Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(18): 168211, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481159

RESUMO

Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) is a multifunctional RNA-binding protein that is associated with neurodegenerative diseases, such as amyotrophic lateral sclerosis and multisystem proteinopathy. In this study, we have used cryo-electron microscopy to investigate the three-dimensional structure of amyloid fibrils from full-length hnRNPA1 protein. We find that the fibril core is formed by a 45-residue segment of the prion-like low-complexity domain of the protein, whereas the remaining parts of the protein (275 residues) form a fuzzy coat around the fibril core. The fibril consists of two fibril protein stacks that are arranged into a pseudo-21 screw symmetry. The ordered core harbors several of the positions that are known to be affected by disease-associated mutations, but does not encompass the most aggregation-prone segments of the protein. These data indicate that the structures of amyloid fibrils from full-length proteins may be more complex than anticipated by current theories on protein misfolding.


Assuntos
Amiloide , Ribonucleoproteína Nuclear Heterogênea A1 , Amiloide/química , Microscopia Crioeletrônica/métodos , Ribonucleoproteína Nuclear Heterogênea A1/química , Mutação , Príons/química , Domínios Proteicos
2.
Int J Mol Sci ; 22(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071140

RESUMO

THeterogeneous nuclear ribonucleoprotein (HNRNP) A1 is the most abundant and ubiquitously expressed member of the HNRNP protein family. In recent years, it has become more evident that HNRNP A1 contributes to the development of neurodegenerative diseases. However, little is known about the underlying role of HNRNP A1 in cancer development. Here, we report that HNRNP A1 expression is significantly increased in lung cancer tissues and is negatively correlated with the overall survival of patients with lung cancer. Additionally, HNRNP A1 positively regulates vaccinia-related kinase 1 (VRK1) translation via binding directly to the 3' untranslated region (UTR) of VRK1 mRNA, thus increasing cyclin D1 (CCND1) expression by VRK1-mediated phosphorylation of the cAMP response element-binding protein (CREB). Furthermore, HNRNP A1 binding to the cis-acting region of the 3'UTR of VRK1 mRNA contributes to increased lung cancer cell proliferation. Thus, our study unveils a novel role of HNRNP A1 in lung carcinogenesis via post-transcriptional regulation of VRK1 expression and suggests its potential as a therapeutic target for patients with lung cancer.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/fisiologia , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , Regiões 3' não Traduzidas , Sequência de Bases , Sistemas CRISPR-Cas , Ciclo Celular , Linhagem Celular , Ciclina D1/biossíntese , Ciclina D1/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Ribonucleoproteína Nuclear Heterogênea A1/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/biossíntese , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Regulação para Cima
3.
Methods Mol Biol ; 2141: 685-702, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32696384

RESUMO

Liquid-liquid phase separation (LLPS) underlies the formation of biomolecular condensates, i.e., membrane-less compartments in cells that carry out functions related to RNA metabolism, stress adaptation, transport, or signaling. Examples of such biomolecular condensates are the nucleolus, nuclear speckles, promyelocytic leukemia protein (PML) bodies and paraspeckles in the nucleus, and stress granules and P bodies in the cytoplasm. Other structures in cells that are not typically viewed as bona fide compartments also seem to be formed via LLPS as recently elucidated, including heterochromatin, super-enhancers, and membrane receptor clusters. Key protein and/or RNA components of these biomolecular condensates form a scaffold via LLPS. Other constituents incorporate into this scaffold as clients. To understand the sequence features and interactions that mediate biomolecular condensate formation in cells, it is useful to quantify phase separation of pure components in vitro. Microscopy and turbidity measurements can be used to determine the concentration of a protein above which it phase separates, the so-called saturation concentration. Here, we describe experiments for the determination of full coexistence lines of phase-separating proteins by centrifugation. Coexistence lines are reconstructed from coexisting light and dense phase concentrations of the protein, and we present them as so-called phase diagrams. Phase diagrams allow the quantitative comparison of phase separation for proteins and their mutants under different conditions. They are thus important for our nuanced understanding of the driving forces underlying liquid-liquid phase separation in vitro. Such results have direct applicability for understanding phase separation-driven compartmentalization of cells.


Assuntos
Centrifugação/métodos , Proteínas Intrinsicamente Desordenadas/química , Artefatos , Compartimento Celular , Ribonucleoproteína Nuclear Heterogênea A1/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/isolamento & purificação , Concentração Osmolar , Eletricidade Estática , Temperatura
4.
Methods Mol Biol ; 2141: 715-730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32696386

RESUMO

The physical process of liquid-liquid phase separation (LLPS), where the drive to minimize global free energy causes a solution to demix into dense and light phases, plays many important roles in biology. It is implicated in the formation of so-called "membraneless organelles" such as nucleoli, nuclear speckles, promyelocytic leukemia protein bodies, P bodies, and stress granules along with the formation of biomolecular condensates involved in transcription, signaling, and transport. Quantitative studies of LLPS in vivo are complicated by the out-of-equilibrium, multicomponent cellular environment. While in vitro experiments with purified biomolecules are inherently an oversimplification of the cellular milieu, they allow probing of the rich physical chemistry underlying phase separation. Critically, with the application of suitable models, the thermodynamics of equilibrium LLPS can inform on the nature of the intermolecular interactions that mediate it. These same interactions are likely to exist in out-of-equilibrium condensates within living cells. Phase diagrams map the coexistence points between dense and light phases and quantitatively describe LLPS by mapping the local minima of free energy versus biomolecule concentration. Here, we describe a light scattering method that allows one to measure coexistence points around a high-temperature critical region using sample volumes as low as 10 µl.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Espalhamento de Radiação , Centrifugação/métodos , Ribonucleoproteína Nuclear Heterogênea A1/química , Ribonucleoproteína Nuclear Heterogênea A1/isolamento & purificação , Humanos , Luz , Nefelometria e Turbidimetria , Organelas , Transição de Fase , Desnaturação Proteica , Dobramento de Proteína , Temperatura
5.
Molecules ; 24(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791548

RESUMO

The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a versatile RNA-binding protein playing a critical role in alternative pre-mRNA splicing regulation in cancer. Emerging data have implicated hnRNP A1 as a central player in a splicing regulatory circuit involving its direct transcriptional control by c-Myc oncoprotein and the production of the constitutively active ligand-independent alternative splice variant of androgen receptor, AR-V7, which promotes castration-resistant prostate cancer (CRPC). As there is an urgent need for effective CRPC drugs, targeting hnRNP A1 could, therefore, serve a dual purpose of preventing AR-V7 generation as well as reducing c-Myc transcriptional output. Herein, we report compound VPC-80051 as the first small molecule inhibitor of hnRNP A1 splicing activity discovered to date by using a computer-aided drug discovery approach. The inhibitor was developed to target the RNA-binding domain (RBD) of hnRNP A1. Further experimental evaluation demonstrated that VPC-80051 interacts directly with hnRNP A1 RBD and reduces AR-V7 messenger levels in 22Rv1 CRPC cell line. This study lays the groundwork for future structure-based development of more potent and selective small molecule inhibitors of hnRNP A1⁻RNA interactions aimed at altering the production of cancer-specific alternative splice isoforms.


Assuntos
Biologia Computacional , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ribonucleoproteína Nuclear Heterogênea A1/genética , Neoplasias de Próstata Resistentes à Castração/genética , Splicing de RNA/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Biologia Computacional/métodos , Simulação por Computador , Descoberta de Drogas/métodos , Ribonucleoproteína Nuclear Heterogênea A1/química , Humanos , Masculino , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade
6.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 4): 209-214, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368279

RESUMO

The heterogeneous ribonucleoprotein A18 (hnRNP A18) is upregulated in hypoxic regions of various solid tumors and promotes tumor growth via the coordination of mRNA transcripts associated with pro-survival genes. Thus, hnRNP A18 represents an important therapeutic target in tumor cells. Presented here is the first X-ray crystal structure to be reported for the RNA-recognition motif of hnRNP A18. By comparing this structure with those of homologous RNA-binding proteins (i.e. hnRNP A1), three residues on one face of an antiparallel ß-sheet (Arg48, Phe50 and Phe52) and one residue in an unstructured loop (Arg41) were identified as likely to be involved in protein-nucleic acid interactions. This structure helps to serve as a foundation for biophysical studies of this RNA-binding protein and structure-based drug-design efforts for targeting hnRNP A18 in cancer, such as malignant melanoma, where hnRNP A18 levels are elevated and contribute to disease progression.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1/química , Proteínas de Ligação a RNA/química , RNA/química , Motivos de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Endopeptidases/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
7.
Proc Natl Acad Sci U S A ; 114(9): 2206-2211, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193894

RESUMO

Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a multipurpose RNA-binding protein (RBP) involved in normal and pathological RNA metabolism. Transcriptome-wide mapping and in vitro evolution identify consensus hnRNP A1 binding motifs; however, such data do not reveal how surrounding RNA sequence and structural context modulate affinity. We determined the affinity of hnRNP A1 for all possible sequence variants (n = 16,384) of the HIV exon splicing silencer 3 (ESS3) 7-nt apical loop. Analysis of the affinity distribution identifies the optimal motif 5'-YAG-3' and shows how its copy number, position in the loop, and loop structure modulate affinity. For a subset of ESS3 variants, we show that specificity is determined by association rate constants and that variants lacking the minimal sequence motif bind competitively with consensus RNA. Thus, the results reveal general rules of specificity of hnRNP A1 and provide a quantitative framework for understanding how it discriminates between alternative competing RNA ligands in vivo.


Assuntos
Processamento Alternativo , Ribonucleoproteína Nuclear Heterogênea A1/química , Domínios e Motivos de Interação entre Proteínas , RNA Viral/química , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Éxons , HIV/genética , HIV/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Íntrons , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , RNA Viral/genética , RNA Viral/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA