variability within these taxa. Mainly in their mature peptide, the deduced defensin amino acid sequences were highly conserved. In the dendrogram based on defensin encoding nucleotide, sequences the Triatoma Def3/4 genes were separated from the rest. In the dendrogram based on deduced amino acid sequences the Triatoma Def2/3/4 together with Rhodnius DefA/B pre-propeptides were separated from the rest. In the sub-branches of both the DNA and amino acid dendrograms, the genus Triatoma was separated from the genus Rhodnius as well as from P. megistus.


Assuntos
Doença de Chagas/transmissão , Defensinas/genética , Proteínas de Insetos/genética , Insetos Vetores/genética , Panstrongylus/genética , Filogenia , Rhodnius/genética , Triatoma/genética , Sequência de Aminoácidos , Animais , Defensinas/química , Defensinas/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Insetos Vetores/classificação , Insetos Vetores/fisiologia , Dados de Sequência Molecular , Panstrongylus/classificação , Panstrongylus/fisiologia , Rhodnius/classificação , Rhodnius/fisiologia , Alinhamento de Sequência , Triatoma/classificação , Triatoma/fisiologia
17.
Biochimie ; 112: 41-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25731714

RESUMO

The triatomine insect, Rhodnius prolixus, is a vector of Trypanosoma cruzi, a protozoan parasite that causes Chagas disease. The parasite must overcome immune response and microbiota to develop inside the midgut of triatomines. In this study, we expressed, purified and characterized a Kazal-type inhibitor from the midgut of R. prolixus, named RpTI, which may be involved in microbiota - T. cruzi interactions. The qPCR showed that the RpTI transcript was primarily expressed in tissues from the intestinal tract and that it was upregulated in the anterior midgut after T. cruzi infection. A 315-bp cDNA fragment encoding the mature protein was cloned into the pPIC9 vector and expressed in Pichia pastoris system. Recombinant RpTI (rRpTI) was purified on a trypsin-Sepharose column and had a molecular mass of 11.5 kDa as determined by SDS-PAGE analysis. This protein inhibited trypsin (Ki = 0.42 nM), whereas serine proteases from the coagulation cascade were not inhibited. Moreover, trypanocidal assays revealed that rRpTI did not interfere in the viability of T. cruzi trypomastigotes. The RpTI transcript was also knocked down by RNA interference prior to infection of R. prolixus with T. cruzi. The amount of T. cruzi in the anterior midgut was significantly lower in RpTI knockdown insects compared to the non-silenced groups. We also verified that the bacterial load is higher in the anterior midgut of silenced and infected R. prolixus compared to non-silenced and infected insects. Our results suggest that T. cruzi infection increases the expression of RpTI to mediate microbiota modulation and is important for parasite immediately after infection with R. prolixus.


Assuntos
Proteínas de Insetos , Insetos Vetores , Intestinos/microbiologia , Microbiota , Rhodnius , Trypanosoma cruzi/metabolismo , Inibidor da Tripsina Pancreática de Kazal , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/genética , Insetos Vetores/metabolismo , Insetos Vetores/microbiologia , Rhodnius/genética , Rhodnius/metabolismo , Rhodnius/microbiologia , Inibidor da Tripsina Pancreática de Kazal/genética , Inibidor da Tripsina Pancreática de Kazal/metabolismo
18.
Insect Biochem Mol Biol ; 57: 1-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25500190

RESUMO

FGLamide-related ASTs (FGLa/ASTs) are a family of brain/gut peptides with numerous physiological roles, including inhibition of juvenile hormone (JH) biosynthesis by the corpora allata and inhibition of visceral muscle contraction. FGLa/ASTs mediate their effects by binding to a rhodopsin-like G-protein coupled receptor that is evolutionarily related to the vertebrate galanin receptor. Here we determine the cDNA sequence encoding FGLa/AST receptor (FGLa/AST-R) from the Chagas disease vector, Rhodnius prolixus (Rhopr-FGLa/AST-R), determine its spatial expression pattern using quantitative PCR and functionally characterize the receptor using a heterologous assay. Our expression analysis indicates that Rhopr-FGLa/AST-R is highly expressed in the central nervous system. The receptor is also expressed in various peripheral tissues including the dorsal vessel, midgut, hindgut and reproductive tissues of both males and females, suggesting a role in processes associated with feeding and reproduction. The possible involvement of Rhopr-FGLa/ASTs in the inhibition of JH biosynthesis is also implicated due to presence of the receptor transcript in the R. prolixus corpora cardiaca/corpora allata complex. The functional assay showed that various Rhopr-FGLa/ASTs activate the receptor, with EC50 values for the response in the nanomolar range. Moreover, Rhopr-FGLa/AST-R can couple with Gq alpha subunits and cause an increase in intracellular calcium concentration. Lastly, we tested various FGLa/AST analogs in our heterologous assay. These compounds also activated the receptor and thus have the potential to serve as insect growth regulators and aid in pest control.


Assuntos
Receptores Acoplados a Proteínas G/genética , Rhodnius/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Nervoso Central/metabolismo , Corpora Allata/metabolismo , DNA Complementar , Feminino , Expressão Gênica , Hormônios Juvenis/biossíntese , Larva/metabolismo , Masculino , Contração Muscular , Neuropeptídeos , Peptídeos , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/metabolismo , Rhodnius/metabolismo , Análise de Sequência de DNA
19.
PLoS Negl Trop Dis ; 8(1): e2594, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416461

RESUMO

The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.


Assuntos
Proteínas de Insetos/genética , Rhodnius/genética , Transcriptoma , Animais , Feminino , Trato Gastrointestinal , Proteínas de Insetos/biossíntese , América Latina , Masculino , Dados de Sequência Molecular , Análise de Sequência de DNA
20.
Virus Res ; 177(1): 75-86, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23911632

RESUMO

The complete nucleotide sequence of the burdock mottle virus (BdMoV) isolated from an edible burdock plant (Arctium lappa) in Japan has been determined. BdMoV has a bipartite genome, whose organization is similar to RNA1 and RNA2 of benyviruses, beet necrotic yellow vein virus (BNYVV), beet soil-borne mosaic virus (BSBMV), and rice stripe necrosis virus (RSNV). BdMoV RNA1 (7038 nt) contains a single open reading frame (ORF) encoding a 249-kDa polypeptide that consists of methyl-transferase, helicase, papain-like protease, AlkB-like, and RNA-dependent RNA polymerase domains. The AlkB-like domain sequence is not present in the proteins encoded by other known benyviruses, but is found in replication-associated proteins of viruses mainly belonging to the families Alfaflexiviridae and Betaflexiviridae. BdMoV RNA2 (4315 nt) contains six ORFs that are similar to those of benyviruses: these are coat protein (CP), CP readthrough, triple gene block movement and cysteine-rich proteins. Phylogenetic analyses showed that BdMoV is more closely related to BNYVV and BSBMV than to RSNV. Database searches showed that benyvirus replicase-related sequences are present in the chromosomes of a chickpea plant (Cicer arietinum) and a blood-sucking insect (Rhodnius prolixus). Some other benyvirus-related sequences are found in the transcriptome shotgun libraries of a few species of plants and a bark beetle. Our results show that BdMoV is a distinct species of the genus Benyvirus and that ancestral and extant benyviruses may have infected or currently infect a wide range of hosts, including plants and insects.


Assuntos
Arctium/virologia , Cicer/genética , Doenças das Plantas/virologia , Vírus de RNA/genética , Rhodnius/genética , Animais , Sequência de Bases , Genoma de Inseto , Genoma de Planta , Genoma Viral , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA