Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
PeerJ ; 12: e16876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500533

RESUMO

Background & Aims: Small nuclear ribonucleoprotein U1 subunit 70 (SNRNP70) as one of the components of the U1 small nuclear ribonucleoprotein (snRNP) is rarely reported in cancers. This study aims to estimate the application potential of SNRNP70 in hepatocellular carcinoma (HCC) clinical practice. Methods: Based on the TCGA database and cohort of HCC patients, we investigated the expression patterns and prognostic value of SNRNP70 in HCC. Then, the combination of SNRNP70 and alpha-fetoprotein (AFP) in 278 HCC cases was analyzed. Next, western blotting and immunohistochemistry were used to detect the expression of SNRNP70 in nucleus and cytoplasm. Finally, Cell Counting Kit-8 (CCK-8) and scratch wound healing assays were used to detect the effect of SNRNP70 on the proliferation and migration of HCC cells. Results: SNRNP70 was highly expressed in HCC. Its expression was increasingly high during the progression of HCC and was positively related to immune infiltration cells. Higher SNRNP70 expression indicated a poor outcome of HCC patients. In addition, nuclear SNRNP70/AFP combination could be a prognostic biomarker for overall survival and recurrence. Cell experiments confirmed that knockdown of SNRNP70 inhibited the proliferation and migration of HCC cells. Conclusion: SNRNP70 may be a new biomarker for HCC progression and HCC diagnosis as well as prognosis. SNRNP70 combined with serum AFP may indicate the prognosis and recurrence status of HCC patients after operation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , alfa-Fetoproteínas/genética , Neoplasias Hepáticas/genética , Relevância Clínica , Biomarcadores Tumorais/genética , Ribonucleoproteínas Nucleares Pequenas , Ribonucleoproteína Nuclear Pequena U1
2.
Cancer Res ; 83(12): 2000-2015, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37057875

RESUMO

Dysregulation of RNA-binding proteins (RBP) is one of the characteristics of cancer. Investigating the biological functions and molecular mechanisms of abnormal RBPs can help uncover new cancer biomarkers and treatment strategies. To identify oncogenic RBPs in triple-negative breast cancer (TNBC), we employed an in vivo CRISPR screen and a TNBC progression model, which revealed small nuclear ribonucleoprotein polypeptide C (SNRPC), a subunit of the U1 small nuclear ribonucleoprotein particle (U1 snRNP), as a key modulator of TNBC progression. SNRPC was frequently upregulated, which corresponded to poor prognosis in patients with TNBC. SNRPC ablation significantly impaired the proliferation, migration, and invasion of TNBC cells in vitro and in vivo. In addition, SNRPC was essential for the stability of U1 snRNP and contributed to the RNA Pol II-controlled transcriptional program. Knockdown of SNRPC decreased RNA Pol II enrichment on a subset of oncogenes (TNFAIP2, E2F2, and CDK4) and reduced their expression levels. Furthermore, SNRPC deletion was confirmed to inhibit TNBC progression partially through regulation of the TNFAIP2-Rac1-ß-catenin signaling pathway. Taken together, this data suggests that SNRPC plays an oncogenic role in TNBC, is a marker of poor prognosis, and may be a valuable therapeutic target for patients with intractable TNBC. SIGNIFICANCE: A functional CRISPR screen identifies SNRPC as an RNA-binding protein that promotes the aggressiveness of breast cancer by facilitating Pol II-controlled transcription of oncogenes.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Prognóstico , RNA Polimerase II/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
3.
Genes Chromosomes Cancer ; 62(1): 47-51, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35906852

RESUMO

Neurotropic tropomyosin receptor kinase (NTRK) gene rearrangements have been reported in limited cases of sarcomas; however, to date, there has been only one report of such rearrangements in malignant peripheral nerve sheath tumors (MPNSTs). Herein, we describe a 51-year-old male patient with a buttock tumor arising from the sciatic nerve, which was diagnosed as MPNST with positive S-100 staining, negative SOX10 staining, and loss of trimethylation at lysine 27 of histone H3 (H3K27me3) confirmed by immunohistochemistry. Soon after the resection of the primary tumor, the patient was found to have pulmonary and lymph node metastases. Chemotherapy with eribulin and trabectedin showed limited effects. However, the patient responded rapidly to pazopanib, but severe side effects caused discontinuation of the treatment. RNA panel testing revealed a novel fusion gene between Small Nuclear Ribonucleoprotein U1 Subunit 70 (SNRNP70) gene and NTRK3 gene. Furthermore, loss of NF1, SUZ12, and CDKN2A genes was confirmed by DNA panel testing, which is compatible with a histological diagnosis of MPNST. SNRNP70 possesses a coiled-coiled domain and seems to induce constitutive activation of NTRK3 through dimerization. In fact, immunohistochemistry revealed diffuse staining of pan-TRK within tumor cells. Treatment with entrectinib, which is an NTRK inhibitor, showed a quick and durable response for 10 months. Although NTRK rearrangements are very rare in MPNST, this case highlights the importance of genetic testing in MPNST, especially using an RNA panel for the detection of rare fusion genes.


Assuntos
Neurofibrossarcoma , Masculino , Humanos , Pessoa de Meia-Idade , Neurofibrossarcoma/tratamento farmacológico , Neurofibrossarcoma/genética , Biomarcadores Tumorais/genética , Imuno-Histoquímica , RNA , Ribonucleoproteína Nuclear Pequena U1
4.
Biochem Genet ; 60(5): 1809-1824, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35098410

RESUMO

Circular RNA (circRNA) has been proved to be a key regulator of gastric cancer (GC) progression. Circ_0009910 was found to be highly expressed in GC and related to GC progression, but its role and mechanism in GC progression need to be further improved. Our study aims to further reveal circ_0009910 roles in GC progression and elucidate its potential molecular mechanism. The expression of circ_0009910, microRNA (miR)-361-3p, and small nuclear ribonucleoprotein polypeptide A (SNRPA) mRNA was measured by quantitative real-time PCR. Protein expression was determined using western blot analysis. Cell proliferation, migration, invasion, and apoptosis were evaluated using EDU staining, transwell assay, and flow cytometry. Cell glycolysis were assessed by detecting glucose consumption, lactate production, and glycolysis-related markers protein expression. The relationship between miR-361-3p and circ_0009910 or SNRPA was confirmed by RNA pull-down assay and dual-luciferase reporter assay. In vivo experiments were performed to explore the effect of circ_0009910 silencing on GC tumorigenesis. Circ_0009910 and SNRPA were upregulated in GC tumor tissues and cells. Knockdown of circ_0009910 or SNRPA could inhibit GC cell proliferation, migration, invasion, glycolysis, and promote apoptosis. Circ_0009910 could sponge miR-361-3p, and miR-361-3p could target SNRPA. Further experiments confirmed that circ_0009910 positively regulated SNRPA by sponging miR-361-3p. Additionally, SNRPA overexpression abolished the negative regulation of circ_0009910 silencing on GC progression. Furthermore, silenced circ_0009910 also reduced GC tumorigenesis in vivo. Our data showed that circ_0009910 might be a target for GC treatment, which could promote GC proliferation, metastasis, and glycolysis by the miR-361-3p/SNRPA axis.


Assuntos
MicroRNAs , RNA Circular , Ribonucleoproteína Nuclear Pequena U1 , Neoplasias Gástricas , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Glicólise , Humanos , MicroRNAs/genética , Peptídeos/metabolismo , RNA Circular/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Neoplasias Gástricas/patologia
5.
Nat Aging ; 2(10): 923-940, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36636325

RESUMO

Recent proteome and transcriptome profiling of Alzheimer's disease (AD) brains reveals RNA splicing dysfunction and U1 small nuclear ribonucleoprotein (snRNP) pathology containing U1-70K and its N-terminal 40-KDa fragment (N40K). Here we present a causative role of U1 snRNP dysfunction to neurodegeneration in primary neurons and transgenic mice (N40K-Tg), in which N40K expression exerts a dominant-negative effect to downregulate full-length U1-70K. N40K-Tg recapitulates N40K insolubility, erroneous splicing events, neuronal degeneration and cognitive impairment. Specifically, N40K-Tg shows the reduction of GABAergic synapse components (e.g., the GABA receptor subunit of GABRA2), and concomitant postsynaptic hyperexcitability that is rescued by a GABA receptor agonist. Crossing of N40K-Tg and the 5xFAD amyloidosis model indicates that the RNA splicing defect synergizes with the amyloid cascade to remodel the brain transcriptome and proteome, deregulate synaptic proteins, and accelerate cognitive decline. Thus, our results support the contribution of U1 snRNP-mediated splicing dysfunction to AD pathogenesis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Ribonucleoproteína Nuclear Pequena U1/genética , Doença de Alzheimer/genética , Proteoma/genética , Splicing de RNA/genética , Disfunção Cognitiva/genética
6.
Ann Rheum Dis ; 81(1): 56-67, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34625402

RESUMO

OBJECTIVES: To characterise splicing machinery (SM) alterations in leucocytes of patients with rheumatoid arthritis (RA), and to assess its influence on their clinical profile and therapeutic response. METHODS: Leucocyte subtypes from 129 patients with RA and 29 healthy donors (HD) were purified, and 45 selected SM elements (SME) were evaluated by quantitative PCR-array based on microfluidic technology (Fluidigm). Modulation by anti-tumour necrosis factor (TNF) therapy and underlying regulatory mechanisms were assessed. RESULTS: An altered expression of several SME was found in RA leucocytes. Eight elements (SNRNP70, SNRNP200, U2AF2, RNU4ATAC, RBM3, RBM17, KHDRBS1 and SRSF10) were equally altered in all leucocytes subtypes. Logistic regressions revealed that this signature might: discriminate RA and HD, and anti-citrullinated protein antibodies (ACPAs) positivity; classify high-disease activity (disease activity score-28 (DAS28) >5.1); recognise radiological involvement; and identify patients showing atheroma plaques. Furthermore, this signature was altered in RA synovial fluid and ankle joints of K/BxN-arthritic mice. An available RNA-seq data set enabled to validate data and identified distinctive splicing events and splicing variants among patients with RA expressing high and low SME levels. 3 and 6 months anti-TNF therapy reversed their expression in parallel to the reduction of the inflammatory profile. In vitro, ACPAs modulated SME, at least partially, by Fc Receptor (FcR)-dependent mechanisms. Key inflammatory cytokines further altered SME. Lastly, induced SNRNP70-overexpression and KHDRBS1-overexpression reversed inflammation in lymphocytes, NETosis in neutrophils and adhesion in RA monocytes and influenced activity of RA synovial fibroblasts. CONCLUSIONS: Overall, we have characterised for the first time a signature comprising eight dysregulated SME in RA leucocytes from both peripheral blood and synovial fluid, linked to disease pathophysiology, modulated by ACPAs and reversed by anti-TNF therapy.


Assuntos
Processamento Alternativo , Artrite Reumatoide/sangue , Artrite Reumatoide/genética , RNA/sangue , Spliceossomos , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Processamento Alternativo/efeitos dos fármacos , Animais , Anticorpos Antiproteína Citrulinada/farmacologia , Antirreumáticos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Células Cultivadas , Citrulinação , Citocinas/farmacologia , Proteínas de Ligação a DNA/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Linfócitos , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos , Neutrófilos , RNA/metabolismo , Fatores de Processamento de RNA/genética , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Análise de Sequência de RNA , Fatores de Processamento de Serina-Arginina/genética , Fator de Processamento U2AF/genética , Líquido Sinovial/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
7.
Mol Med ; 27(1): 157, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906067

RESUMO

BACKGROUND: Aberrant splicing is a common outcome in the presence of exonic or intronic variants that might hamper the intricate network of interactions defining an exon in a specific gene context. Therefore, the evaluation of the functional, and potentially pathological, role of nucleotide changes remains one of the major challenges in the modern genomic era. This aspect has also to be taken into account during the pre-clinical evaluation of innovative therapeutic approaches in animal models of human diseases. This is of particular relevance when developing therapeutics acting on splicing, an intriguing and expanding research area for several disorders. Here, we addressed species-specific splicing mechanisms triggered by the OTC c.386G>A mutation, relatively frequent in humans, leading to Ornithine TransCarbamylase Deficiency (OTCD) in patients and spfash mice, and its differential susceptibility to RNA therapeutics based on engineered U1snRNA. METHODS: Creation and co-expression of engineered U1snRNAs with human and mouse minigenes, either wild-type or harbouring different nucleotide changes, in human (HepG2) and mouse (Hepa1-6) hepatoma cells followed by analysis of splicing pattern. RNA pulldown studies to evaluate binding of specific splicing factors. RESULTS: Comparative nucleotide analysis suggested a role for the intronic +10-11 nucleotides, and pull-down assays showed that they confer preferential binding to the TIA1 splicing factor in the mouse context, where TIA1 overexpression further increases correct splicing. Consistently, the splicing profile of the human minigene with mouse +10-11 nucleotides overlapped that of mouse minigene, and restored responsiveness to TIA1 overexpression and to compensatory U1snRNA. Swapping the human +10-11 nucleotides into the mouse context had opposite effects. Moreover, the interplay between the authentic and the adjacent cryptic 5'ss in the human OTC dictates pathogenic mechanisms of several OTCD-causing 5'ss mutations, and only the c.386+5G>A change, abrogating the cryptic 5'ss, was rescuable by engineered U1snRNA. CONCLUSIONS: Subtle intronic variations explain species-specific OTC splicing patterns driven by the c.386G>A mutation, and the responsiveness to engineered U1snRNAs, which suggests careful elucidation of molecular mechanisms before proposing translation of tailored therapeutics from animal models to humans.


Assuntos
Ornitina Carbamoiltransferase/genética , Splicing de RNA , Animais , Linhagem Celular Tumoral , Humanos , Íntrons , Camundongos , Mutação , RNA/uso terapêutico , Ribonucleoproteína Nuclear Pequena U1/genética
8.
Nature ; 596(7871): 296-300, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34349264

RESUMO

During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the spliceosomal A complex-a poorly understood, multistep process that is facilitated by the DEAD-box helicase Prp5 (refs. 1-4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2-BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identified assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2-BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. Our data suggest that binding of Hsh155HEAT to the bulged BS-A of the U2-BS helix triggers closure of Hsh155HEAT, which in turn destabilizes Prp5 binding. Thus, Prp5 proofreads the branch site indirectly, hindering spliceosome assembly if branch-site mutations prevent the remodelling of Hsh155HEAT. Our data provide structural insights into how a spliceosomal helicase enhances the fidelity of pre-mRNA splicing.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Precursores de RNA/química , Precursores de RNA/genética , Splicing de RNA , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Spliceossomos/enzimologia , Actinas/genética , Adenosina/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , RNA Helicases DEAD-box/ultraestrutura , Modelos Moleculares , Mutação , Domínios Proteicos , Precursores de RNA/metabolismo , Precursores de RNA/ultraestrutura , Splicing de RNA/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Spliceossomos/química , Spliceossomos/metabolismo
9.
Elife ; 102021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34313222

RESUMO

ATP-dependent chromatin remodelers control the accessibility of genomic DNA through nucleosome mobilization. However, the dynamics of genome exploration by remodelers, and the role of ATP hydrolysis in this process remain unclear. We used live-cell imaging of Drosophila polytene nuclei to monitor Brahma (BRM) remodeler interactions with its chromosomal targets. In parallel, we measured local chromatin condensation and its effect on BRM association. Surprisingly, only a small portion of BRM is bound to chromatin at any given time. BRM binds decondensed chromatin but is excluded from condensed chromatin, limiting its genomic search space. BRM-chromatin interactions are highly dynamic, whereas histone-exchange is limited and much slower. Intriguingly, loss of ATP hydrolysis enhanced chromatin retention and clustering of BRM, which was associated with reduced histone turnover. Thus, ATP hydrolysis couples nucleosome remodeling to remodeler release, driving a continuous transient probing of the genome.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Transativadores/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster/genética , Histonas/metabolismo , Hidrólise , Nucleossomos/metabolismo
10.
Sci Rep ; 11(1): 14936, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294789

RESUMO

Methods to spatially induce apoptosis are useful for cancer therapy. To control the induction of apoptosis, methods using light, such as photochemical internalization (PCI), have been developed. We hypothesized that photoinduced delivery of microRNAs (miRNAs) that regulate apoptosis could spatially induce apoptosis. In this study, we identified pre-miR-664a as a novel apoptosis-inducing miRNA via mitochondrial apoptotic pathway. Further, we demonstrated the utility of photoinduced cytosolic dispersion of RNA (PCDR), which is an intracellular RNA delivery method based on PCI. Indeed, apoptosis is spatially regulated by pre-miR-664a and PCDR. In addition, we found that apoptosis induced by pre-miR-664a delivered by PCDR was more rapid than that by lipofection. These results suggest that pre-miR-664a is a nucleic acid drug candidate for cancer therapy and PCDR and pre-miR-664a-based strategies have potential therapeutic uses for diseases affecting various cell types.


Assuntos
MicroRNAs/farmacologia , Neoplasias/genética , Fármacos Fotossensibilizantes/química , Compostos de Quinolínio/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citosol/química , Células HeLa , Humanos , MicroRNAs/química , Neoplasias/tratamento farmacológico , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/genética , Transfecção
11.
Sci Rep ; 11(1): 12760, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140531

RESUMO

Eukaryotic cells can expand their coding ability by using their splicing machinery, spliceosome, to process precursor mRNA (pre-mRNA) into mature messenger RNA. The mega-macromolecular spliceosome contains multiple subcomplexes, referred to as small nuclear ribonucleoproteins (snRNPs). Among these, U1 snRNP and its central component, U1-70K, are crucial for splice site recognition during early spliceosome assembly. The human U1-70K has been linked to several types of human autoimmune and neurodegenerative diseases. However, its phylogenetic relationship has been seldom reported. To this end, we carried out a systemic analysis of 95 animal U1-70K genes and compare these proteins to their yeast and plant counterparts. Analysis of their gene and protein structures, expression patterns and splicing conservation suggest that animal U1-70Ks are conserved in their molecular function, and may play essential role in cancers and juvenile development. In particular, animal U1-70Ks display unique characteristics of single copy number and a splicing isoform with truncated C-terminal, suggesting the specific role of these U1-70Ks in animal kingdom. In summary, our results provide phylogenetic overview of U1-70K gene family in vertebrates. In silico analyses conducted in this work will act as a reference for future functional studies of this crucial U1 splicing factor in animal kingdom.


Assuntos
Filogenia , Ribonucleoproteína Nuclear Pequena U1/genética , Sequência de Aminoácidos , Animais , Eucariotos/genética , Perfilação da Expressão Gênica , Humanos , Ligação Proteica , Domínios Proteicos , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Homologia de Sequência de Aminoácidos
12.
Mol Cell ; 81(9): 1859-1860, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33961773

RESUMO

Daniels et al. (2021) and Jourdain et al. (2021) identify LUC7L2 as a component of the U1 snRNP capable of reprogramming cellular metabolism through changes in alternative pre-mRNA splicing.


Assuntos
Processamento Alternativo , Neoplasias , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U1/metabolismo
13.
Cell Rep ; 35(2): 108989, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852859

RESUMO

Vertebrates have evolved three paralogs, termed LUC7L, LUC7L2, and LUC7L3, of the essential yeast U1 small nuclear RNA (snRNA)-associated splicing factor Luc7p. We investigated the mechanistic and regulatory functions of these putative splicing factors, of which one (LUC7L2) is mutated or deleted in myeloid neoplasms. Protein interaction data show that all three proteins bind similar core but distinct regulatory splicing factors, probably mediated through their divergent arginine-serine-rich domains, which are not present in Luc7p. Knockdown of each factor reveals mostly unique sets of significantly dysregulated alternative splicing events dependent on their binding locations, which are largely non-overlapping. Notably, knockdown of LUC7L2 alone significantly upregulates the expression of multiple spliceosomal factors and downregulates glycolysis genes, possibly contributing to disease pathogenesis. RNA binding studies reveal that LUC7L2 and LUC7L3 crosslink to weak 5' splice sites and to the 5' end of U1 snRNA, establishing an evolutionarily conserved role in 5' splice site selection.


Assuntos
Leucemia Mieloide/genética , Síndromes Mielodisplásicas/genética , Proteínas Nucleares/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Sequência de Bases , Éxons , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Íntrons , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Mutação , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Proteínas Nucleares/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Spliceossomos
14.
Mol Cell ; 81(9): 1905-1919.e12, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33852893

RESUMO

Oxidative phosphorylation (OXPHOS) and glycolysis are the two major pathways for ATP production. The reliance on each varies across tissues and cell states, and can influence susceptibility to disease. At present, the full set of molecular mechanisms governing the relative expression and balance of these two pathways is unknown. Here, we focus on genes whose loss leads to an increase in OXPHOS activity. Unexpectedly, this class of genes is enriched for components of the pre-mRNA splicing machinery, in particular for subunits of the U1 snRNP. Among them, we show that LUC7L2 represses OXPHOS and promotes glycolysis by multiple mechanisms, including (1) splicing of the glycolytic enzyme PFKM to suppress glycogen synthesis, (2) splicing of the cystine/glutamate antiporter SLC7A11 (xCT) to suppress glutamate oxidation, and (3) secondary repression of mitochondrial respiratory supercomplex formation. Our results connect LUC7L2 expression and, more generally, the U1 snRNP to cellular energy metabolism.


Assuntos
Glicólise , Fosforilação Oxidativa , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Ácido Glutâmico/metabolismo , Glicogênio/metabolismo , Glicólise/genética , Células HEK293 , Células HeLa , Humanos , Células K562 , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Fosfofrutoquinase-1 Muscular/genética , Fosfofrutoquinase-1 Muscular/metabolismo , Precursores de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U1/genética
15.
Cell Chem Biol ; 28(9): 1356-1365.e4, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-33784500

RESUMO

RNA splicing, a highly conserved process in eukaryotic gene expression, is seen as a promising target for anticancer agents. Splicing is associated with other RNA processing steps, such as transcription and nuclear export; however, our understanding of the interaction between splicing and other RNA regulatory mechanisms remains incomplete. Moreover, the impact of chemical splicing inhibition on long non-coding RNAs (lncRNAs) has been poorly understood. Here, we demonstrate that spliceostatin A (SSA), a chemical splicing modulator that binds to the SF3B subcomplex of the U2 small nuclear ribonucleoprotein particle (snRNP), limits U1 snRNP availability in splicing, resulting in premature cleavage and polyadenylation of MALAT1, a nuclear lncRNA, as well as protein-coding mRNAs. Therefore, truncated transcripts are exported into the cytoplasm and translated, resulting in aberrant protein products. Our work demonstrates that active recycling of the splicing machinery maintains homeostasis of RNA processing beyond intron excision.


Assuntos
Fosfoproteínas/antagonistas & inibidores , Piranos/farmacologia , Fatores de Processamento de RNA/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , Ribonucleoproteína Nuclear Pequena U1/antagonistas & inibidores , Compostos de Espiro/farmacologia , Feminino , Células HeLa , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Poliadenilação/efeitos dos fármacos , Piranos/química , Splicing de RNA/efeitos dos fármacos , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Compostos de Espiro/química , Células Tumorais Cultivadas
16.
FEBS Lett ; 595(4): 476-490, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33417721

RESUMO

In this report, using the database of RNA-binding protein specificities (RBPDB) and our previously published RNA-seq data, we analyzed the interactions between RNA and RNA-binding proteins to decipher the role of alternative splicing in metabolic disorders induced by TNF-α. We identified 13 395 unique RNA-RBP interactions, including 385 unique RNA motifs and 35 RBPs, some of which (including MBNL-1 and 3, ZFP36, ZRANB2, and SNRPA) are transcriptionally regulated by TNF-α. In addition to some previously reported RBPs, such as RBMX and HuR/ELAVL1, we found a few novel RBPs, such as ZRANB2 and SNRPA, to be involved in the regulation of metabolic syndrome-associated genes that contain an enrichment of tetrameric RNA sequences (AUUU). Taken together, this study paves the way for novel RNA-protein interaction-based therapeutics for treating metabolic syndromes.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Síndrome Metabólica/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Fator de Necrose Tumoral alfa/farmacologia , Sequência de Bases , Biologia Computacional/métodos , Proteína Semelhante a ELAV 2/genética , Proteína Semelhante a ELAV 2/metabolismo , Estudo de Associação Genômica Ampla , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Genes Dev ; 35(1-2): 147-156, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33303640

RESUMO

Transcriptionally silent genes must be activated throughout development. This requires nucleosomes be removed from promoters and enhancers to allow transcription factor (TF) binding and recruitment of coactivators and RNA polymerase II (Pol II). Specialized pioneer TFs bind nucleosome-wrapped DNA to perform this chromatin opening by mechanisms that remain incompletely understood. Here, we show that GAGA factor (GAF), a Drosophila pioneer-like factor, functions with both SWI/SNF and ISWI family chromatin remodelers to allow recruitment of Pol II and entry to a promoter-proximal paused state, and also to promote Pol II's transition to productive elongation. We found that GAF interacts with PBAP (SWI/SNF) to open chromatin and allow Pol II to be recruited. Importantly, this activity is not dependent on NURF as previously proposed; however, GAF also synergizes with NURF downstream from this process to ensure efficient Pol II pause release and transition to productive elongation, apparently through its role in precisely positioning the +1 nucleosome. These results demonstrate how a single sequence-specific pioneer TF can synergize with remodelers to activate sets of genes. Furthermore, this behavior of remodelers is consistent with findings in yeast and mice, and likely represents general, conserved mechanisms found throughout eukarya.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Montagem e Desmontagem da Cromatina/genética , Ligação Proteica , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética
18.
J Vis Exp ; (166)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33369604

RESUMO

Classic depletion-reconstitution experiments indicate that galectin-3 is a required splicing factor in nuclear extracts. The mechanism of incorporation of galectin-3 into the splicing pathway is addressed in this paper. Sedimentation of HeLa cell nuclear extracts on 12%-32% glycerol gradients yields fractions enriched in an endogenous ~10S particle that contains galectin-3 and U1 snRNP. We now describe a protocol to deplete nuclear extracts of U1 snRNP with concomitant loss of splicing activity. Splicing activity in the U1-depleted extract can be reconstituted by the galectin-3 - U1 snRNP particle trapped on agarose beads covalently coupled with anti-galectin-3 antibodies. The results indicate that the galectin-3 - U1 snRNP - pre-mRNA ternary complex is a functional E complex leading to intermediates and products of the splicing reaction and that galectin-3 enters the splicing pathway through its association with U1 snRNP. The scheme of using complexes affinity- or immuno-selected on beads to reconstitute splicing activity in extracts depleted of a specific splicing factor may be generally applicable to other systems.


Assuntos
Galectina 3/genética , Microesferas , Splicing de RNA/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Núcleo Celular/metabolismo , Galectina 3/metabolismo , Células HeLa , Humanos , Peptídeos/metabolismo , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética
19.
Nat Commun ; 11(1): 6341, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311468

RESUMO

Mutations in the RNA-binding protein Fused in Sarcoma (FUS) cause early-onset amyotrophic lateral sclerosis (ALS). However, a detailed understanding of central RNA targets of FUS and their implications for disease remain elusive. Here, we use a unique blend of crosslinking and immunoprecipitation (CLIP) and NMR spectroscopy to identify and characterise physiological and pathological RNA targets of FUS. We find that U1 snRNA is the primary RNA target of FUS via its interaction with stem-loop 3 and provide atomic details of this RNA-mediated mode of interaction with the U1 snRNP. Furthermore, we show that ALS-associated FUS aberrantly contacts U1 snRNA at the Sm site with its zinc finger and traps snRNP biogenesis intermediates in human and murine motor neurons. Altogether, we present molecular insights into a FUS toxic gain-of-function involving direct and aberrant RNA-binding and strengthen the link between two motor neuron diseases, ALS and spinal muscular atrophy (SMA).


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Linhagem Celular , Predisposição Genética para Doença/genética , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Neurônios Motores/metabolismo , Mutação , Domínios e Motivos de Interação entre Proteínas , RNA Nuclear Pequeno/química , Proteína FUS de Ligação a RNA/química , Ribonucleoproteína Nuclear Pequena U1/química
20.
FEBS Lett ; 594(21): 3518-3529, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915994

RESUMO

FUS is one of the causative factors of amyotrophic lateral sclerosis. Loss and/or gain of its physiological functions has been believed to be linked to the pathogenesis of this condition. However, its functions remain incompletely understood. This study dissected the domains of FUS regulating the expression of SnRNP70, which functions in mRNA splicing. Biochemical analysis revealed that all FUS domains except for RGG1 contribute to determining Snrnp70 transcript abundance and thus its protein abundance. RNA-Seq analysis using the Gly-rich domain-deleted mutant coupled with snRNP70 knockdown revealed that FUS has a potential to regulate gene expression in both snRNP70-dependent and snRNP70-independent manners through the Gly-rich domain. These results provide insight into molecular details of the regulation of gene expression by FUS.


Assuntos
Regulação da Expressão Gênica , Domínios Proteicos , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Animais , Glicina/genética , Glicina/metabolismo , Humanos , Íntrons/genética , Camundongos , Neurônios/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U1/biossíntese , Ribonucleoproteína Nuclear Pequena U1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA