Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
SLAS Discov ; 29(4): 100161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788976

RESUMO

Methylation of proteins and nucleic acids plays a fundamental role in epigenetic regulation, and discovery of methyltransferase (MT) inhibitors is an area of intense activity. Because of the diversity of MTs and their products, assay methods that detect S-adenosylhomocysteine (SAH) - the invariant product of S-adenosylmethionine (SAM)-dependent methylation reactions - offer some advantages over methods that detect specific methylation events. However, direct, homogenous detection of SAH requires a reagent capable of discriminating between SAH and SAM, which differ by a single methyl group. Moreover, MTs are slow enzymes and many have submicromolar affinities for SAM; these properties translate to a need for detection of SAH at low nanomolar concentrations in the presence of excess SAM. To meet these needs, we leveraged the exquisite molecular recognition properties of a naturally occurring SAH-sensing RNA aptamer, or riboswitch. By splitting the riboswitch into two fragments, such that SAH binding induces assembly of a trimeric complex, we engineered sensors that transduce binding of SAH into positive fluorescence polarization (FP) and time resolved Förster resonance energy transfer (TR-FRET) signals. The split riboswitch configuration, called the AptaFluor™ SAH Methyltransferase Assay, allows robust detection of SAH (Z' > 0.7) at concentrations below 10 nM, with overnight signal stability in the presence of typical MT assay components. The AptaFluor assay tolerates diverse MT substrates, including histones, nucleosomes, DNA and RNA, and we demonstrated its utility as a robust, enzymatic assay method for several methyltransferases with SAM Km values < 1 µM. The assay was validated for HTS by performing a pilot screen of 1,280 compounds against the SARS-CoV-2 RNA capping enzyme, nsp14. By enabling direct, homogenous detection of SAH at low nanomolar concentrations, the AptaFluor assay provides a universal platform for screening and profiling MTs at physiologically relevant SAM concentrations.


Assuntos
Ensaios Enzimáticos , Metiltransferases , Riboswitch , S-Adenosil-Homocisteína , S-Adenosilmetionina , S-Adenosil-Homocisteína/metabolismo , Riboswitch/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Ensaios Enzimáticos/métodos , S-Adenosilmetionina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Metilação , Humanos , Polarização de Fluorescência/métodos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética
2.
Nucleic Acids Res ; 52(10): 5852-5865, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38742638

RESUMO

Small RNAs (sRNAs) and riboswitches represent distinct classes of RNA regulators that control gene expression upon sensing metabolic or environmental variations. While sRNAs and riboswitches regulate gene expression by affecting mRNA and protein levels, existing studies have been limited to the characterization of each regulatory system in isolation, suggesting that sRNAs and riboswitches target distinct mRNA populations. We report that the expression of btuB in Escherichia coli, which is regulated by an adenosylcobalamin (AdoCbl) riboswitch, is also controlled by the small RNAs OmrA and, to a lesser extent, OmrB. Strikingly, we find that the riboswitch and sRNAs reduce mRNA levels through distinct pathways. Our data show that while the riboswitch triggers Rho-dependent transcription termination, sRNAs rely on the degradosome to modulate mRNA levels. Importantly, OmrA pairs with the btuB mRNA through its central region, which is not conserved in OmrB, indicating that these two sRNAs may have specific targets in addition to their common regulon. In contrast to canonical sRNA regulation, we find that OmrA repression of btuB is lost using an mRNA binding-deficient Hfq variant. Together, our study demonstrates that riboswitch and sRNAs modulate btuB expression, providing an example of cis- and trans-acting RNA-based regulatory systems maintaining cellular homeostasis.


Assuntos
Cobamidas , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano , RNA Mensageiro , Riboswitch , Riboswitch/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Cobamidas/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Helicases/genética , RNA Helicases/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas da Membrana Bacteriana Externa , Polirribonucleotídeo Nucleotidiltransferase , Proteínas de Membrana Transportadoras
3.
Front Immunol ; 15: 1360063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558809

RESUMO

Hepatocellular carcinoma (HCC) and solid cancers with liver metastases are indications with high unmet medical need. Interleukin-12 (IL-12) is a proinflammatory cytokine with substantial anti-tumor properties, but its therapeutic potential has not been realized due to severe toxicity. Here, we show that orthotopic liver tumors in mice can be treated by targeting hepatocytes via systemic delivery of adeno-associated virus (AAV) vectors carrying the murine IL-12 gene. Controlled cytokine production was achieved in vivo by using the tetracycline-inducible K19 riboswitch. AAV-mediated expression of IL-12 led to STAT4 phosphorylation, interferon-γ (IFNγ) production, infiltration of T cells and, ultimately, tumor regression. By detailed analyses of efficacy and tolerability in healthy and tumor-bearing animals, we could define a safe and efficacious vector dose. As a potential clinical candidate, we characterized vectors carrying the human IL-12 (huIL-12) gene. In mice, bioactive human IL-12 was expressed in a vector dose-dependent manner and could be induced by tetracycline, suggesting tissue-specific AAV vectors with riboswitch-controlled expression of highly potent proinflammatory cytokines as an attractive approach for vector-based cancer immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Riboswitch , Camundongos , Humanos , Animais , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Terapia Genética , Interleucina-12/genética , Interleucina-12/metabolismo , Tetraciclina/farmacologia
4.
Cell Rep ; 42(12): 113571, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096053

RESUMO

Natural polyamines such as spermidine and spermine cations have characteristics that make them highly likely to be sensed by riboswitches, such as their general affinity to polyanionic RNA and their broad contributions to cell physiology. Despite previous claims that polyamine riboswitches exist, evidence of their biological functions has remained unconvincing. Here, we report that rare variants of bacterial S-adenosylmethionine-I (SAM-I) riboswitches reject SAM and have adapted to selectively sense spermidine. These spermidine-sensing riboswitch variants are associated with genes whose protein products are directly involved in the production of spermidine and other polyamines. Biochemical and genetic assays demonstrate that representatives of this riboswitch class robustly function as genetic "off" switches, wherein spermidine binding causes premature transcription termination to suppress the expression of polyamine biosynthetic genes. These findings confirm the existence of natural spermidine-sensing riboswitches in bacteria and expand the list of variant riboswitch classes that have adapted to bind different ligands.


Assuntos
Riboswitch , Riboswitch/genética , S-Adenosilmetionina/metabolismo , Espermidina , Coenzimas/metabolismo , Oligonucleotídeos , Bactérias/genética , Bactérias/metabolismo , Conformação de Ácido Nucleico
5.
Biochemistry ; 62(23): 3396-3410, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37947391

RESUMO

Bacterial riboswitches are structured RNAs that bind small metabolites to control downstream gene expression. Two riboswitch classes have been reported to sense nicotinamide adenine dinucleotide (NAD+), which plays a key redox role in cellular metabolism. The NAD+-I (class I) riboswitch stands out because it comprises two homologous, tandemly arranged domains. However, previous studies examined the isolated domains rather than the full-length riboswitch. Crystallography and ligand binding analyses led to the hypothesis that each domain senses NAD+ but with disparate equilibrium binding constants (KD) of 127 µM (domain I) and 3.4 mM (domain II). Here, we analyzed individual domains and the full-length riboswitch by isothermal titration calorimetry to quantify the cofactor affinity and specificity. Domain I senses NAD+ with a KD of 24.6 ± 8.4 µM but with a reduced ligand-to-receptor stoichiometry, consistent with nonproductive domain self-association observed by gel-filtration chromatography; domain II revealed no detectable binding. By contrast, the full-length riboswitch binds a single NAD+ with a KD of 31.5 ± 1.5 µM; dinucleotides NADH and AP2-ribavirin also bind with one-to-one stoichiometry. Unexpectedly, the full-length riboswitch also binds a single ATP equivalent (KD = 11.0 ± 3.5 µM). The affinity trend of the full-length riboswitch is ADP = ATP > NAD+ = AP2-ribavirin > NADH. Although our results support riboswitch sensing of a single NAD+ at concentrations significantly below the intracellular levels of this cofactor, our findings do not support the level of specificity expected for a riboswitch that exclusively senses NAD+. Gene regulatory implications and future challenges are discussed.


Assuntos
Riboswitch , NAD/metabolismo , Trifosfato de Adenosina , Conformação de Ácido Nucleico , Ligantes , Ribavirina
6.
mBio ; 14(5): e0158823, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37823641

RESUMO

IMPORTANCE: In addition to proteins, microbes can use structured RNAs such as riboswitches for the important task of regulating gene expression. Riboswitches control gene expression by changing their structure in response to binding a small molecule and are widespread among bacteria. Here we determine the mechanism of regulation in a riboswitch that responds to corrinoids-a family of coenzymes related to vitamin B12. We report the alternative RNA secondary structures that couple corrinoid sensing with response in a repressing and novel activating corrinoid riboswitch. We then applied this knowledge to flipping the regulatory sign by constructing synthetic riboswitches that activate expression to a higher level than the natural one. In the process, we observed patterns in which sequence, in addition to structure, impacts function in paired RNA regions. The synthetic riboswitches we describe here have potential applications as biosensors.


Assuntos
Riboswitch , Riboswitch/genética , Vitamina B 12 , Bactérias/genética , Coenzimas/metabolismo , Engenharia Genética
7.
Biotechnol Bioeng ; 120(12): 3622-3637, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37691180

RESUMO

S-adenosyl- l-methionine (SAM) is a high-value compound widely used in the treatment of various diseases. SAM can be produced through fermentation, but further enhancing the microbial production of SAM requires novel high-throughput screening methods for rapid detection and screening of mutant libraries. In this work, an SAM-OFF riboswitch capable of responding to the SAM concentration was obtained and a high-throughput platform for screening SAM overproducers was established. SAM synthase was engineered by semirational design and directed evolution, which resulted in the SAM2S203F,W164R,T251S,Y285F,S365R mutant with almost twice higher catalytic activity than the parental enzyme. The best mutant was then introduced into Saccharomyces cerevisiae BY4741, and the resulting strain BSM8 produced a sevenfold higher SAM titer in shake-flask fermentation, reaching 1.25 g L-1 . This work provides a reference for designing biosensors to dynamically detect metabolite concentrations for high-throughput screening and the construction of effective microbial cell factories.


Assuntos
Riboswitch , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ensaios de Triagem em Larga Escala , Riboswitch/genética , Fermentação
8.
Commun Biol ; 6(1): 791, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524918

RESUMO

The SAM/SAH riboswitch binds S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) with similar affinities. Mg2+ is generally known to stabilize RNA structures by neutralizing phosphates, but how it contributes to ligand binding and conformational transition is understudied. Here, extensive molecular dynamics simulations (totaling 120 µs) predicted over 10 inner-shell Mg2+ ions in the SAM/SAH riboswitch. Six of them line the two sides of a groove to widen it and thereby pre-organize the riboswitch for ligand entry. They also form outer-shell coordination with the ligands and stabilize an RNA-ligand hydrogen bond, which effectively diminishes the selectivity between SAM and SAH. One Mg2+ ion unique to the apo form maintains the Shine-Dalgarno sequence in an autonomous mode and thereby facilitates its release for ribosome binding. Mg2+ thus plays vital roles in SAM/SAH riboswitch function.


Assuntos
Riboswitch , Conformação de Ácido Nucleico , Magnésio , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Ligantes , RNA/química , Íons
9.
Nat Commun ; 14(1): 2320, 2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087479

RESUMO

Growing RNAs fold differently as they are transcribed, which modulates their finally adopted structures. Riboswitches regulate gene expression by structural change, which are sensitive to co-transcriptionally structural biology. Here we develop a strategy to track the structural change of RNAs during transcription at single-nucleotide and single-molecule resolution and use it to monitor individual transcripts of the SAM-VI riboswitch (riboSAM) as transcription proceeds, observing co-existence of five states in riboSAM. We report a bifurcated helix in one newly identified state from NMR and single-molecule FRET (smFRET) results, and its presence directs the translation inhibition in our cellular translation experiments. A model is proposed to illustrate the distinct switch patterns and gene-regulatory outcome of riboSAM when SAM is present or absent. Our strategy enables the precise mapping of RNAs' conformational landscape during transcription, and may combine with detection methods other than smFRET for structural studies of RNAs in general.


Assuntos
Riboswitch , Riboswitch/genética , Nucleotídeos , S-Adenosilmetionina/metabolismo , Conformação de Ácido Nucleico , Transferência Ressonante de Energia de Fluorescência/métodos , Ligantes
10.
J Am Chem Soc ; 145(14): 7820-7828, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36991533

RESUMO

Synthetic riboswitches that can regulate gene expression by a small molecule recognized by an RNA aptamer in mammalian cells have various potential applications in biotechnology and medicine. However, the variety of small molecules and their cognate aptamers that have been demonstrated to function in mammalian cells is limited. The currently available aptamer-ligand pairs also require high small molecule concentrations to enable gene regulation, making them less desirable for industrial and biomedical applications. We conducted in vitro selection of RNA aptamers against a small molecule ASP7967 whose structure is closely related to ASP2905, a known inhibitor of potassium voltage-gated channel sub-family H member 3 (KCNH3). One of the aptamers selected (AC17-4) was found to be functional in HEK293 cells, and it was used to design aptazyme-based riboswitches that can activate gene expression (>10-fold) in the presence of ASP2905 or ASP7967 at as low as 5 µM in the culture medium. An aptazyme-based riboswitch was successfully used to regulate human erythropoietin expression in mice injected with an adeno-associated virus (AAV8) vector using orally administered ASP7967. Furthermore, by combining aptazyme-based and exon-skipping riboswitch mechanisms, an ON/OFF ratio approaching 300 was achieved with a low basal expression level in cultured cells.


Assuntos
Aptâmeros de Nucleotídeos , Riboswitch , Humanos , Camundongos , Animais , RNA , Células HEK293 , Regulação da Expressão Gênica , Aptâmeros de Nucleotídeos/química , Mamíferos/genética , Mamíferos/metabolismo
11.
PLoS One ; 18(2): e0281744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36809273

RESUMO

Riboswitches are RNA elements involved in regulating genes that participate in the biosynthesis or transport of essential metabolites. They are characterized by their ability to recognize their target molecules with high affinity and specificity. Riboswitches are commonly cotranscribed with their target genes and are located at the 5' end of their transcriptional units. To date, only two exceptional cases of riboswitches being situated at the 3' end and transcribing in the antisense direction of their regulated genes have been described. The first case involves a SAM riboswitch located at the 3' end of the ubiG-mccB-mccA operon in Clostridium acetobutylicum involved in converting methionine to cysteine. The second case concerns a Cobalamin riboswitch in Listeria monocytogenes that regulates the transcription factor PocR related to this organism's pathogenic process. In almost a decade since the first descriptions of antisense-acting riboswitches, no new examples have been described. In this work, we performed a computational analysis to identify new examples of antisense-acting riboswitches. We found 292 cases in which, according to the available information, we infer that the expected regulation of the riboswitch is consistent with the signaling molecule it senses and the metabolic function of the regulated gene. The metabolic implications of this novel type of regulation are thoroughly discussed.


Assuntos
Clostridium acetobutylicum , Riboswitch , Clostridium acetobutylicum/genética , RNA , Fatores de Transcrição/genética , Regulação Bacteriana da Expressão Gênica
12.
Nucleic Acids Res ; 51(1): 54-67, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36610789

RESUMO

Riboswitches are conserved non-coding domains in bacterial mRNA with gene regulation function that are essential for maintaining enzyme co-factor metabolism. Recently, the pnuC RNA motif was reported to selectively bind nicotinamide adenine dinucleotide (NAD+), defining a novel class of NAD+ riboswitches (NAD+-II) according to phylogenetic analysis. To reveal the three-dimensional architecture and the ligand-binding mode of this riboswitch, we solved the crystal structure of NAD+-II riboswitch in complex with NAD+. Strikingly and in contrast to class-I riboswitches that form a tight recognition pocket for the adenosine diphosphate (ADP) moiety of NAD+, the class-II riboswitches form a binding pocket for the nicotinamide mononucleotide (NMN) portion of NAD+ and display only unspecific interactions with the adenosine. We support this finding by an additional structure of the class-II RNA in complex with NMN alone. The structures define a novel RNA tertiary fold that was further confirmed by mutational analysis in combination with isothermal titration calorimetry (ITC), and 2-aminopurine-based fluorescence spectroscopic folding studies. Furthermore, we truncated the pnuC RNA motif to a short RNA helical scaffold with binding affinity comparable to the wild-type motif to allude to the potential of engineering the NAD+-II motif for biotechnological applications.


Assuntos
Riboswitch , NAD/metabolismo , Filogenia , Ligantes , RNA/genética
13.
Anal Biochem ; 666: 115047, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682579

RESUMO

Due to the emergence of multidrug resistant pathogens, it is imperative to identify new targets for antibiotic drug discovery. The S-adenosylhomocysteine (SAH) nucleosidase enzyme is a promising target for antimicrobial drug development due to its critical functions in multiple bacterial processes including recycling of toxic byproducts of S-adenosylmethionine (SAM)-mediated reactions and producing the precursor of the universal quorum sensing signal, autoinducer-2 (AI-2). Riboswitches are structured RNA elements typically used by bacteria to precisely monitor and respond to changes in essential bacterial processes, including metabolism. Natural riboswitches fused to a reporter gene can be exploited to detect changes in metabolism or in physiological signaling. We performed a high-throughput screen (HTS) using an SAH-riboswitch controlled ß-galactosidase reporter gene in Escherichia coli to discover small molecules that inhibit SAH recycling. We demonstrate that the assay strategy using SAH riboswitches to detect the effects of SAH nucleosidase inhibitors can quickly identify compounds that penetrate the barriers of Gram-negative bacterial cells and perturb pathways involving SAH.


Assuntos
Riboswitch , S-Adenosilmetionina/metabolismo , RNA/genética , Bactérias/genética , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo
14.
Sci China Life Sci ; 66(1): 31-50, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459353

RESUMO

Riboswitches are highly conserved RNA elements that located in the 5'-UTR of mRNAs, which undergo real-time structure conformational change to achieve the regulation of downstream gene expression by sensing their cognate ligands. S-adenosylmethionine (SAM) is a ubiquitous methyl donor for transmethylation reactions in all living organisms. SAM riboswitch is one of the most abundant riboswitches that bind to SAM with high affinity and selectivity, serving as regulatory modules in multiple metabolic pathways. To date, seven SAM-specific riboswitch classes that belong to four families, one SAM/SAH riboswitch and one SAH riboswitch have been identified. Each SAM riboswitch family has a well-organized tertiary core scaffold to support their unique ligand-specific binding pocket. In this review, we summarize the current research progress on the distribution, structure, ligand recognition and gene regulation mechanism of these SAM-related riboswitch families, and further discuss their evolutionary prospects and potential applications.


Assuntos
Riboswitch , Humanos , Riboswitch/genética , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Ligantes , RNA , Evolução Biológica , Conformação de Ácido Nucleico
15.
J Chem Inf Model ; 62(23): 6118-6132, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36440874

RESUMO

S-Adenosyl-l-methionine (SAM)-responsive riboswitches play a central role in the regulation of bacterial gene expression at the level of transcription attenuation or translation inhibition. In this study, multiple independent Gaussian-accelerated molecular dynamics simulations were performed to decipher the identification mechanisms of SAM-III (SMK) on ligands SAM, SAH, and EEM. The results reveal that ligand binding highly affects the structural flexibility, internal dynamics, and conformational changes of SAM-III. The dynamic analysis shows that helices P3 and P4 as well as two junctions J23 and J24 of SAM-III are highly susceptible to ligand binding. Analyses of free energy landscapes suggest that ligand binding induces different free energy profiles of SAM-III, which leads to the difference in identification sites of SAM-III on ligands. The information on ligand-nucleotide interactions not only uncovers that the π-π, cation-π, and hydrogen bonding interactions drive identification of SAM-III on the three ligands but also reveals that different electrostatic properties of SAM, SAH, and EEM alter the active sites of SAM-III. Meanwhile, the results also verify that the adenine group of SAM, SAH, and EEM is well recognized by conserved nucleotides G7, A29, U37, A38, and G48. We expect that this study can provide useful information for understanding the applications of SAM-III in chemical, synthetic RNA biology, and biomedical fields.


Assuntos
Riboswitch , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Conformação de Ácido Nucleico
16.
Genes (Basel) ; 13(11)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36360167

RESUMO

RNA molecules, in one form or another, are involved in almost all aspects of cell physiology, as well as in disease development. The diversity of the functional roles of RNA comes from its intrinsic ability to adopt complex secondary and tertiary structures, rivaling the diversity of proteins. The RNA molecules form dynamic ensembles of many interconverting conformations at a timescale of seconds, which is a key for understanding how they execute their cellular functions. Given the crucial role of RNAs in various cellular processes, we need to understand the RNA molecules from a structural perspective. Central to this review are studies aimed at revealing the regulatory role of conformational equilibria in RNA in humans to understand genetic diseases such as cancer and neurodegenerative diseases, as well as in pathogens such as bacteria and viruses so as to understand the progression of infectious diseases. Furthermore, we also summarize the prior studies on the use of RNA structures as platforms for the rational design of small molecules for therapeutic applications.


Assuntos
Riboswitch , Humanos , Conformação de Ácido Nucleico , RNA/química , Proteínas/genética
17.
RNA Biol ; 19(1): 980-995, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950733

RESUMO

In Sinorhizobium meliloti, the methionine biosynthesis genes metA and metZ are preceded by S-adenosyl-L-methionine (SAM) riboswitches of the SAM-II class. Upon SAM binding, structural changes in the metZ riboswitch were predicted to cause transcriptional termination, generating the sRNA RZ. By contrast, the metA riboswitch was predicted to regulate translation from an AUG1 codon. However, downstream of the metA riboswitch, we found a putative Rho-independent terminator and an in-frame AUG2 codon, which may contribute to metA regulation. We validated the terminator between AUG1 and AUG2, which generates the sRNA RA1 that is processed to RA2. Under high SAM conditions, the activities of the metA and metZ promoters and the steady-state levels of the read-through metA and metZ mRNAs were decreased, while the levels of the RZ and RA2 sRNAs were increased. Under these conditions, the sRNAs and the mRNAs were stabilized. Reporter fusion experiments revealed that the Shine-Dalgarno (SD) sequence in the metA riboswitch is required for translation, which, however, starts 74 nucleotides downstream at AUG2, suggesting a novel translation initiation mechanism. Further, the reporter fusion data supported the following model of RNA-based regulation: Upon SAM binding by the riboswitch, the SD sequence is sequestered to downregulate metA translation, while the mRNA is stabilized. Thus, the SAM-II riboswitches fulfil incoherent, dual regulation, which probably serves to ensure basal metA and metZ mRNA levels under high SAM conditions. This probably helps to adapt to changing conditions and maintain SAM homoeostasis.


Assuntos
Pequeno RNA não Traduzido , Riboswitch , Conformação de Ácido Nucleico , S-Adenosilmetionina/metabolismo
18.
Microbiol Spectr ; 10(4): e0154322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862946

RESUMO

Nucleoside transport is essential for maintaining intracellular nucleoside and nucleobase homeostasis for living cells. Here, we identified an uncharacterized GntR/HutC family transcriptional regulator, NagR2, renamed NupR (nucleoside permease regulator), that mainly controls nucleoside transport in the Bacillus thuringiensis BMB171 strain. The deletion or overexpression of nupR affected the bacteria's utilization of guanosine, adenosine, uridine, and cytidine rather than thymidine. We further demonstrated that zinc ion is an effector for the NupR, dissociating NupR from its target DNA. Moreover, the expression of nupR is inhibited by NupR, ComK, and PurR, while it is promoted by CcpA. Also, a purine riboswitch located in its 5' noncoding region influences the expression of nupR. Guanine is the ligand of the riboswitch, reducing the expression of nupR by terminating the transcription of nupR in advance. Hence, our results reveal an exquisite regulation mechanism enabling NupR to respond to multiple signals, control genes involved in nucleoside transport, and contribute to nucleoside substance utilization. Overall, this study provides essential clues for future studies exploring the function of the NupR homolog in other bacteria, such as Bacillus cereus, Bacillus anthracis, Klebsiella pneumoniae, and Streptococcus pneumoniae. IMPORTANCE The transport of nucleosides and their homeostasis within the cell are essential for growth and proliferation. Here, we have identified a novel transcription factor, NupR, which, to our knowledge, is the first GntR family transcription factor primarily involved in the regulation of nucleoside transport. Moreover, responding to diverse intracellular signals, NupR regulates nucleoside transport. It is vital for utilizing extracellular nucleosides and maintaining intracellular nucleoside homeostasis. NupR may also be involved in other pathways such as pH homeostasis, molybdenum cofactor biosynthesis, nitrate metabolism, and transport. In addition, nucleosides have various applications, such as antiviral drugs. Thus, the elucidation of the transport mechanism of nucleosides could be helpful for the construction of engineered strains for nucleoside production.


Assuntos
Bacillus thuringiensis , Riboswitch , Bacillus thuringiensis/genética , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Nucleosídeos/metabolismo , Fatores de Transcrição/metabolismo
19.
Bioorg Med Chem Lett ; 71: 128839, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654302

RESUMO

We chose two types of mid-sized Arg-rich peptides (Rev-pep and Tat-pep) as ligands and used their aptamers to construct efficient eukaryotic ON-riboswitches (ligand-dependently upregulating riboswitches). Due to the aptamers' high affinities, the best Rev-pep-responsive and Tat-pep-responsive riboswitches obtained showed much higher switching efficiencies at low ligand concentrations than small ligand-responsive ON-riboswitches in the same mechanism. In addition, despite the high sequence similarity of Rev-pep and Tat-pep, the two best riboswitches were almost insensitive to each other's peptide ligand. Considering the high responsiveness and specificity along with the versatility of the expression platform used and the applicability of Arg-rich peptides, this orthogonal pair of riboswitches would be widely useful eukaryotic gene regulators or biosensors.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Riboswitch , Eucariotos/genética , Ligantes , Conformação de Ácido Nucleico , Peptídeos
20.
Nucleic Acids Res ; 50(10): 5834-5849, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580054

RESUMO

T-box riboswitches (T-boxes) are essential RNA regulatory elements with a remarkable structural diversity, especially among bacterial pathogens. In staphylococci, all glyS T-boxes synchronize glycine supply during synthesis of nascent polypeptides and cell wall formation and are characterized by a conserved and unique insertion in their antiterminator/terminator domain, termed stem Sa. Interestingly, in Staphylococcus aureus the stem Sa can accommodate binding of specific antibiotics, which in turn induce robust and diverse effects on T-box-mediated transcription. In the present study, domain swap mutagenesis and probing analysis were performed to decipher the role of stem Sa. Deletion of stem Sa significantly reduces both the S. aureus glyS T-box-mediated transcription readthrough levels and the ability to discriminate among tRNAGly isoacceptors, both in vitro and in vivo. Moreover, the deletion inverted the previously reported stimulatory effects of specific antibiotics. Interestingly, stem Sa insertion in the terminator/antiterminator domain of Geobacillus kaustophilus glyS T-box, which lacks this domain, resulted in elevated transcription in the presence of tigecycline and facilitated discrimination among proteinogenic and nonproteinogenic tRNAGly isoacceptors. Overall, stem Sa represents a lineage-specific structural feature required for efficient staphylococcal glyS T-box-mediated transcription and it could serve as a species-selective druggable target through its ability to modulate antibiotic binding.


Assuntos
Riboswitch , Antibacterianos/farmacologia , RNA , RNA de Transferência de Glicina/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA