Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
1.
Parasitology ; 151(3): 260-270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38105713

RESUMO

Schistosomiasis, a parasite infectious disease caused by Schistosoma japonicum, often leads to egg granuloma and fibrosis due to the inflammatory reaction triggered by egg antigens released in the host liver. This study focuses on the role of the egg antigens CP1412 protein of S. japonicum (SjCP1412) with RNase activity in promoting liver fibrosis. In this study, the recombinant egg ribonuclease SjCP1412, which had RNase activity, was successfully prepared. By analysing the serum of the population, it has been proven that the anti-SjCP1412 IgG in the serum of patients with advanced schistosomiasis was moderately correlated with liver fibrosis, and SjCP1412 may be an important antigen associated with liver fibrosis in schistosomiasis. In vitro, the rSjCP1412 protein induced the human liver cancer cell line Hep G2 and liver sinusoidal endothelial cells apoptosis and necrosis and the release of proinflammatory damage-associated molecular patterns (DAMPs). In mice infected with schistosomes, rSjCP1412 immunization or antibody neutralization of SjCP1412 activity significantly reduced cell apoptosis and necroptosis in liver tissue, thereby reducing inflammation and liver fibrosis. In summary, the SjCP1412 protein plays a crucial role in promoting liver fibrosis during schistosomiasis through mediating the liver cells apoptosis and necroptosis to release DAMPs inducing an inflammatory reaction. Blocking SjCP1412 activity could inhibit its proapoptotic and necrotic effects and alleviate hepatic fibrosis. These findings suggest that SjCP1412 may be served as a promising drug target for managing liver fibrosis in schistosomiasis japonica.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Humanos , Camundongos , Animais , Esquistossomose Japônica/complicações , Esquistossomose Japônica/parasitologia , Ribonucleases/metabolismo , Ribonucleases/farmacologia , Células Endoteliais , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Fígado/patologia , Inflamação/patologia
2.
Int J Biol Sci ; 19(10): 2957-2973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416781

RESUMO

The secretory enzyme human ribonuclease 1 (RNase1) is involved in innate immunity and anti-inflammation, achieving host defense and anti-cancer effects; however, whether RNase1 contributes to adaptive immune response in the tumor microenvironment (TME) remains unclear. Here, we established a syngeneic immunocompetent mouse model in breast cancer and demonstrated that ectopic RNase1 expression significantly inhibited tumor progression. Overall changes in immunological profiles in the mouse tumors were analyzed by mass cytometry and showed that the RNase1-expressing tumor cells significantly induced CD4+ Th1 and Th17 cells and natural killer cells and reduced granulocytic myeloid-derived suppressor cells, supporting that RNase1 favors an antitumor TME. Specifically, RNase1 increased expression of T cell activation marker CD69 in a CD4+ T cell subset. Notably, analysis of cancer-killing potential revealed that T cell-mediated antitumor immunity was enhanced by RNase1, which further collaborated with an EGFR-CD3 bispecific antibody to protect against breast cancer cells across molecular subtypes. Our results uncover a tumor-suppressive role of RNase1 through adaptive immune response in breast cancer in vivo and in vitro, providing a potential treatment strategy of combining RNase1 with cancer immunotherapies for immunocompetent patients.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/patologia , Ribonucleases/farmacologia , Imunidade Adaptativa , Ativação Linfocitária , Linfócitos T , Microambiente Tumoral , Linhagem Celular Tumoral
3.
Mol Biol (Mosk) ; 56(5): 764-773, 2022.
Artigo em Russo | MEDLINE | ID: mdl-36165015

RESUMO

Treatment of malignant neoplasms often requires the use of combinations of chemotherapeutic agents. However, in order to select combinations that are effective against specific tumor cells, it is necessary to understand the mechanisms of action of the drugs that make up the combination. Bacillus pumilus ribonuclease (binase) is considered as an adjuvant antitumor agent, and the sensitivity of malignant cells to the apoptogenic effect of binase depends on the presence of certain oncogenes. In the acute myelogenous leukemia cell line Kasumi-1, binase blocks the proliferation pathway mediated by the mutant tyrosine kinase KIT, which, as shown in our work, activates an alternative proliferation pathway through AKT kinase. In Kasumi-1 cells, binase in combination with an Akt1/2 inhibitor induces apoptosis, and their toxic effects add up: the Akt1/2 inhibitor blocks the binase-induced pathway after suppression of the KIT-dependent pathway. Thus, a combination of binase and AKT kinase inhibitors can effectively block various pathways of tumor cell proliferation and be used for their elimination.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-akt , Antineoplásicos/farmacologia , Apoptose , Endorribonucleases/metabolismo , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Ribonucleases/genética , Ribonucleases/farmacologia
4.
Food Chem ; 396: 133655, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868286

RESUMO

Ribotoxin-like proteins (RL-Ps) represent a novel specific ribonuclease family found in edible mushrooms and are able to inhibit protein synthesis. Here, we report the characterization and cytotoxic effects of four novel RL-Ps, named eryngitins, isolated from fruiting bodies of the king oyster mushroom (Pleurotus eryngii). These proteins induced formation of α-fragment from rabbit ribosomes, characteristic of their enzymatic action. The two 15 kDa eryngitins (3 and 4) are considerably more thermostable than the 21 kDa ones (1 and 2), however their overall structural features, as determined by far-UV CD spectrometry, are similar. Complete in vitro digestibility by pepsin-trypsin, and lack of cytotoxicity towards human HUVEC cells suggest low toxicity of eryngitins, if ingested. However, eryngitins exhibit cytotoxic action against insect Sf9 cells, suggesting their possible use in biotechnological applications as bioinsecticides. This cytotoxicity was not enhanced in the presence of cytolytic protein complexes based on aegerolysin proteins from Pleurotus mushrooms.


Assuntos
Agaricales , Antineoplásicos , Pleurotus , Agaricales/química , Animais , Antineoplásicos/farmacologia , Humanos , Pleurotus/química , Coelhos , Ribonucleases/química , Ribonucleases/metabolismo , Ribonucleases/farmacologia
5.
Chembiochem ; 23(15): e202200220, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35676201

RESUMO

Ribonuclease S (RNase S) is an enzyme that exhibits anticancer activity by degrading RNAs within cancer cells; however, the cellular uptake efficiency is low due to its small molecular size. Here we generated RNase S-decorated artificial viral capsids with a size of 70-170 nm by self-assembly of the ß-annulus-S-peptide followed by reconstitution with S-protein at neutral pH. The RNase S-decorated artificial viral capsids are efficiently taken up by HepG2 cells and exhibit higher RNA degradation activity in cells compared with RNase S alone. Cell viability assays revealed that RNase S-decorated capsids have high anticancer activity comparable to that of standard anticancer drugs.


Assuntos
Capsídeo , Ribonucleases , Proteínas do Capsídeo/química , Peptídeos/química , Ribonucleases/farmacologia
6.
Curr Cancer Drug Targets ; 22(5): 373-387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35240973

RESUMO

Ribonucleases (RNases) are a superfamily of enzymes that have been extensively studied since the 1960s. For a long time, this group of secretory enzymes was studied as an important model for protein chemistry such as folding, stability, and enzymatic catalysis. Since it was discovered that RNases displayed cytotoxic activity against several types of malignant cells, recent investigation has focused mainly on the biological functions and medical applications of engineered RNases. In this review, we describe the structures, functions, and mechanisms of antitumor activity of RNases. They operate at the crossroads of transcription and translation, preferentially degrading tRNA. As a result, this inhibits protein synthesis, induces apoptosis, and causes the death of cancer cells. This effect can be enhanced thousands of times when RNases are conjugated with monoclonal antibodies. Such combinations, called immunoRNases, have demonstrated selective antitumor activity against cancer cells both in vitro and in animal models. This review summarizes the current status of engineered RNases and immunoRNases as promising novel therapeutic agents for different types of cancer. Also, we describe our experimental results from published or previously unpublished research and compare them with other scientific information.


Assuntos
Antineoplásicos , Neoplasias , Animais , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Humanos , Neoplasias/tratamento farmacológico , Ribonucleases/metabolismo , Ribonucleases/farmacologia
7.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163570

RESUMO

Onconase (ONC) is an amphibian secretory ribonuclease displaying cytostatic and cytotoxic activities against many mammalian tumors, including melanoma. ONC principally damages tRNA species, but also other non-coding RNAs, although its precise targets are not known. We investigated the ONC ability to modulate the expression of 16 onco-suppressor microRNAs (miRNAs) in the A375 BRAF-mutated melanoma cell line. RT-PCR and immunoblots were used to measure the expression levels of miRNAs and their regulated proteins, respectively. In silico study was carried out to verify the relations between miRNAs and their mRNA targets. A375 cell transfection with miR-20a-3p and miR-34a-5p mimics or inhibitors was performed. The onco-suppressors miR-20a-3p, miR-29a-3p and miR-34a-5p were highly expressed in 48-h ONC-treated A375 cells. The cytostatic effect of ONC in A375 cells was mechanistically explained by the sharp inhibition of cyclins D1 and A2 expression level, as well as by downregulation of retinoblastoma protein and cyclin-dependent-kinase-2 activities. Remarkably, the expression of kinases ERK1/2 and Akt, as well as of the hypoxia inducible factor-1α, was inhibited by ONC. All these proteins control pro-survival pathways. Finally, many crucial proteins involved in migration, invasion and metastatic potential were downregulated by ONC. Results obtained from transfection of miR-20a-3p and miR-34a-5p inhibitors in the presence of ONC show that these miRNAs may participate in the antitumor effects of ONC in the A375 cell line. In conclusion, we identified many intracellular downregulated proteins involved in melanoma cell proliferation, metabolism and progression. All mRNAs coding these proteins may be targets of miR-20a-3p, miR-29a-3p and/or miR-34a-5p, which are in turn upregulated by ONC. Data suggest that several known ONC anti-proliferative and anti-metastatic activities in A375 melanoma cells might depend on the upregulation of onco-suppressor miRNAs. Notably, miRNAs stability depends on the upstream regulation by long-non-coding-RNAs or circular-RNAs that can, in turn, be damaged by ONC ribonucleolytic activity.


Assuntos
Redes Reguladoras de Genes/efeitos dos fármacos , Melanoma/genética , MicroRNAs/genética , Ribonucleases/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Regulação para Baixo , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Regulação para Cima
8.
Glycoconj J ; 39(2): 157-165, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35066741

RESUMO

Sialic-acid binding lectin from bullfrog (Rana catesbeiana) eggs, cSBL, is a cytotoxic ribonuclease (RNase) belonging to the RNase A superfamily. cSBL is cytotoxic to tumor cells, such as malignant pleural mesothelioma by inducing apoptotic cell death caused by the degradation of RNA in tumor cells. In addition, we have reported some data that cSBL could be involved in the endoplasmic reticulum stress pathway, and it was also assumed to cause apoptotic cell death. The most significant property of cSBL is its specificity toward malignant cells. Furthermore, since the antitumor activity of cSBL was confirmed by in vivo experiments using mouse xenograft models, it is expected to be a candidate for clinical chemotherapy. Here, we summarize the history of cSBL, alternatively called "leczyme," with its present and future.


Assuntos
Antineoplásicos , Apoptose , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Lectinas/metabolismo , Camundongos , Rana catesbeiana/metabolismo , Ribonucleases/metabolismo , Ribonucleases/farmacologia , Ribonucleases/uso terapêutico
9.
Life Sci ; 289: 120222, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34902436

RESUMO

In order to overcome limitations of conventional cancer therapy methods, immunotoxins with the capability of target-specific action have been designed and evaluated pre-clinically, and some of them are in clinical studies. Targeting cancer cells via antibodies specific for tumour-associated surface proteins is a new biomedical approach that could provide the selectivity that is lacking in conventional cancer therapy methods such as radiotherapy and chemotherapy. A successful example of an approved immunotoxin is represented by immunoRNases. ImmunoRNases are fusion proteins in which the toxin has been replaced by a ribonuclease. Conjugation of RNase molecule to monoclonal antibody or antibody fragment was shown to enhance specific cell-killing by several orders of magnitude, both in vitro and in animal models. There are several RNases obtained from different mammalian cells that are expected to be less immunogenic and systemically toxic. In fact, RNases are pro-toxins which become toxic only upon their internalization in target cells mediated by the antibody moiety. The structure and large size of the antibody molecules assembled with the immunoRNases have always been a challenge in the application of immunoRNases as an antitoxin. To overcome this obstacle, we have offered a new strategy for the application of immunoRNases as a promising approach for upgrading immunoRNAses with maximum affinity and high stability in the cell, which can ultimately act as an effective large-scale cancer treatment. In this review, we introduce the optimized antibody-like molecules with small size, approximately 10 kD, which are presumed to significantly enhance RNase activity and be a suitable agent with the potential for anti-cancer functionality. In addition, we also discuss new molecular entities such as monobody, anticalin, nonobody and affilin as refined versions in the development of immunoRNases. These small molecules express their functionality with the suitable small size as well as with low immunogenicity in the cell, as a part of immunoRNases.


Assuntos
Antineoplásicos Imunológicos , Antineoplásicos , Imunotoxinas , Neoplasias , Proteínas Recombinantes de Fusão , Ribonucleases , Animais , Antineoplásicos/imunologia , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Humanos , Imunotoxinas/genética , Imunotoxinas/imunologia , Imunotoxinas/farmacocinética , Imunotoxinas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia , Ribonucleases/genética , Ribonucleases/imunologia , Ribonucleases/farmacocinética , Ribonucleases/farmacologia
10.
J Biochem ; 170(4): 473-482, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33993266

RESUMO

Ageritin is the prototype of a new ribotoxin-like protein family, which has been recently identified also in basidiomycetes. The protein exhibits specific RNase activity through the cleavage of a single phosphodiester bond located at sarcin/ricin loop of the large rRNA, thus inhibiting protein biosynthesis at early stages. Conversely to other ribotoxins, its activity requires the presence of divalent cations. In the present study, we report the activity of Ageritin on both prokaryotic and eukaryotic cells showing that the protein has a prominent effect on cancer cells viability and no effects on eukaryotic and bacterial cells. In order to rationalize these findings, the ability of the protein to interact with various liposomes mimicking normal, cancer and bacterial cell membranes was explored. The collected results indicate that Ageritin can interact with DPPC/DPPS/Chol vesicles, used as a model of cancer cell membranes, and with DPPC/DPPG vesicles, used as a model of bacterial cell membranes, suggesting a selective interaction with anionic lipids. However, a different perturbation of the two model membranes, mediated by cholesterol redistribution, was observed and this might be at the basis of Ageritin selective toxicity towards cancer cells.


Assuntos
Membrana Celular/metabolismo , Micotoxinas/farmacologia , Neoplasias/metabolismo , Ribonucleases/farmacologia , Agrocybe/química , Animais , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Basidiomycota/química , Calorimetria/métodos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colesterol/metabolismo , Lipossomos/metabolismo , Camundongos , Micotoxinas/toxicidade , Neoplasias/tratamento farmacológico , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico/metabolismo , Ribonucleases/metabolismo , Ribonucleases/toxicidade , Ribossomos/metabolismo
11.
Toxins (Basel) ; 13(4)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917246

RESUMO

Ageritin is a specific ribonuclease, extracted from the edible mushroom Cyclocybe aegerita (synonym Agrocybe aegerita), which cleaves a single phosphodiester bond located within the universally conserved alpha-sarcin loop (SRL) of 23-28S rRNAs. This cleavage leads to the inhibition of protein biosynthesis, followed by cellular death through apoptosis. The structural and enzymatic properties show that Ageritin is the prototype of a novel specific ribonucleases family named 'ribotoxin-like proteins', recently found in fruiting bodies of other edible basidiomycetes mushrooms (e.g., Ostreatin from Pleurotus ostreatus, Edulitins from Boletus edulis, and Gambositin from Calocybe gambosa). Although the putative role of this toxin, present in high amount in fruiting body (>2.5 mg per 100 g) of C. aegerita, is unknown, its antifungal and insecticidal actions strongly support a role in defense mechanisms. Thus, in this review, we focus on structural, biological, antipathogenic, and enzymatic characteristics of this ribotoxin-like protein. We also highlight its biological relevance and potential biotechnological applications in agriculture as a bio-pesticide and in biomedicine as a therapeutic and diagnostic agent.


Assuntos
Agaricales/enzimologia , Carpóforos/enzimologia , Micotoxinas/metabolismo , Ribonucleases/metabolismo , Agaricales/genética , Animais , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Agentes de Controle Biológico/farmacologia , Carpóforos/genética , Humanos , Micotoxinas/genética , Micotoxinas/farmacologia , Filogenia , Conformação Proteica , Ribonucleases/genética , Ribonucleases/farmacologia , Relação Estrutura-Atividade
12.
J Cell Physiol ; 236(6): 4303-4312, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33421131

RESUMO

The overexpression of epidermal growth factor receptor (EGFR) could result in the development of solid tumors of prostate, breast, gastric, colorectal, ovarian, and head and neck, leading to carcinoma. Antibody therapies are ideal methods to overcome malignant diseases. However, immunoribonucleases are a new generation of antibodies in which an RNase binds to a specific antibody and shows a stronger ability to terminate cancer cells. In this study, we engineered Rana pipiens RNase to bind to the scFv of human antiepidermal growth factor receptor antibody. The molecular dynamic simulations confirmed protein stability and the ability of scFv-ranpirnase (rantoxin) to bind to epidermal growth factor receptor protein. Then, the rantoxin construct was synthesized in a pCDNA 3.1 Neo vector. CHO-K1 cells were used as expression hosts and the construct was transfected. Cells were selected by antibiotic therapies using neomycin, 120 mg/ml, and the high-yield colony was screened by real-time polymerase chain reaction (PCR) methods. Then, the recombinant protein production was confirmed using the sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blot analyses. The molecular dynamic simulation (MDS) confirmed that the I467, S468, Q408, and H409 amino acids of EGFR bonded well to rantoxin. As revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analyses, the rantoxin production and PCR analysis showed that the T3 colony can produce rantoxin messenger RNA fourfold higher than the GAPDH gene. The immunotoxin function was assessed in A431 cancer cells and EGFR-negative HEK293 cells, and IC50  values were estimated to be 22.4 ± 3 and >620.4 ± 5 nM, respectively. The results indicated that the immunotoxins produced in this study had the potential for use as anticancer drugs.


Assuntos
Proteínas de Anfíbios/farmacologia , Antineoplásicos Imunológicos/farmacologia , Imunotoxinas/farmacologia , Engenharia de Proteínas , Ribonucleases/farmacologia , Anticorpos de Cadeia Única/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Antineoplásicos Imunológicos/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação de Anticorpos , Células CHO , Linhagem Celular Tumoral , Cricetulus , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Imunotoxinas/genética , Imunotoxinas/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Rana pipiens , Ribonucleases/genética , Ribonucleases/metabolismo , Anticorpos de Cadeia Única/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia
13.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008522

RESUMO

Bacterial resistance to antibiotics urges the development of alternative therapies. Based on the structure-function of antimicrobial members of the RNase A superfamily, we have developed a hybrid enzyme. Within this family, RNase 1 exhibits the highest catalytic activity and the lowest cytotoxicity; in contrast, RNase 3 shows the highest bactericidal action, alas with a reduced catalytic activity. Starting from both parental proteins, we designed a first RNase 3/1-v1 chimera. The construct had a catalytic activity much higher than RNase 3, unfortunately without reaching an equivalent antimicrobial activity. Thus, two new versions were created with improved antimicrobial properties. Both of these versions (RNase 3/1-v2 and -v3) incorporated an antimicrobial loop characteristic of RNase 3, while a flexible RNase 1-specific loop was removed in the latest construct. RNase 3/1-v3 acquired both higher antimicrobial and catalytic activities than previous versions, while retaining the structural determinants for interaction with the RNase inhibitor and displaying non-significant cytotoxicity. Following, we tested the constructs' ability to eradicate macrophage intracellular infection and observed an enhanced ability in both RNase 3/1-v2 and v3. Interestingly, the inhibition of intracellular infection correlates with the variants' capacity to induce autophagy. We propose RNase 3/1-v3 chimera as a promising lead for applied therapeutics.


Assuntos
Anti-Infecciosos , Ribonucleases , Animais , Humanos , Camundongos , Sequência de Aminoácidos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Autofagia/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Farmacorresistência Bacteriana/efeitos dos fármacos , Células Hep G2 , Células RAW 264.7 , Ribonucleases/farmacologia
15.
Biomolecules ; 11(1)2020 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375305

RESUMO

Bacterial ribonuclease binase exhibits a cytotoxic effect on tumor cells possessing certain oncogenes. The aim of this study was to identify the structural parts of the binase molecule that exert cytotoxicity. Out of five designed peptides, the peptides representing the binase regions 21-50 and 74-94 have the highest cytotoxic potential toward human cervical HeLa and breast BT-20 and MCF-7 cancer cells. The peptides B21-50 and B74-94 were not able to enter human lung adenocarcinoma A549 cells, unlike BT-20 cells, explaining their failure to inhibit A549 cell proliferation. The peptide B74-94 shares similarities with epidermal growth factor (EGF), suggesting the peptide's specificity for EGF receptor overexpressed in BT-20 cells. Thus, the binase-derived peptides have the potential of being further developed as tumor-targeting peptides.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia , Ribonucleases/química , Apoptose/efeitos dos fármacos , Endorribonucleases/química , Endorribonucleases/farmacologia , Células HeLa , Humanos , Células MCF-7 , Neoplasias/genética , Peptídeos/química , Ribonucleases/farmacologia
16.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352806

RESUMO

Recent studies performed on the invertebrate model Hirudo verbana (medicinal leech) suggest that the T2 ribonucleic enzyme HvRNASET2 modulates the leech's innate immune response, promoting microbial agglutination and supporting phagocytic cells recruitment in challenged tissues. Indeed, following injection of both lipoteichoic acid (LTA) and Staphylococcus aureus in the leech body wall, HvRNASET2 is expressed by leech type I granulocytes and induces bacterial aggregation to aid macrophage phagocytosis. Here, we investigate the HvRNASET2 antimicrobial role, in particular assessing the effects on the Gram-negative bacteria Escherichia coli. For this purpose, starting from the three-dimensional molecule reconstruction and in silico analyses, the antibacterial activity was evaluated both in vitro and in vivo. The changes induced in treated bacteria, such as agglutination and alteration in wall integrity, were observed by means of light, transmission and scanning electron microscopy. Moreover, immunogold, AMPs (antimicrobial peptides) and lipopolysaccharide (LPS) binding assays were carried out to evaluate HvRNASET2 interaction with the microbial envelopes and the ensuing ability to affect microbial viability. Finally, in vivo experiments confirmed that HvRNASET2 promotes a more rapid phagocytosis of bacterial aggregates by macrophages, representing a novel molecule for counteracting pathogen infections and developing alternative solutions to improve human health.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Hirudo medicinalis/crescimento & desenvolvimento , Viabilidade Microbiana/efeitos dos fármacos , Ribonucleases/química , Ribonucleases/farmacologia , Aglutinação , Sequência de Aminoácidos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Hirudo medicinalis/efeitos dos fármacos , Hirudo medicinalis/metabolismo , Imageamento Tridimensional , Imunidade Inata , Macrófagos/efeitos dos fármacos , Fagocitose , Conformação Proteica , Homologia de Sequência de Aminoácidos
17.
Biomolecules ; 10(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147876

RESUMO

The important role of miRNA in cell proliferation and differentiation has raised interest in exogenous ribonucleases (RNases) as tools to control tumour-associated intracellular and extracellular miRNAs. In this work, we evaluated the effects of the RNase binase from Bacillus pumilus on small non-coding regulatory RNAs in the context of mouse RLS40 lymphosarcoma inhibition. In vitro binase exhibited cytotoxicity towards RLS40 cells via apoptosis induction through caspase-3/caspase-7 activation and decreased the levels of miR-21a, let-7g, miR-31 and miR-155. Intraperitoneal injections of binase in RLS40-bearing mice resulted in the retardation of primary tumour growth by up to 60% and inhibition of metastasis in the liver by up to 86%, with a decrease in reactive inflammatory infiltration and mitosis in tumour tissue. In the blood serum of binase-treated mice, decreases in the levels of most studied miRNAs were observed, excluding let-7g, while in tumour tissue, the levels of oncomirs miR-21, miR-10b, miR-31 and miR-155, and the oncosuppressor let-7g, were upregulated. Analysis of binase-susceptible miRNAs and their regulatory networks showed that the main modulated events were transcription and translation control, the cell cycle, cell proliferation, adhesion and invasion, apoptosis and autophagy, as well as some other tumour-related cascades, with an impact on the observed antitumour effects.


Assuntos
Endorribonucleases/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Linfoma não Hodgkin/tratamento farmacológico , Ribonucleases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Bacillus pumilus/enzimologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Endorribonucleases/química , Endorribonucleases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/terapia , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/patologia , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Ribonucleases/química , Ribonucleases/genética
18.
Int Immunopharmacol ; 85: 106608, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447222

RESUMO

The present study was aimed to reveal the function of extracellular RNAs (exRNAs) in retinal ischemia reperfusion (I/R) injury, and evaluate whether RNase administration can effectivelyreduce I/Rinjury. A retinal I/R injury C57BL/6J wild-type mice model was established by elevating intraocular pressure for 1 h. All mice received 3 doses of RNase or the same dose of normal saline at different time points. After 7 days of reperfusion, retinal damage was quantified by counting retinal ganglion cells and measuring retinal layer thickness. The apoptotic retinal cells were detected by the TUNEL experiment, and the expressions of caspase-3, proinflammatory cytokines in retinal tissues, and glial fibrillary acidic protein (GFAP) protein and mRNA were detected to determine the underlying mechanism. It was found that RNase administration (1) reduced the significant loss of retinal morphology caused by I/R injury; (2) down-regulated the expression of NF-κBp65, IL-6 and GFAP relative to the I/R mice; (3) decreased the apoptosis of retinal cells and the levels of caspase-3; (4) attenuated exRNAs levels in retinal tissues on day 7 after retinal I/R. In short, increased exRNAs may contribute to retinal I/R damages in mice, and RNase therapy can effectively attenuate retinal damage by reducing inflammatory response and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Retina/lesões , Ribonucleases/farmacologia , Animais , Vesículas Extracelulares/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , RNA/sangue , RNA/genética , RNA/metabolismo , Traumatismo por Reperfusão/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Neurônios Retinianos/efeitos dos fármacos , Ribonucleases/uso terapêutico , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
19.
Mol Biol (Mosk) ; 54(1): 146-152, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32163398

RESUMO

Migration of cancer cells from the primary tumor site to nearby tissues is the starting point of the metastatic process. The invasive properties of cells are especially important for carcinomas, since tumor cells need to overcome the basement membrane and go beyond its boundaries to the underlying tissues. Substances that reduce the invasive ability of malignant cells are promising as antimetastatic agents. In the present work, the possibility of inhibiting the ability of different cancer cell lines to migrate under the influence of the Bacillus pumilus ribonuclease (binase) was analyzed using the scratch-wound assay. It was established that binase at non-toxic concentrations (10 µg/mL) reliably suppressed the migratory ability of HuTu 80 human duodenum adenocarcinoma cells incubated with RNase for 48-72 h. The antimetastatic potential of binase is confirmed by molecular modeling data demonstrating the ability of binase to inhibit cellular metalloproteinases that determine the migration of tumor cells.


Assuntos
Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Movimento Celular/efeitos dos fármacos , Duodeno/patologia , Ribonucleases/metabolismo , Ribonucleases/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo
20.
Viruses ; 12(2)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033253

RESUMO

Currently, no rabies virus-specific antiviral drugs are available. Ranpirnase has strong antitumor and antiviral properties associated with its ribonuclease activity. TMR-001, a proprietary bulk drug substance solution of ranpirnase, was evaluated against rabies virus in three cell types: mouse neuroblastoma, BSR (baby hamster kidney cells), and bat primary fibroblast cells. When TMR-001 was added to cell monolayers 24 h preinfection, rabies virus release was inhibited for all cell types at three time points postinfection. TMR-001 treatment simultaneous with infection and 24 h postinfection effectively inhibited rabies virus release in the supernatant and cell-to-cell spread with 50% inhibitory concentrations of 0.2-2 nM and 20-600 nM, respectively. TMR-001 was administered at 0.1 mg/kg via intraperitoneal, intramuscular, or intravenous routes to Syrian hamsters beginning 24 h before a lethal rabies virus challenge and continuing once per day for up to 10 days. TMR-001 at this dose, formulation, and route of delivery did not prevent rabies virus transit from the periphery to the central nervous system in this model (n = 32). Further aspects of local controlled delivery of other active formulations or dose concentrations of TMR-001 or ribonuclease analogues should be investigated for this class of drugs as a rabies antiviral therapeutic.


Assuntos
Antivirais/farmacologia , Vírus da Raiva/efeitos dos fármacos , Ribonucleases/farmacologia , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Células Cultivadas , Quirópteros , Cricetinae , Feminino , Fibroblastos/virologia , Mesocricetus , Camundongos , Raiva/prevenção & controle , Vírus da Raiva/fisiologia , Ribonucleases/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA