Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nucleic Acids Res ; 52(16): 9710-9726, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39036954

RESUMO

The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Although mitochondrial DNA-encoded proteins synthesized by mitochondrial ribosomes also contain polyproline stretches, an EF-P/eIF5A mitochondrial counterpart remains unidentified. Here, we show that the missing factor is TACO1, a protein causative of a juvenile form of neurodegenerative Leigh's syndrome associated with cytochrome c oxidase deficiency, until now believed to be a translational activator of COX1 mRNA. By using a combination of metabolic labeling, puromycin release and mitoribosome profiling experiments, we show that TACO1 is required for the rapid synthesis of the polyproline-rich COX1 and COX3 cytochrome c oxidase subunits, while its requirement is negligible for other mitochondrial DNA-encoded proteins. In agreement with a role in translation efficiency regulation, we show that TACO1 cooperates with the N-terminal extension of the large ribosomal subunit bL27m to provide stability to the peptidyl-transferase center during elongation. This study illuminates the translation elongation dynamics within human mitochondria, a TACO1-mediated biological mechanism in place to mitigate mitoribosome stalling at polyproline stretches during protein synthesis, and the pathological implications of its malfunction.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Proteínas Mitocondriais , Ribossomos Mitocondriais , Peptídeos , Biossíntese de Proteínas , Humanos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Peptídeos/metabolismo , Peptídeos/genética , Ribossomos Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Células HEK293 , Ciclo-Oxigenase 1
2.
IUBMB Life ; 76(9): 647-665, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38551358

RESUMO

Mitoribosomes are essential for the production of biological energy. The Human Mitoribosomal Small Subunit unit (MRPS) family, responsible for encoding mitochondrial ribosomal small subunits, is actively engaged in protein synthesis within the mitochondria. Intriguingly, MRPS family genes appear to play a role in cancer. A multistep process was employed to establish a risk model associated with MRPS genes, aiming to delineate the immune and pharmacogenomic landscapes in clear cell renal cell carcinoma (ccRCC). MRPScores were computed for individual patients to assess their responsiveness to various treatment modalities and their susceptibility to different therapeutic targets and drugs. While MRPS family genes have been implicated in various cancers as oncogenes, our findings reveal a contrasting tumor suppressor role for MRPS genes in ccRCC. Utilizing an MRPS-related risk model, we observed its excellent prognostic capability in predicting survival outcomes for ccRCC patients. Remarkably, the subgroup with high MRPS-related scores (MRPScore) displayed poorer prognosis but exhibited a more robust response to immunotherapy. Through in silico screening of 2183 drug targets and 1646 compounds, we identified two targets (RRM2 and OPRD1) and eight agents (AZ960, carmustine, lasalocid, SGI-1776, AZD8055_1059, BPD.00008900_1998, MK.8776_2046, and XAV939_1268) with potential therapeutic implications for high-MRPScore patients. Our study represents the pioneering effort in proposing that molecular classification, diagnosis, and treatment strategies can be formulated based on MRPScores. Indeed, a high MRPScore profile appears to elevate the risk of tumor progression and mortality, potentially through its influence on immune regulation. This suggests that the MRPS-related risk model holds promise as a prognostic predictor and may offer novel insights into personalized therapeutic strategies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Prognóstico , Ribossomos Mitocondriais/metabolismo , Regulação Neoplásica da Expressão Gênica , Farmacogenética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
3.
Nucleic Acids Res ; 51(21): 11797-11812, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37823603

RESUMO

The human mitochondrial ribosome contains three [2Fe-2S] clusters whose assembly pathway, role, and implications for mitochondrial and metabolic diseases are unknown. Here, structure-function correlation studies show that the clusters play a structural role during mitoribosome assembly. To uncover the assembly pathway, we have examined the effect of silencing the expression of Fe-S cluster biosynthetic and delivery factors on mitoribosome stability. We find that the mitoribosome receives its [2Fe-2S] clusters from the GLRX5-BOLA3 node. Additionally, the assembly of the small subunit depends on the mitoribosome biogenesis factor METTL17, recently reported containing a [4Fe-4S] cluster, which we propose is inserted via the ISCA1-NFU1 node. Consistently, fibroblasts from subjects suffering from 'multiple mitochondrial dysfunction' syndrome due to mutations in BOLA3 or NFU1 display previously unrecognized attenuation of mitochondrial protein synthesis that contributes to their cellular and pathophysiological phenotypes. Finally, we report that, in addition to their structural role, one of the mitoribosomal [2Fe-2S] clusters and the [4Fe-4S] cluster in mitoribosome assembly factor METTL17 sense changes in the redox environment, thus providing a way to regulate organellar protein synthesis accordingly.


Assuntos
Proteínas Ferro-Enxofre , Doenças Mitocondriais , Ribossomos Mitocondriais , Humanos , Proteínas de Transporte/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Metiltransferases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Enxofre/metabolismo , Doenças Mitocondriais/metabolismo
4.
Pathol Res Pract ; 248: 154625, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343379

RESUMO

Lung cancer has a high fatality rate and incidence rate. At present, the initial and progress mechanism of lung cancer has not been completely elucidated and new therapeutic targets still need to be developed. In this study, the screening process was based on lung cancer expression profile data and survival analysis. Mitochondrial ribosome protein L9 (MRPL9) was upregulated in lung cancer tissues and related to the poor overall survival rate and recurrence-free survival rate of lung cancer patients. Knockdown of MRPL9 inhibited the proliferation, sphere-formation, and migration ability of lung cancer cells. MRPL9 was associated with the c-MYC signaling pathway, and lung cancer patients with high expression of both MRPL9 and MYC had a poor prognosis. Furthermore, c-MYC was associated with the epithelial-mesenchymal transition (EMT) regulatory protein zinc finger E-box binding homeobox 1 (ZEB1) by bioinformatics analysis. The relationship between ZEB1 and c-MYC was further confirmed by interfering with c-MYC expression. MRPL9 is a potential therapeutic target for lung cancer and exerts its biological functions by affecting the transcription factor c-MYC thereby regulating the EMT regulator ZEB1.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-myc , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ribossomos Mitocondriais/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células/genética , Movimento Celular
5.
Methods Mol Biol ; 2661: 133-141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166636

RESUMO

Cryogenic milling, or cryomilling, involves the use of liquid nitrogen to lower the temperature of the biological material and/or the milling process. When applied to the study of subcellular or suborganellar structures and processes, it allows for their rapid extraction from whole cells frozen in the physiological state of choice. This approach has proven to be useful for the study of yeast mitochondrial ribosomes. Following cryomilling of 100 mL of yeast culture, conveniently tagged mitochondrial ribosomes can be immunoprecipitated and purified in native conditions. These ribosomes are suitable for the application of downstream approaches. These include mitoribosome profiling to analyze the mitochondrial translatome or mass spectrometry analyses to assess the mitoribosome proteome in normal growth conditions or under stress, as described in this method.


Assuntos
Ribossomos Mitocondriais , Saccharomyces cerevisiae , Ribossomos Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Ribossomos/metabolismo , Mitocôndrias/ultraestrutura , Espectrometria de Massas , Proteínas Mitocondriais/metabolismo
6.
Biochimie ; 207: 122-136, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36336106

RESUMO

Ribosomopathies are rare congenital disorders associated with defective ribosome biogenesis due to pathogenic variations in genes that encode proteins related to ribosome function and biogenesis. Defects in ribosome biogenesis result in a nucleolar stress response involving the TP53 tumor suppressor protein and impaired protein synthesis leading to a deregulated translational output. Despite the accepted notion that ribosomes are omnipresent and essential for all cells, most ribosomopathies show tissue-specific phenotypes affecting blood cells, hair, spleen, or skin. On the other hand, defects in mitochondrial ribosome biogenesis are associated with a range of clinical manifestations affecting more than one organ. Intriguingly, the deregulated ribosomal function is also a feature in several human malignancies with a selective upregulation or downregulation of specific ribosome components. Here, we highlight the clinical conditions associated with defective ribosome biogenesis in the nucleus and mitochondria with a description of the affected genes and the implicated pathways, along with a note on the treatment strategies currently available for these disorders.


Assuntos
Neoplasias , Proteínas Ribossômicas , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos Mitocondriais/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Fenótipo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L507-L517, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34873929

RESUMO

Mitochondria are involved in a variety of critical cellular functions, and their impairment drives cell injury. The mitochondrial ribosome (mitoribosome) is responsible for the protein synthesis of mitochondrial DNA-encoded genes. These proteins are involved in oxidative phosphorylation, respiration, and ATP production required in the cell. Mitoribosome components originate from both mitochondrial and nuclear genomes. Their dysfunction can be caused by impaired mitochondrial protein synthesis or mitoribosome misassembly, leading to a decline in mitochondrial translation. This decrease can trigger mitochondrial ribosomal stress and contribute to pulmonary cell injury, death, and diseases. This review focuses on the contribution of the impaired mitoribosome structural components and function to respiratory disease pathophysiology. We present recent findings in the fields of lung cancer, chronic obstructive pulmonary disease, interstitial lung disease, and asthma. We also include reports on the mitoribosome dysfunction in pulmonary hypertension, high-altitude pulmonary edema, and bacterial and viral infections. Studies of the mitoribosome alterations in respiratory diseases can lead to novel therapeutic targets.


Assuntos
Pneumopatias , Ribossomos Mitocondriais , Humanos , Pneumopatias/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas
8.
Cells ; 10(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34440674

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. HCC progression and metastasis are closely related to altered mitochondrial metabolism, including mitochondrial stress responses, metabolic reprogramming, and mitoribosomal defects. Mitochondrial oxidative phosphorylation (OXPHOS) defects and reactive oxygen species (ROS) production are attributed to mitochondrial dysfunction. In response to oxidative stress caused by increased ROS production, misfolded or unfolded proteins can accumulate in the mitochondrial matrix, leading to initiation of the mitochondrial unfolded protein response (UPRmt). The mitokines FGF21 and GDF15 are upregulated during UPRmt and their levels are positively correlated with liver cancer development, progression, and metastasis. In addition, mitoribosome biogenesis is important for the regulation of mitochondrial respiration, cell viability, and differentiation. Mitoribosomal defects cause OXPHOS impairment, mitochondrial dysfunction, and increased production of ROS, which are associated with HCC progression in mouse models and human HCC patients. In this paper, we focus on the role of mitochondrial metabolic signatures in the development and progression of HCC. Furthermore, we provide a comprehensive review of cell autonomous and cell non-autonomous mitochondrial stress responses during HCC progression and metastasis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Metabolismo Energético , Neoplasias Hepáticas/metabolismo , Metaboloma , Mitocôndrias Hepáticas/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Progressão da Doença , Humanos , Neoplasias Hepáticas/patologia , Mitocôndrias Hepáticas/patologia , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/patologia , Proteostase , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas
9.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34287642

RESUMO

The ability to adapt to environmental stress, including therapeutic insult, contributes to tumor evolution and drug resistance. In suboptimal conditions, the integrated stress response (ISR) promotes survival by dampening cytosolic translation. We show that ISR-dependent survival also relies on a concomitant up-regulation of mitochondrial protein synthesis, a vulnerability that can be exploited using mitoribosome-targeting antibiotics. Accordingly, such agents sensitized to MAPK inhibition, thus preventing the development of resistance in BRAFV600E melanoma models. Additionally, this treatment compromised the growth of melanomas that exhibited elevated ISR activity and resistance to both immunotherapy and targeted therapy. In keeping with this, pharmacological inactivation of ISR, or silencing of ATF4, rescued the antitumoral response to the tetracyclines. Moreover, a melanoma patient exposed to doxycycline experienced complete and long-lasting response of a treatment-resistant lesion. Our study indicates that the repurposing of mitoribosome-targeting antibiotics offers a rational salvage strategy for targeted therapy in BRAF mutant melanoma and a therapeutic option for NRAS-driven and immunotherapy-resistant tumors.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Ribossomos Mitocondriais/efeitos dos fármacos , Idoso , Animais , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Masculino , Melanoma/genética , Melanoma/mortalidade , Camundongos Endogâmicos C57BL , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Tigeciclina/farmacologia , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Nat Protoc ; 16(6): 2802-2825, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33953394

RESUMO

Several essential components of the electron transport chain, the major producer of ATP in mammalian cells, are encoded in the mitochondrial genome. These 13 proteins are translated within mitochondria by 'mitoribosomes'. Defective mitochondrial translation underlies multiple inborn errors of metabolism and has been implicated in pathologies such as aging, metabolic syndrome and cancer. Here, we provide a detailed ribosome profiling protocol optimized to interrogate mitochondrial translation in mammalian cells (MitoRiboSeq), wherein mitoribosome footprints are generated with micrococcal nuclease and mitoribosomes are separated from cytosolic ribosomes and other RNAs by ultracentrifugation in a single straightforward step. We highlight critical steps during library preparation and provide a step-by-step guide to data analysis accompanied by open-source bioinformatic code. Our method outputs mitoribosome footprints at single-codon resolution. Codons with high footprint densities are sites of mitoribosome stalling. We recently applied this approach to demonstrate that defects in mitochondrial serine catabolism or in mitochondrial tRNA methylation cause stalling of mitoribosomes at specific codons. Our method can be applied to study basic mitochondrial biology or to characterize abnormalities in mitochondrial translation in patients with mitochondrial disorders.


Assuntos
Perfilação da Expressão Gênica , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas , Análise de Sequência/métodos , Células HCT116 , Humanos
11.
Gene ; 790: 145697, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33964376

RESUMO

Human Mitoribosomal Small Subunit unit (MRPS) family of genes appears to have role in cancer. Gene expression analysis of select MRPS genes (n = 9) in 15 cancer cell lines showed altered expression in cancer cells. Protein levels of MRPS6, MRPS23 showed significant overexpression in breast cancer cells and tissues. Interestingly, their overexpression did not correlate with mitochondrial ribosome translated COX2 protein levels in breast cancer. Subcellular fractionation analysis showed a distinct presence of MRPS23 in the nuclear fraction. GST/MRP6 and GST/MRPS23 pulldown assays identified 32 novel protein-protein interactions (PPIs) and MRPS23-RIPK3 interaction was validated. Co-expression module identification tool (CEMi) analysis of breast cancer gene expression and MRPS6 and MRPS23 interactions revealed hub interactions in gene expression modules having functional roles in cancer-associated cellular processes. Based on PPI network analysis a novel interaction MRPS23-p53 was validated. Knockdown of MRPS6 and MRPS23 decreased proliferation, expression of select mesenchymal markers, oncogenes, and increased expression of tumor suppressor genes. Taken together present study has revealed that MRPS6 and MRPS23 genes have pro-tumorigenic functions in breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Carcinogênese , Regulação Neoplásica da Expressão Gênica , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteínas Mitocondriais/genética , Prognóstico , Células Tumorais Cultivadas
12.
Nucleic Acids Res ; 49(10): 5798-5812, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34037799

RESUMO

Mitochondria contain their own translation apparatus which enables them to produce the polypeptides encoded in their genome. The mitochondrially-encoded RNA components of the mitochondrial ribosome require various post-transcriptional processing steps. Additional protein factors are required to facilitate the biogenesis of the functional mitoribosome. We have characterized a mitochondrially-localized protein, YbeY, which interacts with the assembling mitoribosome through the small subunit. Loss of YbeY leads to a severe reduction in mitochondrial translation and a loss of cell viability, associated with less accurate mitochondrial tRNASer(AGY) processing from the primary transcript and a defect in the maturation of the mitoribosomal small subunit. Our results suggest that YbeY performs a dual, likely independent, function in mitochondria being involved in precursor RNA processing and mitoribosome biogenesis. Issue Section: Nucleic Acid Enzymes.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/metabolismo , Ribonucleases/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Sequência de Aminoácidos , Sobrevivência Celular/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Imuno-Histoquímica , Espectrometria de Massas , Mitocôndrias/enzimologia , Mitocôndrias/genética , Biossíntese de Proteínas/genética , Alinhamento de Sequência
13.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526660

RESUMO

Human mitochondria contain their own genome, mitochondrial DNA, that is expressed in the mitochondrial matrix. This genome encodes 13 vital polypeptides that are components of the multisubunit complexes that couple oxidative phosphorylation (OXPHOS). The inner mitochondrial membrane that houses these complexes comprises the inner boundary membrane that runs parallel to the outer membrane, infoldings that form the cristae membranes, and the cristae junctions that separate the two. It is in these cristae membranes that the OXPHOS complexes have been shown to reside in various species. The majority of the OXPHOS subunits are nuclear-encoded and must therefore be imported from the cytosol through the outer membrane at contact sites with the inner boundary membrane. As the mitochondrially encoded components are also integral members of these complexes, where does protein synthesis occur? As transcription, mRNA processing, maturation, and at least part of the mitoribosome assembly process occur at the nucleoid and the spatially juxtaposed mitochondrial RNA granules, is protein synthesis also performed at the RNA granules close to these entities, or does it occur distal to these sites? We have adapted a click chemistry-based method coupled with stimulated emission depletion nanoscopy to address these questions. We report that, in human cells in culture, within the limits of our methodology, the majority of mitochondrial protein synthesis is detected at the cristae membranes and is spatially separated from the sites of RNA processing and maturation.


Assuntos
Compartimento Celular , Imageamento Tridimensional , Proteínas Mitocondriais/biossíntese , Biossíntese de Proteínas , Alcinos , Células Cultivadas , DNA Mitocondrial/genética , Glicina/análogos & derivados , Humanos , Cinética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo , Transdução de Sinais
14.
Science ; 371(6531): 846-849, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602856

RESUMO

Mitochondrial ribosomes (mitoribosomes) are tethered to the mitochondrial inner membrane to facilitate the cotranslational membrane insertion of the synthesized proteins. We report cryo-electron microscopy structures of human mitoribosomes with nascent polypeptide, bound to the insertase oxidase assembly 1-like (OXA1L) through three distinct contact sites. OXA1L binding is correlated with a series of conformational changes in the mitoribosomal large subunit that catalyze the delivery of newly synthesized polypeptides. The mechanism relies on the folding of mL45 inside the exit tunnel, forming two specific constriction sites that would limit helix formation of the nascent chain. A gap is formed between the exit and the membrane, making the newly synthesized proteins accessible. Our data elucidate the basis by which mitoribosomes interact with the OXA1L insertase to couple protein synthesis and membrane delivery.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/biossíntese , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , Microscopia Crioeletrônica , Complexo IV da Cadeia de Transporte de Elétrons/química , Humanos , Proteínas de Membrana/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Ribossomos Mitocondriais/ultraestrutura , Modelos Moleculares , Proteínas Nucleares/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Ribossomos/metabolismo
15.
FEBS J ; 288(2): 437-451, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32329962

RESUMO

In mammalian mitochondria, messenger RNA is processed and matured from large primary transcripts in structures known as RNA granules. The identity of the factors and process transferring the matured mRNA to the mitoribosome for translation is unclear. Nascent mature transcripts are believed to associate initially with the small mitoribosomal subunit prior to recruitment of the large subunit to form the translationally active monosome. When the small subunit fails to assemble, however, the stability of mt-mRNA is only marginally affected, and under these conditions, the LRPPRC/SLIRP RNA-binding complex has been implicated in maintaining mt-mRNA stability. Here, we exploit the activity of a bacterial ribotoxin, VapC20, to show that in the absence of the large mitoribosomal subunit, mt-mRNA species are selectively lost. Further, if the small subunit is also depleted, the mt-mRNA levels are recovered. As a consequence of these data, we suggest a natural pathway for loading processed mt-mRNA onto the mitoribosome.


Assuntos
Toxinas Bacterianas/genética , Mitocôndrias/genética , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Ribossômico 16S/genética , Ribonucleases/genética , Toxinas Bacterianas/metabolismo , Sequência de Bases , Transporte Biológico , Engenharia Celular/métodos , Linhagem Celular , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Ribossomos Mitocondriais/ultraestrutura , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neurospora crassa/química , Neurospora crassa/metabolismo , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleases/metabolismo
16.
Antioxid Redox Signal ; 34(8): 694-711, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32098485

RESUMO

Significance: Mitochondrial ribosomes (mitoribosomes) are organelles that translate mitochondrial messenger RNA in the matrix and, in mammals, have evolved to translate 13 polypeptides of the pathway that performs oxidative phosphorylation (OXPHOS). Although a number of devastating diseases result from defects in this mitochondrial translation apparatus, most are associated with genetic mutations and little is known about allelopathic defects caused by antibiotics, toxins, or nonproteinogenic amino acids. Recent Advances: The levels of mitochondrial ribosomal subunits 12S and 16S ribosomal RNA (rRNA) in cells/tissues from patients carrying mutations in these genes have been associated with alterations in mitochondrial translation efficiency and with impaired OXPHOS activities, as well as with the severity of clinical phenotypes. In recent decades, important studies revealed a prominent role of mitochondrial dysfunction in Parkinson's disease (PD); however, the involvement of mitoribosomes remains largely unknown. Critical Issues: Considering that mitoribosomal structure and function can determine the efficiency of OXPHOS and that an impaired mitochondrial respiratory chain is a common finding in PD, we argue that the mitoribosome may be key to disease onset and progression. With this review, we comprehensively integrate the available knowledge on the composition, assembly, and role of the mitoribosome in mitochondrial efficiency, reflecting on its possible involvement in the etiopathogenesis of this epidemic disease as an appealing research avenue. Future Directions: If a direct correlation between mitoribosome failure and PD pathology is demonstrated, these mitochondrial organelles will provide valuable early clinical markers and potentially attractive targets for the development of innovative PD-directed therapeutic agents.


Assuntos
Mitocôndrias/metabolismo , Ribossomos Mitocondriais/metabolismo , Doença de Parkinson/metabolismo , Animais , Humanos
17.
Nucleic Acids Res ; 49(1): 371-382, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33300043

RESUMO

Mammalian mitochondria have their own dedicated protein synthesis system, which produces 13 essential subunits of the oxidative phosphorylation complexes. We have reconstituted an in vitro translation system from mammalian mitochondria, utilizing purified recombinant mitochondrial translation factors, 55S ribosomes from pig liver mitochondria, and a tRNA mixture from either Escherichia coli or yeast. The system is capable of translating leaderless mRNAs encoding model proteins (DHFR and nanoLuciferase) or some mtDNA-encoded proteins. We show that a leaderless mRNA, encoding nanoLuciferase, is faithfully initiated without the need for any auxiliary factors other than IF-2mt and IF-3mt. We found that the ribosome-dependent GTPase activities of both the translocase EF-G1mt and the recycling factor EF-G2mt are insensitive to fusidic acid (FA), the translation inhibitor that targets bacterial EF-G homologs, and consequently the system is resistant to FA. Moreover, we demonstrate that a polyproline sequence in the protein causes 55S mitochondrial ribosome stalling, yielding ribosome nascent chain complexes. Analyses of the effects of the Mg concentration on the polyproline-mediated ribosome stalling suggested the unique regulation of peptide elongation by the mitoribosome. This system will be useful for analyzing the mechanism of translation initiation, and the interactions between the nascent peptide chain and the mitochondrial ribosome.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Ribossomos Mitocondriais/metabolismo , Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Regiões 5' não Traduzidas , Animais , Sistema Livre de Células , DNA/síntese química , Escherichia coli , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Luciferases/biossíntese , Luciferases/genética , Magnésio/farmacologia , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/efeitos dos fármacos , Ribossomos Mitocondriais/ultraestrutura , Fosforilação Oxidativa , Iniciação Traducional da Cadeia Peptídica , Fatores de Alongamento de Peptídeos/fisiologia , Peptídeos/genética , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Suínos , Tetra-Hidrofolato Desidrogenase/biossíntese , Tetra-Hidrofolato Desidrogenase/genética
18.
Methods Mol Biol ; 2192: 159-181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33230773

RESUMO

Human mitochondria contain their own DNA (mtDNA) that encodes 13 proteins all of which are core subunits of oxidative phosphorylation (OXPHOS) complexes. To form functional complexes, these 13 components need to be correctly assembled with approximately 70 nuclear-encoded subunits that are imported following synthesis in the cytosol. How this complicated coordinated translation and assembly is choreographed is still not clear. Methods are being developed to determine whether all members of a particular complex are translated in close proximity, whether protein synthesis is clustered in submitochondrial factories, whether these align with incoming polypeptides, and if there is evidence for co-translational translation that is regulated and limited by the interaction of the incoming proteins with synthesis of their mtDNA-encoded partners. Two methods are described in this chapter to visualize the distribution of mitochondrial ribosomal RNAs in conjunction with newly synthesized mitochondrial proteins. The first combines RNA Fluorescent In Situ Hybridization (FISH) and super-resolution immunocytochemistry to pinpoint mitochondrial ribosomal RNA. The second localizes nascent translation within the mitochondrial network through non-canonical amino acid labeling, click chemistry and fluorescent microscopy.


Assuntos
Química Click/métodos , Imuno-Histoquímica/métodos , Hibridização in Situ Fluorescente/métodos , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo , RNA Ribossômico/metabolismo , Aminoácidos/química , Linhagem Celular Tumoral , DNA Mitocondrial/genética , Humanos , Microscopia de Fluorescência/métodos , Fosforilação Oxidativa , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo
19.
Nucleic Acids Res ; 49(1): 354-370, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33283228

RESUMO

Human mitoribosomes are macromolecular complexes essential for translation of 11 mitochondrial mRNAs. The large and the small mitoribosomal subunits undergo a multistep maturation process that requires the involvement of several factors. Among these factors, GTP-binding proteins (GTPBPs) play an important role as GTP hydrolysis can provide energy throughout the assembly stages. In bacteria, many GTPBPs are needed for the maturation of ribosome subunits and, of particular interest for this study, ObgE has been shown to assist in the 50S subunit assembly. Here, we characterize the role of a related human Obg-family member, GTPBP5. We show that GTPBP5 interacts specifically with the large mitoribosomal subunit (mt-LSU) proteins and several late-stage mitoribosome assembly factors, including MTERF4:NSUN4 complex, MRM2 methyltransferase, MALSU1 and MTG1. Interestingly, we find that interaction of GTPBP5 with the mt-LSU is compromised in the presence of a non-hydrolysable analogue of GTP, implying a different mechanism of action of this protein in contrast to that of other Obg-family GTPBPs. GTPBP5 ablation leads to severe impairment in the oxidative phosphorylation system, concurrent with a decrease in mitochondrial translation and reduced monosome formation. Overall, our data indicate an important role of GTPBP5 in mitochondrial function and suggest its involvement in the late-stage of mt-LSU maturation.


Assuntos
Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Neoplasias Ósseas/patologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Osteossarcoma/patologia , Fosforilação Oxidativa , Mapeamento de Interação de Proteínas
20.
Science ; 370(6520): 1105-1110, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33243891

RESUMO

The human mitochondrial ribosome (mitoribosome) and associated proteins regulate the synthesis of 13 essential subunits of the oxidative phosphorylation complexes. We report the discovery of a mitoribosome-associated quality control pathway that responds to interruptions during elongation, and we present structures at 3.1- to 3.3-angstrom resolution of mitoribosomal large subunits trapped during ribosome rescue. Release factor homolog C12orf65 (mtRF-R) and RNA binding protein C6orf203 (MTRES1) eject the nascent chain and peptidyl transfer RNA (tRNA), respectively, from stalled ribosomes. Recruitment of mitoribosome biogenesis factors to these quality control intermediates suggests additional roles for these factors during mitoribosome rescue. We also report related cryo-electron microscopy structures (3.7 to 4.4 angstrom resolution) of elongating mitoribosomes bound to tRNAs, nascent polypeptides, the guanosine triphosphatase elongation factors mtEF-Tu and mtEF-G1, and the Oxa1L translocase.


Assuntos
Ribossomos Mitocondriais/química , Elongação da Transcrição Genética , Microscopia Crioeletrônica , Complexo IV da Cadeia de Transporte de Elétrons/química , Escherichia coli , Exorribonucleases/genética , Células HEK293 , Humanos , Proteínas Mitocondriais/química , Proteínas Nucleares/química , Fatores de Terminação de Peptídeos/química , Domínios Proteicos , RNA de Transferência/química , Proteínas de Ligação a RNA/química , Proteínas Ribossômicas/química , Fatores de Elongação da Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA