Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 150: 107595, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968904

RESUMO

Combined therapies play a key role in the fight against complex pathologies, such as cancer and related drug-resistance issues. This is particularly relevant in targeted therapies where inhibition of the drug target can be overcome by cross-activating complementary pathways. Unfortunately, the drug combinations approved to date -mostly based on small molecules- face several problems such as toxicity effects, which limit their clinical use. To address these issues, we have designed a new class of RNase H-sensitive construct (3ASO) that can be disassembled intracellularly upon cell entry, leading to the simultaneous release of three different therapeutic oligonucleotides (ONs), tackling each of them the mRNA of a different protein. Here, we used Escherichia coli RNase H1 as a model to study an unprecedented mode of recognition and cleavage, that is mainly dictated by the topology of our RNA·DNA-based hybrid construct. As a model system for our technology we have created 3ASO constructs designed to specifically inhibit the expression of HER2, Akt and Hsp27 in HER2+ breast cancer cells. These trifunctional ON tools displayed very low toxicity and good levels of antiproliferative activity in HER2+ breast cancer cells. The present study will be of great potential in the fight against complex pathologies involving multiple mRNA targets, as the proposed cleavable designs will allow the efficient single-dose administration of different ON drugs simultaneously.


Assuntos
Proliferação de Células , Oligonucleotídeos Antissenso , Ribonuclease H , Ribonuclease H/metabolismo , Ribonuclease H/antagonistas & inibidores , Humanos , Proliferação de Células/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos
2.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931006

RESUMO

Hepatitis B virus (HBV) remains a global health threat. Ribonuclease H (RNase H), part of the virus polymerase protein, cleaves the pgRNA template during viral genome replication. Inhibition of RNase H activity prevents (+) DNA strand synthesis and results in the accumulation of non-functional genomes, terminating the viral replication cycle. RNase H, though promising, remains an under-explored drug target against HBV. We previously reported the identification of a series of N-hydroxypyridinedione (HPD) imines that effectively inhibit the HBV RNase H. In our effort to further explore the HPD scaffold, we designed, synthesized, and evaluated 18 novel HPD oximes, as well as 4 structurally related minoxidil derivatives and 2 barbituric acid counterparts. The new analogs were docked on the RNase H active site and all proved able to coordinate the two Mg2+ ions in the catalytic site. All of the new HPDs effectively inhibited the viral replication in cell assays exhibiting EC50 values in the low µM range (1.1-7.7 µM) with low cytotoxicity, resulting in selectivity indexes (SI) of up to 92, one of the highest reported to date among HBV RNase H inhibitors. Our findings expand the structure-activity relationships on the HPD scaffold, facilitating the development of even more potent anti-HBV agents.


Assuntos
Antivirais , Vírus da Hepatite B , Ribonuclease H , Replicação Viral , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/enzimologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Ribonuclease H/metabolismo , Ribonuclease H/antagonistas & inibidores , Humanos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Domínio Catalítico/efeitos dos fármacos , Oximas/química , Oximas/farmacologia , Estrutura Molecular , Células Hep G2 , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química
3.
Antiviral Res ; 171: 104613, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31550450

RESUMO

Ribonucleases H (RNases H) are endonucleolytic enzymes, evolutionarily related to retroviral integrases, DNA transposases, resolvases and numerous nucleases. RNases H cleave RNA in RNA/DNA hybrids and their activity plays an important role in the replication of prokaryotic and eukaryotic genomes, as well as in the replication of reverse-transcribing viruses. During reverse transcription, the RNase H activity of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) degrades the viral genomic RNA to facilitate the synthesis of viral double-stranded DNA. HIV and HBV reverse transcriptases contain DNA polymerase and RNase H domains that act in a coordinated manner to produce double-stranded viral DNA. Although RNase H inhibitors have not been developed into licensed drugs, recent progress has led to the identification of a number of small molecules with inhibitory activity at low micromolar or even nanomolar concentrations. These compounds can be classified into metal-chelating active site inhibitors and allosteric inhibitors. Among them, α-hydroxytropolones, N-hydroxyisoquinolinediones and N-hydroxypyridinediones represent chemotypes active against both HIV and HBV RNases H. In this review we summarize recent developments in the field including the identification of novel RNase H inhibitors, compounds with dual inhibitory activity, broad specificity and efforts to decrease their toxicity.


Assuntos
Antivirais/farmacologia , HIV/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Ribonuclease H/antagonistas & inibidores , Substituição de Aminoácidos , Antivirais/química , Domínio Catalítico , Ativação Enzimática , HIV/enzimologia , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Vírus da Hepatite B/enzimologia , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Ribonuclease H/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
4.
Mikrochim Acta ; 186(6): 335, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065868

RESUMO

A new fluorometric method is delineated for the detection of RNase H activity by combining DNAzyme with reduced graphene oxide (rGO). In the absence of RNase H, the fluorescence of FAM-labeled probe is quenched due to the strong adsorption on the rGO. The presence of RNase H can release the active DNAzyme from the DNA-RNA chimeric strand. This triggers the cleavage of the signal probe at the rA site with the help of the cofactor Mg2+. The recycle cleavage can directly result in the amplified signal emitted by the FAM-labeled short fragment. The method allows the activity of RNase H to be detected in a linear range of 0.01 to 5 U·mL-1. The detection limit of 0.018 U·mL-1 is calculated by the principle of three-time standard deviation over the blank signal. Then, RNase H-targeting natural compounds were screened for their inhibitory action. Among the investigated compounds, five were screened as RNase H inhibitors in a concentration-dependent manner, and 4 compounds were identified as activators. Finally, the method was reliably used for discriminating the difference of RNase H activity in human serum. It is found that RNase H activity was upregulated in patients with hepatitis C virus infection. Graphical abstract The schematic presentation of rGO-DNAzyme-based RNase H detection. RNase H triggers the active DNAzyme releasing from the DNA-RNA chimeric strand, which can cleavage probes to FAM-labeled short fragments and make the fluorescence signal cycle amplified.


Assuntos
Sondas de DNA/química , DNA Catalítico/química , Grafite/química , Ribonuclease H/sangue , Espectrometria de Fluorescência/métodos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Fluoresceínas/química , Corantes Fluorescentes/química , Humanos , Limite de Detecção , Ribonuclease H/antagonistas & inibidores
5.
PLoS Genet ; 15(5): e1008020, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31125342

RESUMO

Breast cancer is the second leading cause of cancer-related deaths in the United States, with the majority of these deaths due to metastatic lesions rather than the primary tumor. Thus, a better understanding of the etiology of metastatic disease is crucial for improving survival. Using a haplotype mapping strategy in mouse and shRNA-mediated gene knockdown, we identified Rnaseh2c, a scaffolding protein of the heterotrimeric RNase H2 endoribonuclease complex, as a novel metastasis susceptibility factor. We found that the role of Rnaseh2c in metastatic disease is independent of RNase H2 enzymatic activity, and immunophenotyping and RNA-sequencing analysis revealed engagement of the T cell-mediated adaptive immune response. Furthermore, the cGAS-Sting pathway was not activated in the metastatic cancer cells used in this study, suggesting that the mechanism of immune response in breast cancer is different from the mechanism proposed for Aicardi-Goutières Syndrome, a rare interferonopathy caused by RNase H2 mutation. These results suggest an important novel, non-enzymatic role for RNASEH2C during breast cancer progression and add Rnaseh2c to a panel of genes we have identified that together could determine patients with high risk for metastasis. These results also highlight a potential new target for combination with immunotherapies and may contribute to a better understanding of the etiology of Aicardi-Goutières Syndrome autoimmunity.


Assuntos
Imunidade Adaptativa , Doenças Autoimunes do Sistema Nervoso/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Malformações do Sistema Nervoso/genética , Ribonuclease H/genética , Animais , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/mortalidade , Doenças Autoimunes do Sistema Nervoso/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Metástase Linfática , Camundongos , Camundongos Nus , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/imunologia , Malformações do Sistema Nervoso/imunologia , Malformações do Sistema Nervoso/mortalidade , Malformações do Sistema Nervoso/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/imunologia , Análise de Sequência de RNA , Transdução de Sinais , Análise de Sobrevida , Linfócitos T/imunologia , Linfócitos T/patologia
6.
Antiviral Res ; 164: 70-80, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30768944

RESUMO

We recently developed a screening system capable of identifying and evaluating inhibitors of the Hepatitis B virus (HBV) ribonuclease H (RNaseH), which is the only HBV enzyme not targeted by current anti-HBV therapies. Inhibiting the HBV RNaseH blocks synthesis of the positive-polarity DNA strand, causing early termination of negative-polarity DNA synthesis and accumulation of RNA:DNA heteroduplexes. We previously reported inhibition of HBV replication by N-hydroxyisoquinolinediones (HID) and N-hydroxypyridinediones (HPD) in human hepatoma cells. Here, we report results from our ongoing efforts to develop more potent anti-HBV RNaseH inhibitors in the HID/HPD compound classes. We synthesized and screened additional HIDs and HPDs for preferential suppression of positive-polarity DNA in cells replicating HBV. Three of seven new HIDs inhibited HBV replication, however, the therapeutic indexes (TI = CC50/EC50) did not improve over what we previously reported. All nine of the HPDs inhibited HBV replication with EC50s ranging from 110 nM to 4 µM. Cellular cytotoxicity was evaluated by four assays and CC50s ranged from 15 to >100 µM. The best compounds have a calculated TI of >300, which is a 16-fold improvement over the primary HPD hit. These studies indicate that the HPD compound class holds potential for antiviral discovery.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Isoquinolinas/farmacologia , Piridinas/farmacologia , Piridonas/farmacologia , Ribonuclease H/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Replicação do DNA/efeitos dos fármacos , Vírus da Hepatite B/enzimologia , Vírus da Hepatite B/fisiologia , Humanos , Isoquinolinas/síntese química , Piridinas/química , Piridonas/síntese química , Proteínas Virais/antagonistas & inibidores
7.
Nucleic Acid Ther ; 28(5): 312-317, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30095329

RESUMO

Gapmer antisense oligonucleotides (gapmers) sometimes cleave nontarget pre-mRNAs by recognizing target-like intronic/exonic portions. This off-target RNA cleavage could be a major cause of the hepatotoxicity that is induced by gapmers. In line with these findings, we hypothesized that gapmers with higher specificity have less hepatotoxicity, and that those with lower specificity have greater toxicity. To examine this concept, we investigated various Malat1-targeting gapmers with various computationally evaluated target specificities. We had expected that higher specificity gapmers would have lower hepatotoxicity, but these factors were not significantly related. In silico analysis of gapmer sequences does not always contribute to mitigating the risk of hepatotoxicity. Transcriptome analysis indicated that nontoxic gapmers do not cleave off-target RNAs, although they have many target-like RNA sequences. The present results shed light on the mechanism of the hepatotoxicity of gapmers.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Oligonucleotídeos Antissenso/efeitos adversos , Precursores de RNA/efeitos adversos , RNA Longo não Codificante/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/patologia , Biologia Computacional , Simulação por Computador , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos , Oligonucleotídeos Antissenso/administração & dosagem , Precursores de RNA/administração & dosagem , RNA Longo não Codificante/antagonistas & inibidores , RNA Mensageiro/genética , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
8.
Eur J Med Chem ; 155: 714-724, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29940462

RESUMO

We reported herein the design, synthesis and biological evaluation of a series of 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as HIV-1 reverse transcriptase (RT) ribonuclease H (RNase H) inhibitors using a privileged structure-guided scaffold refining strategy. In view of the similarities between the pharmacophore model of RNase H and integrase (IN) inhibitors as well as their catalytic sites, we also performed IN inhibition assays. Notably, the majority of these derivatives inhibited RNase H and IN at micromolar concentrations. Among them, compound 7a exhibited similar inhibitory activity against RNase H and IN (IC50RNase H = 1.77 µM, IC50IN = 1.18 µM, ratio = 1.50). To the best of our knowledge, this is the first reported dual HIV-1 RNase H-IN inhibitor based on a 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one structure. Molecular modeling has been used to predict the binding mode of 7a in complex with the catalytic cores of HIV-1 RNase H and IN. Taken together these results strongly support the feasibility of developing HIV-1 dual inhibitors from analog-based optimization of divalent metal ion chelators. Recently, the identification of dual inhibitors proved to be a highly effective strategy for novel antivirals discovery. Therefore, these compounds appear to be useful leads that can be further modified to develop more valuable anti-HIV-1 molecules with suitable drug profiles.


Assuntos
Fármacos Anti-HIV/farmacologia , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV/efeitos dos fármacos , Pirazinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H/antagonistas & inibidores , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , HIV/metabolismo , Inibidores de Integrase de HIV/síntese química , Inibidores de Integrase de HIV/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirazinas/síntese química , Pirazinas/química , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Ribonuclease H/metabolismo , Relação Estrutura-Atividade
9.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29643235

RESUMO

We tested three compounds for their ability to inhibit the RNase H (RH) and polymerase activities of HIV-1 reverse transcriptase (RT). A high-resolution crystal structure (2.2 Å) of one of the compounds showed that it chelates the two magnesium ions at the RH active site; this prevents the RH active site from interacting with, and cleaving, the RNA strand of an RNA-DNA heteroduplex. The compounds were tested using a variety of substrates: all three compounds inhibited the polymerase-independent RH activity of HIV-1 RT. Time-of-addition experiments showed that the compounds were more potent if they were bound to RT before the nucleic acid substrate was added. The compounds significantly inhibited the site-specific cleavage required to generate the polypurine tract (PPT) RNA primer that initiates the second strand of viral DNA synthesis. The compounds also reduced the polymerase activity of RT; this ability was a result of the compounds binding to the RH active site. These compounds appear to be relatively specific; they do not inhibit either Escherichia coli RNase HI or human RNase H2. The compounds inhibit the replication of an HIV-1-based vector in a one-round assay, and their potencies were only modestly decreased by mutations that confer resistance to integrase strand transfer inhibitors (INSTIs), nucleoside analogs, or nonnucleoside RT inhibitors (NNRTIs), suggesting that their ability to block HIV replication is related to their ability to block RH cleavage. These compounds appear to be useful leads that can be used to develop more potent and specific compounds.IMPORTANCE Despite advances in HIV-1 treatment, drug resistance is still a problem. Of the four enzymatic activities found in HIV-1 proteins (protease, RT polymerase, RT RNase H, and integrase), only RNase H has no approved therapeutics directed against it. This new target could be used to design and develop new classes of inhibitors that would suppress the replication of the drug-resistant variants that have been selected by the current therapeutics.


Assuntos
Replicação do DNA/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Naftiridinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Naftiridinas/química , Conformação Proteica , Inibidores da Transcriptase Reversa/química
10.
Nucleic Acid Ther ; 28(1): 1-9, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29160746

RESUMO

Nucleic acid therapeutics are an established class of drugs that enable specific targeting of a gene of interest. This diverse family of drugs includes antisense oligonucleotides, siRNAs, and mRNA replacement therapies, which can elicit both gene repression and activation, primarily at the RNA level. Recent advances in medicinal chemistry have increased drug potency and enhanced delivery and distribution to a broad array of tissue and cell types. A key advantage of nucleic acid therapeutics is in their application to monogenic diseases. Cystic fibrosis (CF) is one such disease that affects ∼70,000 people globally. This severe disease is an excellent candidate for nucleic acid therapies, as it is due to a genetic defect in a single epithelial chloride channel. Although CF affects many tissues, the primary cause of patient mortality is lung disease. Here we review the various nucleic acid therapeutic modalities and their mechanisms of action, the opportunities and challenges associated with application of nucleic acid drugs to the lung pathology of CF, and the current state and prospects for nucleic acid drugs for the treatment of CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Canais Epiteliais de Sódio/genética , Terapia Genética/métodos , RNA Mensageiro/genética , Ribonuclease H/genética , Administração por Inalação , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/metabolismo , Técnicas de Transferência de Genes , Humanos , Mutação com Perda de Função , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Splicing de RNA , RNA Mensageiro/administração & dosagem , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo
11.
J Biol Chem ; 292(37): 15216-15224, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28717002

RESUMO

Faithful DNA replication is essential for genome stability. To ensure accurate replication, numerous complex and redundant replication and repair mechanisms function in tandem with the core replication proteins to ensure DNA replication continues even when replication challenges are present that could impede progression of the replication fork. A unique topological challenge to the replication machinery is posed by RNA-DNA hybrids, commonly referred to as R-loops. Although R-loops play important roles in gene expression and recombination at immunoglobulin sites, their persistence is thought to interfere with DNA replication by slowing or impeding replication fork progression. Therefore, it is of interest to identify DNA-associated enzymes that help resolve replication-impeding R-loops. Here, using DNA fiber analysis, we demonstrate that human ribonuclease H1 (RNH1) plays an important role in replication fork movement in the mammalian nucleus by resolving R-loops. We found that RNH1 depletion results in accumulation of RNA-DNA hybrids, slowing of replication forks, and increased DNA damage. Our data uncovered a role for RNH1 in global DNA replication in the mammalian nucleus. Because accumulation of RNA-DNA hybrids is linked to various human cancers and neurodegenerative disorders, our study raises the possibility that replication fork progression might be impeded, adding to increased genomic instability and contributing to disease.


Assuntos
Replicação do DNA , DNA/metabolismo , RNA/metabolismo , Origem de Replicação , Ribonuclease H/metabolismo , Substituição de Aminoácidos , Posicionamento Cromossômico , DNA/química , Dano ao DNA , Período de Replicação do DNA , Regulação da Expressão Gênica , Instabilidade Genômica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hibridização in Situ Fluorescente , Mutação , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA/química , Interferência de RNA , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/genética , Homeostase do Telômero
12.
Artigo em Inglês | MEDLINE | ID: mdl-27956427

RESUMO

Combination therapies are standard for management of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections; however, no such therapies are established for human hepatitis B virus (HBV). Recently, we identified several promising inhibitors of HBV RNase H (here simply RNase H) activity that have significant activity against viral replication in vitro Here, we investigated the in vitro antiviral efficacy of combinations of two RNase H inhibitors with the current anti-HBV drug nucleoside analog lamivudine, with HAP12, an experimental core protein allosteric modulator, and with each other. Anti-HBV activities of the compounds were tested in a HepG2-derived cell line by monitoring intracellular core particle DNA levels, and cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. The antiviral efficiencies of the drug combinations were evaluated using the median-effect equation derived from the mass-action law principle and combination index theorem of Chou and Talalay. We found that combinations of two RNase H inhibitors from different chemical classes were synergistic with lamivudine against HBV DNA synthesis. Significant synergism was also observed for the combination of the two RNase H inhibitors. Combinations of RNase H inhibitors with HAP12 had additive antiviral effects. Enhanced cytotoxicity was not observed in the combination experiments. Because of these synergistic and additive effects, the antiviral activity of combinations of RNase H inhibitors with drugs that act by two different mechanisms and with each other can be achieved by administering the compounds in combination at doses below the respective single drug doses.


Assuntos
Antivirais/farmacologia , Desoxicitidina/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Lamivudina/farmacologia , Ribonuclease H/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Regulação Alostérica , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Sinergismo Farmacológico , Expressão Gênica , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Humanos , Isoquinolinas/farmacologia , Cinética , Ribonuclease H/genética , Ribonuclease H/metabolismo , Sais de Tetrazólio , Tiazóis , Tropolona/análogos & derivados , Tropolona/farmacologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
13.
Antiviral Res ; 135: 24-30, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27693161

RESUMO

Hepatitis B virus (HBV) causes hepatitis, cirrhosis, liver failure, and liver cancer, but the current therapies that employ either nucelos(t)ide analogs or (pegylated)interferon α do not clear the infection in the large majority of patients. Inhibitors of the HBV ribonuclease H (RNaseH) that are being developed with the goal of producing anti-HBV drugs are promising candidates for use in combination with the nucleos(t)ide analogs to improve therapeutic efficacy. HBV is genetically very diverse, with at least 8 genotypes that differ by ≥8% at the sequence level. This diversity is reflected in the viral RNaseH enzyme, raising the possibility that divergent HBV genotypes or isolates may have varying sensitivity to RNaseH inhibitors. To evaluate this possibility, we expressed and purified 18 patient-derived RNaseHs from genotypes B, C, and D. Basal RNaseH activity and sensitivity to three novel RNaseH inhibitors from three different chemotypes were assessed. We also evaluated four consensus HBV RNaseHs to determine if such sequences would be suitable for use in antiviral drug screening. The patient-derived enzymes varied by over 10-fold in their basal RNaseH activities, but they were equivalently sensitive to each of the three inhibitors. Similarly, all four consensus HBV RNaseH enzymes were active and were equally sensitive to an RNaseH inhibitor. These data indicate that a wide range of RNaseH sequences would be suitable for use in antiviral drug screening, and that genotype- or isolate-specific genetic variations are unlikely to present a barrier during antiviral drug development against the HBV RNaseH.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Variação Genética , Vírus da Hepatite B/genética , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo , Avaliação Pré-Clínica de Medicamentos , Genótipo , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/enzimologia , Hepatite B Crônica/tratamento farmacológico , Humanos , Ribonuclease H/genética , Replicação Viral/efeitos dos fármacos
14.
Proc Natl Acad Sci U S A ; 112(22): 6979-84, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26038551

RESUMO

Fragment-based screening methods can be used to discover novel active site or allosteric inhibitors for therapeutic intervention. Using saturation transfer difference (STD) NMR and in vitro activity assays, we have identified fragment-sized inhibitors of HIV-1 reverse transcriptase (RT) with distinct chemical scaffolds and mechanisms compared to nonnucleoside RT inhibitors (NNRTIs) and nucleoside/nucleotide RT inhibitors (NRTIs). Three compounds were found to inhibit RNA- and DNA-dependent DNA polymerase activity of HIV-1 RT in the micromolar range while retaining potency against RT variants carrying one of three major NNRTI resistance mutations: K103N, Y181C, or G190A. These compounds also inhibit Moloney murine leukemia virus RT but not the Klenow fragment of Escherichia coli DNA polymerase I. Steady-state kinetic analyses demonstrate that one of these fragments is a competitive inhibitor of HIV-1 RT with respect to deoxyribonucleoside triphosphate (dNTP) substrate, whereas a second compound is a competitive inhibitor of RT polymerase activity with respect to the DNA template/primer (T/P), and consequently also inhibits RNase H activity. The dNTP competing RT inhibitor retains activity against the NRTI-resistant mutants K65R and M184V, demonstrating a drug resistance profile distinct from the nucleotide competing RT inhibitors indolopyridone-1 (INDOPY-1) and 4-dimethylamino-6-vinylpyrimidine-1 (DAVP-1). In antiviral assays, the T/P competing compound inhibits HIV-1 replication at a step consistent with an RT inhibitor. Screening of additional structurally related compounds to the three fragments led to the discovery of molecules with improved potency against HIV-1 RT. These fragment inhibitors represent previously unidentified scaffolds for development of novel drugs for HIV-1 prevention or treatment.


Assuntos
Descoberta de Drogas/métodos , HIV-1/enzimologia , Pró-Fármacos/isolamento & purificação , Inibidores da Transcriptase Reversa/isolamento & purificação , Inibidores da Transcriptase Reversa/farmacologia , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Espectroscopia de Ressonância Magnética , Pró-Fármacos/análise , Inibidores da Transcriptase Reversa/análise , Ribonuclease H/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Replicação Viral/efeitos dos fármacos
15.
Antiviral Res ; 118: 132-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25862291

RESUMO

Chronic hepatitis B virus (HBV) infection is a leading cause of hepatitis, liver failure, and hepatocellular carcinoma. An outstanding vaccine is available; however, the number of infections remains high. Current anti-HBV treatments with interferon α and nucleos(t)ide analogs clear the infection in only a small minority of patients, and either induce serious side-effects or are of very long duration. HBV is a small, enveloped DNA virus that replicates by reverse transcription via an RNA intermediate. The HBV ribonuclease H (RNaseH) is essential for viral replication, but it has not been exploited as a drug target. Recent low-throughput screening of compound classes with anti-Human Immunodeficiency Virus RNaseH activity led to identification of HBV RNaseH inhibitors in three different chemical families that block HBV replication. These inhibitors are promising candidates for development into new anti-HBV drugs. The RNaseH inhibitors may help improve treatment efficacy enough to clear the virus from the liver when used in combination with existing anti-HBV drugs and/or with other novel inhibitors under development. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."


Assuntos
Antivirais/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Vírus da Hepatite B/efeitos dos fármacos , Ribonuclease H/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Antivirais/metabolismo , Descoberta de Drogas/tendências , Inibidores Enzimáticos/metabolismo , Vírus da Hepatite B/fisiologia , Humanos
16.
J Med Chem ; 58(4): 1915-28, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25629256

RESUMO

The development of HIV-1 dual inhibitors is a highly innovative approach aimed at reducing drug toxic side effects as well as therapeutic costs. HIV-1 integrase (IN) and reverse transcriptase-associated ribonuclease H (RNase H) are both selective targets for HIV-1 chemotherapy, and the identification of dual IN/RNase H inhibitors is an attractive strategy for new drug development. We newly synthesized pyrrolyl derivatives that exhibited good potency against IN and a moderate inhibition of the RNase H function of RT, confirming the possibility of developing dual HIV-1 IN/RNase H inhibitors and obtaining new information for the further development of more effective dual HIV-1 inhibitors.


Assuntos
Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV/efeitos dos fármacos , Pirróis/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H/antagonistas & inibidores , Relação Dose-Resposta a Droga , HIV/enzimologia , Inibidores de Integrase de HIV/síntese química , Inibidores de Integrase de HIV/química , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Estrutura Terciária de Proteína/efeitos dos fármacos , Pirróis/síntese química , Pirróis/química , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Ribonuclease H/metabolismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
17.
J Med Chem ; 56(21): 8588-98, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24124919

RESUMO

The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro. Because of its diketo-acid moiety, we speculated that this chemotype could serve to develop dual inhibitors of both RNase H and integrase. Here, we describe a new series of 1-benzyl-pyrrolyl diketohexenoic derivatives, 7a-y and 8a-y, synthesized following a parallel solution-phase approach. Those 50 analogues have been tested on recombinant enzymes (RNase H and integrase) and in cell-based assays. Approximately half (22) exibited inhibition of HIV replication. Compounds 7b, 7u, and 8g were the most active against the RNase H activity of reverse-transcriptase, with IC50 values of 3, 3, and 2.5 µM, respectively. Compound 8g was also the most potent integrase inhibitor with an IC50 value of 26 nM.


Assuntos
Fármacos Anti-HIV/farmacologia , Inibidores Enzimáticos/farmacologia , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , Cetoácidos/farmacologia , Pirróis/farmacologia , Ribonuclease H/antagonistas & inibidores , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HeLa , Humanos , Cetoácidos/síntese química , Cetoácidos/química , Estrutura Molecular , Pirróis/síntese química , Pirróis/química , Ribonuclease H/metabolismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
18.
Mol Cells ; 36(3): 212-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24008364

RESUMO

A total of 140,000 compounds were screened in a targetfree cell-based high throughput assay against HIV-1 infection, and a subset of 81 promising compounds was identified. Secondary screening of these 81 compounds revealed two putative human RNaseH2 inhibitors, RHI001 and RHI002, with IC50 value of 6.8 µM and 16 µM, respectively. RHI002 showed selective activity against human RNaseH2 while RHI001 inhibited HIV-RNaseH, E. coli RNaseH, and human RNaseH1 with IC50 value of 28.5 µM, 7.9 µM, and 31.7 µM, respectively. Kinetic analysis revealed that both inhibitors had non-competitive inhibitor-like properties. Because RNaseH2 is involved in the etiology of Aicardi-Goutier syndrome and has been suggested as an anticancer drug target, small molecule inhibitors modulating its activity would be useful for investigating the cellular function of this molecule.


Assuntos
Fármacos Anti-HIV/farmacologia , Inibidores Enzimáticos/farmacologia , HIV-1/efeitos dos fármacos , Pirimidinas/farmacologia , Ribonuclease H/antagonistas & inibidores , Tiofenos/farmacologia , Fármacos Anti-HIV/química , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/etiologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inibidores , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Estrutura Molecular , Malformações do Sistema Nervoso/tratamento farmacológico , Malformações do Sistema Nervoso/etiologia , Pirimidinas/química , Ribonuclease H/genética , Ribonuclease H/metabolismo , Ribonuclease H do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Ribonucleases , Tiofenos/química
19.
Antiviral Res ; 99(3): 221-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23796982

RESUMO

Hepatitis B virus (HBV) is a hepatotropic DNA virus that replicates by reverse transcription. It chronically infects >350 million people and kills about 1 million patients annually. Therapy primarily employs nucleos(t)ide analogs that suppress viral DNA synthesis by the viral reverse transcriptase very well but that rarely cure the infection, so additional therapies are needed. Reverse transcription requires the viral ribonuclease H (RNAseH) to destroy the viral RNA after it has been copied into DNA. We recently produced active recombinant HBV RNAseH and demonstrated that Human Immunodeficiency Virus (HIV) RNAseH antagonists could inhibit the HBV enzyme at a high frequency. Here, we extended these results to ß-thujaplicinol, a hydroxylated tropolone which inhibits the HIV RNAseH. ß-Thujaplicinol inhibited RNAseHs from HBV genotype D and H in biochemical assays with IC50 values of 5.9±0.7 and 2.3±1.7 µM, respectively. It blocked replication of HBV genotypes A and D in culture by inhibiting the RNAseH activity with an estimated EC50 of ∼5 µM and a CC50 of 10.1±1. 7 µM. Activity of ß-thujaplicinol against RNAseH sequences from multiple HBV genotypes implies that if chemical derivatives of ß-thujaplicinol with improved efficacy and reduced toxicity can be identified, they would have promise as anti-HBV agents.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Ribonuclease H/antagonistas & inibidores , Tropolona/análogos & derivados , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Linhagem Celular Tumoral , Hepatite B/virologia , Vírus da Hepatite B/enzimologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Ribonuclease H/genética , Ribonuclease H/metabolismo , Tropolona/farmacologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
20.
Analyst ; 138(11): 3238-45, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23608820

RESUMO

As a highly conserved damage repair protein, except for hydrolysis of DNA-RNA heteroduplex endonucleolytically, RNase H can cleave RNA-DNA junctions in Okazaki fragment processing through its junction ribonuclease (JRNase) activity. We report here a real time fluorescence method for detecting JRNase activity of RNase H with high accuracy by applying chimeric molecular beacons as substrates. The detection limit of E. coli RNase H is 0.5 U ml(-1). The Km and kcat are 20 nM and 0.6 s(-1), respectively. In addition, we used the method to investigate the effect of chemical drugs on the enzyme and found that both penicillin and streptomycin sulfate inhibit its activity with the IC50 values of 0.2 and 0.07 mM, respectively. Finally, we applied the method to reliably detect the JRNase level in tumor cells. In summary, these data indicate that the simple, rapid and sensitive method can be hopefully applied for high-throughput detection of samples and drug screening in vitro.


Assuntos
Ensaios Enzimáticos/métodos , Sondas de Oligonucleotídeos/metabolismo , Ribonuclease H/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Humanos , Cinética , Sondas de Oligonucleotídeos/genética , Ribonuclease H/antagonistas & inibidores , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA