Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
ACS Nano ; 18(28): 18650-18662, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959157

RESUMO

Peptide design and drug development offer a promising solution for combating serious diseases or infections. In this study, using an AI-human negotiation approach, we have designed a class of minimal model peptides against tuberculosis (TB), among which K7W6 exhibits potent efficacy attributed to its assembly-induced function. Comprising lysine and tryptophan with an amphiphilic α-helical structure, the K7W6 sequence exhibits robust activity against various infectious bacteria causing TB (including clinically isolated and drug-resistant strains) both in vitro and in vivo. Moreover, it synergistically enhances the effectiveness of the first-line antibiotic rifampicin while displaying low potential for inducing drug resistance and minimal toxicity toward mammalian cells. Biophysical experiments and simulations elucidate that K7W6's exceptional performance can be ascribed to its highly selective and efficient membrane permeabilization activity induced by its distinctive self-assembly behavior. Additionally, these assemblies regulate the interplay between enthalpy and entropy during K7W6-membrane interaction, leading to the peptide's two-step mechanism of membrane interaction. These findings provide valuable insights into rational design principles for developing advanced peptide-based drugs while uncovering the functional role played by assembly.


Assuntos
Entropia , Humanos , Peptídeos/química , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/química , Rifampina/química , Rifampina/farmacologia , Animais
2.
Eur J Pharm Biopharm ; 188: 54-65, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37172696

RESUMO

There is a possibility of in-situ physicochemical interactions between concomitantly administered drugs. This study aimed to investigate such physicochemical interactions between pioglitazone and rifampicin. Pioglitazone exhibited significantly higher dissolution in the presence of rifampicin, while the dissolution of rifampicin remained unaffected. The solid-state characterization of precipitates recovered after pH-shift dissolution experiments revealed the conversion of pioglitazone into an amorphous form in the presence of rifampicin. The Density Function Theory (DFT) calculations showed the intermolecular hydrogen bonding between rifampicin and pioglitazone. In-situ conversion of pioglitazone in amorphous form and subsequent supersaturation of GIT milieu translated into significantly higher in-vivo exposure of pioglitazone and its metabolites (M-III and M-IV) in Wistar rats. Therefore, it is advisable to consider the possibility of physicochemical interactions between concomitantly administered drugs. Our findings may be beneficial in tailoring the dose of concomitantly administered drugs, particularly for chronic conditions that entail polypharmacy.


Assuntos
Rifampina , Ratos , Animais , Pioglitazona , Rifampina/química , Ratos Wistar , Solubilidade
3.
Microbiol Spectr ; 9(2): e0043421, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34585951

RESUMO

The therapeutic repertoire for tuberculosis (TB) remains limited despite the existence of many TB drugs that are highly active in in vitro models and possess clinical utility. Underlying the lack of efficacy in vivo is the inability of TB drugs to penetrate microenvironments inhabited by the causative agent, Mycobacterium tuberculosis, including host alveolar macrophages. Here, we determined the ability of the phenoxazine PhX1 previously shown to be active against M. tuberculosis in vitro to differentially penetrate murine compartments, including plasma, epithelial lining fluid, and isolated epithelial lining fluid cells. We also investigated the extent of permeation into uninfected and M. tuberculosis-infected human macrophage-like Tamm-Horsfall protein 1 (THP-1) cells directly and by comparing to results obtained in vitro in synergy assays. Our data indicate that PhX1 (4,750 ± 127.2 ng/ml) penetrates more effectively into THP-1 cells than do the clinically used anti-TB agents, rifampin (3,050 ± 62.9 ng/ml), moxifloxacin (3,374 ± 48.7 ng/ml), bedaquiline (4,410 ± 190.9 ng/ml), and linezolid (770 ± 14.1 ng/ml). Compound efficacy in infected cells correlated with intracellular accumulation, reinforcing the perceived importance of intracellular penetration as a key drug property. Moreover, we detected synergies deriving from redox-stimulatory combinations of PhX1 or clofazimine with the novel prenylated amino-artemisinin WHN296. Finally, we used compound synergies to elucidate the relationship between compound intracellular accumulation and efficacy, with PhX1/WHN296 synergy levels shown to predict drug efficacy. Collectively, our data support the utility of the applied assays in identifying in vitro active compounds with the potential for clinical development. IMPORTANCE This study addresses the development of novel therapeutic compounds for the eventual treatment of drug-resistant tuberculosis. Tuberculosis continues to progress, with cases of Mycobacterium tuberculosis (M. tuberculosis) resistance to first-line medications increasing. We assess new combinations of drugs with both oxidant and redox properties coupled with a third partner drug, with the focus here being on the potentiation of M. tuberculosis-active combinations of compounds in the intracellular macrophage environment. Thus, we determined the ability of the phenoxazine PhX1, previously shown to be active against M. tuberculosis in vitro, to differentially penetrate murine compartments, including plasma, epithelial lining fluid, and isolated epithelial lining fluid cells. In addition, the extent of permeation into human macrophage-like THP-1 cells and H37Rv-infected THP-1 cells was measured via mass spectrometry and compared to in vitro two-dimensional synergy and subsequent intracellular efficacy. Collectively, our data indicate that development of new drugs will be facilitated using the methods described herein.


Assuntos
Antituberculosos/metabolismo , Tuberculose/metabolismo , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Moxifloxacina/química , Moxifloxacina/metabolismo , Moxifloxacina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/química , Rifampina/metabolismo , Rifampina/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose/fisiopatologia
4.
Eur J Pharm Biopharm ; 167: 116-126, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34363979

RESUMO

This study aimed to design dry powder inhaler formulations using a hydrophilic polymeric polysaccharide, phytoglycogen (PyG), as a multi-functional additive that increases the phagocytic activity of macrophage-like cells and enhances pulmonary delivery of drugs. The safety and usefulness of PyG were determined using in vitro cell-based studies. Dry powder inhaler formulations of an antitubercular drug, rifampicin, were fabricated by spray drying with PyG. The cytotoxicity, effects on phagocytosis, particle size, and morphology were evaluated. The aerosolization properties of the powder formulations were evaluated using an Andersen cascade impactor (ACI). Scanning electron microscope images of the particles on each ACI stage were captured to observe the deposition behavior. PyG showed no toxicity in A549, Calu-3, or RAW264.7 cell lines. At concentrations of 0.5 and 1 g/L, PyG facilitated the cellular uptake of latex beads and the expression of pro-inflammatory cytokine genes in RAW264.7 cells. Formulations with outstanding inhalation potential were produced. The fine particle fraction (aerodynamic size 2-7 µm) of the porous particle batch reached nearly 60%, whereas in the formulation containing wrinkled carrier particles, the extra-fine particle fraction (aerodynamic particle size < 2 µm) was 25.0% ± 1.7%. The deposition of porous and wrinkled particles on individual ACI stages was distinct. The inclusion of PyG dramatically improved the inhalation performance of porous and wrinkled powder formulations. These easily inhaled immunostimulatory carrier particles may advance the state of research by enhancing the therapeutic effect and alveolar delivery of antitubercular drugs.


Assuntos
Antituberculosos/administração & dosagem , Sistemas de Liberação de Medicamentos , Glicogênio/química , Rifampina/administração & dosagem , Células A549 , Administração por Inalação , Aerossóis , Animais , Antituberculosos/química , Antituberculosos/toxicidade , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Inaladores de Pó Seco , Excipientes/química , Humanos , Camundongos , Tamanho da Partícula , Porosidade , Células RAW 264.7 , Rifampina/química , Rifampina/toxicidade , Distribuição Tecidual
5.
ACS Appl Mater Interfaces ; 13(31): 36697-36708, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34313117

RESUMO

Development of drug-delivery systems that allow simultaneous in vivo imaging has gained much interest. We report a novel strategy to encapsulate metal nanoparticles (NPs) within alginate gel for in vivo imaging. The cell lysate of recombinant Escherichia coli strain, expressing Arabidopsis thaliana phytochelatin synthase and Pseudomonas putida metallothionein genes, was encapsulated within the alginate gel. Incubation of alginate gel with metal ion precursors followed by UV irradiation resulted in the synthesis of high concentrations of metal NPs, such as Au, Ag, CdSe, and EuSe NPs, within the gel. The alginate gel with metal NPs was used as a drug-delivery system by further co-encapsulating doxorubicin and rifampicin, the release of which was made to be pH-dependent. This system can be conveniently and safely used for in vitro and in vivo bioimaging, enabled by the metal NPs formed within the gel matrix without using toxic reducing reagents or surfactants.


Assuntos
Alginatos/química , Portadores de Fármacos/química , Corantes Fluorescentes/química , Géis/química , Nanopartículas Metálicas/química , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Arabidopsis/enzimologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Escherichia coli/genética , Células Hep G2 , Humanos , Masculino , Metalotioneína/genética , Metalotioneína/metabolismo , Metais/química , Camundongos Nus , Pseudomonas putida/enzimologia , Rifampina/química , Rifampina/farmacologia
6.
Molecules ; 25(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916994

RESUMO

The control of leishmaniases, a complex parasitic disease caused by the protozoan parasite Leishmania, requires continuous innovation at the therapeutic and vaccination levels. Chitosan is a biocompatible polymer administrable via different routes and possessing numerous qualities to be used in the antileishmanial strategies. This review presents recent progress in chitosan research for antileishmanial applications. First data on the mechanism of action of chitosan revealed an optimal in vitro intrinsic activity at acidic pH, high-molecular-weight chitosan being the most efficient form, with an uptake by pinocytosis and an accumulation in the parasitophorous vacuole of Leishmania-infected macrophages. In addition, the immunomodulatory effect of chitosan is an added value both for the treatment of leishmaniasis and the development of innovative vaccines. The advances in chitosan chemistry allows pharmacomodulation on amine groups opening various opportunities for new polymers of different size, and physico-chemical properties adapted to the chosen routes of administration. Different formulations have been studied in experimental leishmaniasis models to cure visceral and cutaneous leishmaniasis, and chitosan can act as a booster through drug combinations with classical drugs, such as amphotericin B. The various architectural possibilities given by chitosan chemistry and pharmaceutical technology pave the way for promising further developments.


Assuntos
Antiprotozoários/administração & dosagem , Quitosana/química , Portadores de Fármacos/química , Vacinas contra Leishmaniose/administração & dosagem , Leishmaniose/tratamento farmacológico , Anfotericina B/química , Anfotericina B/farmacologia , Animais , Antimônio/química , Antiprotozoários/farmacologia , Materiais Biocompatíveis/química , Curcumina/química , Composição de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Vacinas contra Leishmaniose/química , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Paromomicina/química , Triterpenos Pentacíclicos/química , Polímeros/química , Rifampina/química , Selênio/química , Tiomalatos/química , Titânio/química , Triterpenos/química , Ácido Betulínico , Ácido Ursólico
7.
Mol Pharm ; 17(9): 3314-3327, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32687366

RESUMO

Copolymers synthesized from acrylic acid and methacrylic acid used as gastroprotective and mucoadhesive enteric coatings have been used to prepare micro- (∼2 µm), submicro- (∼200 nm), and nanoparticles (∼20 nm) containing rifampicin (Rif) to obtain time-controlled drug release kinetics. Different particle sizes and drug release kinetics have been obtained using different synthesis conditions and fabrication techniques including the use of an electrosprayer and an interdigital microfabricated micromixer. The antimicrobial action of the encapsulated Rif has been demonstrated against Staphylococcus aureus ATCC 25923 and compared with the effect of the equivalent dose of the free macrolide antibiotic. At low concentrations, the encapsulated antibiotic showed superior antimicrobial activity than the free drug. The stability of the developed particles has been evaluated in vitro under simulated gastric and intestinal conditions. At the concentrations tested, a reduced cytotoxicity against different human cell lines was observed after analyzing their subcytotoxic doses and the influence on their cell cycle by flow cytometry. Drug release kinetics can be tuned by adjusting particle sizes, and it would be possible to reach the minimum inhibitory concentration or the minimum bactericidal concentration at different time points depending on the medical needs.


Assuntos
Antibacterianos/química , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos/efeitos dos fármacos , Polímeros/química , Administração Oral , Antibacterianos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metacrilatos/química , Testes de Sensibilidade Microbiana/métodos , Nanopartículas/química , Tamanho da Partícula , Ácidos Polimetacrílicos/química , Rifampina/química , Rifampina/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
8.
Pharmazie ; 75(5): 172-176, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32393422

RESUMO

This is a report on the chemical stability and physical compatibility of intravenous tedizolid phosphate 0.8 mg/mL-sodium rifampicin 2.4 mg/mL and tedizolid phosphate 0.8 mg/mL-meropenem 4 mg/mL combinations in polypropylene 0.9% sodium chloride infusion bags stored at different storage conditions. Triplicate solutions of both admixtures were prepared in 0.9% sodium chloride polypropylene infusion bags and stored under light protection at room temperature (25±2 °C), refrigeration (2-8 °C) or freezing (-15 - -25 °C) conditions. The study was performed using a validated and stability-indicating liquid chromatography (LC) method. For both admixtures and for all storage conditions, at least 90% of the initial drug concentration of tedizolid phosphate remained unchanged throughout the entire study period. Stability of sodium rifampicin at 25±2 °C was determined to be seven hours and six days when it was stored at 2-8 °C. Under the same storage conditions, meropenem was stable for 12 h or 6 days, respectively. Under freezing conditions, sodium rifampicin was stable throughout all 28 days, while stability of meropenem was only 8 days. Solutions of 0.8 mg/mL tedizolid phosphate admixtured with 2.4 mg/mL rifampicin or 4 mg/mL meropenem, in polypropylene 0.9% sodium chloride infusion bags, are stable for at least 7 or 12 hours, respectively, when stored at 25±2 °C. When stored at 2-8 °C, stability was increased to 6 days for both admixtures.


Assuntos
Antibacterianos/química , Meropeném/química , Organofosfatos/química , Oxazóis/química , Rifampina/química , Antibacterianos/administração & dosagem , Cromatografia Líquida , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Congelamento , Infusões Intravenosas , Meropeném/administração & dosagem , Organofosfatos/administração & dosagem , Oxazóis/administração & dosagem , Polipropilenos/química , Refrigeração , Rifampina/administração & dosagem , Cloreto de Sódio/química , Temperatura , Fatores de Tempo
9.
Mater Sci Eng C Mater Biol Appl ; 112: 110895, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409052

RESUMO

Tuberculosis (TB) is one of the top ten causes of death worldwide and a leading cause of death in HIV patients. Rifampicin (Rif), a low water-soluble drug, is a critical first-line treatment and the most effective drug substance for therapy of drug-susceptible TB. However, Rif has high interindividual pharmacokinetic variability, mainly due to its highly variable absorption caused by its poor solubility. Drug nanocrystals are a promising technology to overcome this variability by increasing the surface area. This strategy allows for increasing the dissolution rate and improving the bioavailability of this BCS class II drug. In this study, Rif nanocrystals were prepared by a wet-bead milling method. A 3-factor, 3-level Box-Behnken design was used to investigate the independent variables: the concentration of rifampicin, the concentration of the stabilizing agent (Povacoat® type F), and the mass of zirconia beads. Two optimized formulations, F1-Rif and F2-Rif, were characterized by determining their particle size and size distribution, morphology, crystal properties, and antimicrobial activity. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) revealed that rifampicin's polymorph II crystal structure was unchanged. The reduced particle size of <500 nm (100-fold decrease) increased the saturation solubility and dissolution rate up to 1.74-fold. The novel polymer, Povacoat®, demonstrated to be a suitable stabilizer to maintain the physical stability of nanosuspensions over two years. The Rif nanocrystals showed antimicrobial activity (0.25 µg/mL) not significantly different from standard rifampicin powder. However, the low cytotoxicity of the nanosuspensions in HepG2 cells was determined. When compared to the commercial product, the nanosuspension increased the rifampicin concentration 2-fold. In conclusion, the Rif nanosuspension allows half the needed volume of administration, which might increase compliance among children and elderly patients throughout the long-term treatment of TB.


Assuntos
Antibióticos Antituberculose/química , Nanopartículas/química , Rifampina/química , Antibióticos Antituberculose/farmacologia , Varredura Diferencial de Calorimetria , Sobrevivência Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Mycobacterium tuberculosis/efeitos dos fármacos , Tamanho da Partícula , Rifampina/farmacologia , Solubilidade , Viscosidade
10.
Mol Pharm ; 17(6): 1884-1898, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32271581

RESUMO

We developed a practical synthetic method for fluorine-18 (18F)-labeled pitavastatin ([18F]PTV) as a positron emission tomography (PET) tracer to assess hepatobiliary transporter activity and conducted a PET scan as a preclinical study for proof-of-concept in rats. This method is a one-pot synthesis involving aromatic 18F-fluorination of an arylboronic acid ester followed by deprotection under acidic conditions, which can be reproduced in general clinical sites equipped with a standard radiolabeling system due to the simplified procedure. PET imaging confirmed that intravenously administered [18F]PTV was rapidly accumulated in the liver and gradually transferred into the intestinal lumen through the bile duct. Radiometabolite analysis showed that [18F]PTV was metabolically stable, and 80% of the injected dose was detected as the unchanged form in both blood and bile. We applied integration plot analysis to assess tissue uptake clearance (CLuptake, liver and CLuptake, kidney) and canalicular efflux clearance (CLint, bile), and examined the effects of inhibitors on membrane transport. Treatment with rifampicin, an organic anion transporting polypeptide inhibitor, significantly reduced CLuptake, liver and CLuptake, kidney to 44% and 64% of control, respectively. In contrast, Ko143, a breast cancer resistance protein inhibitor, did not affect CLuptake, liver but significantly reduced CLint, bile to 39% of control without change in [18F]PTV blood concentration. In addition, we found decreased CLuptake, liver and increased CLint, bile in Eisai hyperbilirubinemic rats in response to altered expression levels of transporters. We expect that [18F]PTV can be translated into clinical application, as our synthetic method does not need special apparatus in the radiolabeling system and PET scan with [18F]PTV can quantitatively evaluate transporter activity in vivo.


Assuntos
Radioisótopos de Flúor/química , Quinolinas/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Western Blotting , Cromatografia em Camada Fina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Estrutura Molecular , Proteínas de Neoplasias/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/efeitos dos fármacos , Transportadores de Ânions Orgânicos/metabolismo , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Rifampina/química
11.
Nanomedicine (Lond) ; 15(2): 183-203, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31916472

RESUMO

Aim: In this study, the targeting of rifampicin (RIF)-loaded nanotransfersomes (NTs) incorporated in chitosan gel for leishmania-infected macrophages via the topical route was investigated. Materials & methods: NTs were prepared through a thin-film hydration process and incorporated into chitosan gel. Results: The mean particle size of the NTs was 190 nm, with 83% encapsulation efficiency. The permeation rate of the NTs was threefold higher than that of the RIF solution. The NTs improved cellular internalization via passive targeting, which was confirmed by macrophage uptake evaluation. A low IC50 value, flow cytometry analysis and in vivo study demonstrated the RIF-loaded NTs enhanced apoptosis and had better antileishmanial effects. Conclusion: RIF-loaded NT gel could be a fitting carrier for the delivery of antileishmanial drugs in cutaneous leishmaniasis.


Assuntos
Quitosana/farmacologia , Leishmaniose Cutânea/tratamento farmacológico , Polietilenoglicóis/farmacologia , Polietilenoimina/farmacologia , Rifampina/farmacologia , Administração Tópica , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Quitosana/química , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Citometria de Fluxo , Humanos , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Macrófagos/efeitos dos fármacos , Camundongos , Nanogéis , Nanopartículas/química , Ratos , Rifampina/química
12.
Analyst ; 145(4): 1227-1235, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31898707

RESUMO

Rifampicin is a common antibiotic used in human and veterinary medicine to treat tuberculosis and other diseases caused by numerous pathogenic bacteria. However, the excessive or improper use of rifampicin usually leads to a series of problems, including bacterial resistance, excessive drug-resistance and water pollution. Thus, it is of great importance to develop selective and sensitive assays for monitoring rifampicin in biological systems. In this study, we designed a fluorescence "turn-off" strategy for the trace detection of rifampicin based on a glutathione-stabilized copper nanoclusters (GSH-Cu NC) sensor. In an aqueous solution, the fluorescence of the GSH-Cu NCs at 632 nm can be quenched effectively and selectively by rifampicin due to the inner-filter effect (IFE) of fluorescence mechanism. Distinctively, this GSH-Cu NC sensor exhibited excellent fluorescence sensing capability for the trace detection of rifampicin with a very low limit of detection (LOD) of 16 pM in a wide linear range from 50 to 10 000 pM. It is not only more sensitive than the other methods previously reported for the detection of rifampicin, but also has an outstanding selectivity and strong anti-interference in complex samples. Furthermore, the as-developed GSH-Cu NCs were also successfully applied to determine rifampicin in different real samples with quantitative spike recoveries ranging from 97% to 105%.


Assuntos
Cobre/química , Glutationa/química , Limite de Detecção , Nanoestruturas/química , Rifampina/análise , Espectrometria de Fluorescência/instrumentação , Humanos , Soluções Oftálmicas/química , Rifampina/sangue , Rifampina/química
13.
Sci Rep ; 9(1): 13413, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527775

RESUMO

We examined whether [131I]6-ß-iodomethyl-19-norcholesterol (NP-59), a cholesterol analog, can be used to measure function of hepatic drug transporters. Hepatic uptake of NP-59 with and without rifampicin was evaluated using HEK293 cells expressing solute carrier transporters. The stability of NP-59 was evaluated using mouse blood, bile, and liver, and human liver S9. Adenosine triphosphate-binding cassette (ABC) transporters for bile excretion were examined using hepatic ABC transporter vesicles expressing multidrug resistance protein 1, multidrug resistance-associated protein (MRP)1-4, breast cancer resistance protein (BCRP), or bile salt export pump with and without MK-571 and Ko143. Single photon emission computed tomography (SPECT) was performed in normal mice injected with NP-59 in the presence or absence of Ko143. Uptake of NP-59 into HEK293 cells expressing organic anion transporting polypeptide (OATP)1B1 and OATP1B3 was significantly higher than that into mock cells and was inhibited by rifampicin. NP-59 was minimally metabolized in mouse blood, bile, and liver, and human liver S9 after 120 min of incubation. In vesicles, NP-59 was transported by MRP1 and BCRP. Excretion of NP-59 into bile via BCRP was observed in normal mice with and without Ko143 in the biological distribution and SPECT imaging. NP-59 can be used to visualize and measure the hepatic function of OATP1B1, OATP1B3, and BCRP.


Assuntos
Adosterol/química , Bile/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Fígado/metabolismo , Rifampina/farmacologia , Adosterol/farmacocinética , Animais , Antibióticos Antituberculose/química , Antibióticos Antituberculose/farmacologia , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Rifampina/química , Distribuição Tecidual
14.
Mater Sci Eng C Mater Biol Appl ; 103: 109777, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349400

RESUMO

Tuberculosis (TB), caused by M.tuberculosis (Mtb), has become a top killer among infectious diseases. Enhancing the ability of anti-TB drugs to kill intracellular Mtb in host cells remains a big challenge. Here, an innovative nano-system was developed to increase drug delivery and Mtb-killing efficacy in Mtb-infected macrophages. We employed mannose surface decoration to develop mannosylated and PEGylated graphene oxide (GO-PEG-MAN). Such nano-platform exhibited increased uptake by macrophages via mannose receptor-mediated endocytosis in vitro. Interestingly, drug-loaded GO-PEG-MAN was preferentially up-taken by mannose receptor-expressing mucosal CD14+ macrophages isolated from Mtb-infected rhesus macaques than drug-loaded GO-PEG. Consistently, the drug concentration was also significantly higher in macrophages than that in T and B cells expressing no or low mannose receptor, implicating a useful macrophage/mannose receptor-targeted drug-delivery system relevant to the in vivo settings. Concurrently, rifampicin-loaded GO-PEG-MAN (Rif@GO-PEG-MAN) significantly increased rifampicin uptake, inducing long-lasting higher concentration of rifampicin in macrophages. Such innovative Rif@GO-PEG-MAN could readily get into the lysosomes of the Mtb host cells, where rifampicin underwent an accelerated release in acidic lysosomic condition, leading to explosive rifampicin release after cell entry for more effective killing of intracellular Mtb. Most importantly, Rif@GO-PEG-MAN-enhanced intracellular rifampicin delivery and pharmacokinetics significantly increased the efficacy of rifampicin-driven killing of intracellular BCG and Mtb bacilli in infected macrophages both in vitro and ex vivo. Such innovative nanocarrier approach may potentially enhance anti-TB drug efficacy and reduce drug side effects.


Assuntos
Sistemas de Liberação de Medicamentos , Grafite , Macrófagos , Manose , Mycobacterium tuberculosis/metabolismo , Nanopartículas , Rifampina , Tuberculose , Animais , Grafite/química , Grafite/farmacocinética , Grafite/farmacologia , Humanos , Macaca mulatta , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Manose/química , Manose/farmacocinética , Manose/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Rifampina/química , Rifampina/farmacocinética , Rifampina/farmacologia , Células THP-1 , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Tuberculose/patologia
15.
Int J Pharm ; 565: 543-556, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31102805

RESUMO

Biocompatible polymers and ceramic materials have been identified as vital components to fabricate drug delivery and tissue engineering applications because of their high drug loading capability, sustained release and higher mechanical strength with remarkable in-vivo bioavailability. In the present work, initially we designed κ-carrageenan grafted with maleic anhydride and then reacted it with isoniazid drug (κ-Car-MA-INH). The polymeric system was cross linked with nanohydroxyapatite (NHAP) via electrostatic interaction followed by the addition of rifampicin (RF) and loaded to fabricate κ -Car-MA-INH/NHAP/RF nanocomposites. The chemical modification and interaction of drug with the polymeric-ceramic system were characterised by Fourier Transform Infrared spectroscopy (FT-IR). The zeta potential of the κ -Car-MA-INH/NHAP/RF nanocomposite was observed to be -20.04 mV using Zetasizer. The in vitro drug release studies demonstrated that the nanocomposite releases 76% of RF and 82% of INH in 12 days at pH 5.5. Scanning Electron Microscope analysis revealed the structural deformation of Staphylococcus aureus and Klebsiella pneumoniae upon treatment with this nanocomposite. By using ex-vivo studies combined with physio-chemical characterization methods on the erythrocytes, L929 and MG-63 cell lines, this composite was found to be biocompatible, non-cytotoxic and inducing cell proliferation with less significant hemolysis. Thus, our modified drug delivery nanocomposites afforded higher drug bioavailability with large potential for fabrication as long-acting drug delivery nanocomposites, especially with hydrophobic drugs inducing the growth of osteoblastic bone cells.


Assuntos
Antituberculosos , Sistemas de Liberação de Medicamentos , Durapatita , Isoniazida , Nanocompostos , Rifampina , Animais , Antituberculosos/administração & dosagem , Antituberculosos/química , Carragenina/administração & dosagem , Carragenina/química , Linhagem Celular , Liberação Controlada de Fármacos , Durapatita/administração & dosagem , Durapatita/química , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Isoniazida/administração & dosagem , Isoniazida/química , Klebsiella pneumoniae/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Anidridos Maleicos/administração & dosagem , Anidridos Maleicos/química , Camundongos , Nanocompostos/administração & dosagem , Nanocompostos/química , Osteoblastos/efeitos dos fármacos , Osteomielite/tratamento farmacológico , Regeneração , Rifampina/administração & dosagem , Rifampina/química , Staphylococcus aureus/efeitos dos fármacos , Tuberculose/tratamento farmacológico
16.
Int J Pharm ; 566: 203-217, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31132448

RESUMO

The present investigation was performed to develop a rifampicin (RIF)-loaded solidified self-nanoemulsifying drug delivery system (SNEDDS) (solidified RIF-OF1) for in vitro and in vivo evaluations. Optimized formulations were tested for their powder flow characteristics, loading efficiency, and in vitro dissolution (at pH-1.2, 6.8 and 7.4). Compatibility studies were also performed. The formulations were also tested for hemocompatibility, intestinal permeation, histopathological effects, and in vivo pharmacokinetics. Additionally, an in silico simulation study using GastroPlus was performed. At different varied pH values, we observed immediate release (T85% within 15 min) based on the dissolution profile. This could be due to labrasol-assisted RIF solubilization. In vitro hemolysis study of the reconstituted RIF-OF1 revealed normal architecture of erythrocytes compared to the positive control (lysed and fragmented). Through in vivo permeation and biopsy studies, a rationale for facilitated intestinal permeation of RIF with components deemed physiological safe (normal anatomy of mucosal membrane evidenced from biopsy study) could be established. The in vitro-in vivo correlation (IVIVC) plus module of GastroPlusTM simulation showed a good IVIVC between in vitro release and in vivo absorption with a predicted systemic absorption of ∼96.5%. Solidified SNEDDS showed improved pharmacokinetic profiles compared to RIF suspension. Solid RIF-SNEDDS was demonstrated to be a suitable carrier for enhanced intestinal permeation and oral bioavailability. Hence, it may serve as a suitable alternative to conventional delivery systems for tuberculosis treatment.


Assuntos
Antibióticos Antituberculose/administração & dosagem , Sistemas de Liberação de Medicamentos , Rifampina/administração & dosagem , Administração Oral , Animais , Antibióticos Antituberculose/química , Antibióticos Antituberculose/farmacocinética , Células Sanguíneas/efeitos dos fármacos , Simulação por Computador , Liberação Controlada de Fármacos , Emulsões , Enterócitos/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Absorção Intestinal , Masculino , Modelos Biológicos , Ratos Sprague-Dawley , Rifampina/química , Rifampina/farmacocinética
17.
Biomacromolecules ; 20(4): 1798-1815, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30785284

RESUMO

Mycobacterium tuberculosis, the etiologic agent of tuberculosis, is an intracellular pathogen of alveolar macrophages. These cells avidly take up nanoparticles, even without the use of specific targeting ligands, making the use of nanotherapeutics ideal for the treatment of such infections. Methoxy poly(ethylene oxide)- block-poly(ε-caprolactone) nanoparticles of several different polymer blocks' molecular weights and sizes (20-110 nm) were developed and critically compared as carriers for rifampicin, a cornerstone in tuberculosis therapy. The polymeric nanoparticles' uptake, consequent organelle targeting and intracellular degradation were shown to be highly dependent on the nanoparticles' physicochemical properties (the cell uptake half-lives 2.4-21 min, the degradation half-lives 51.6 min-ca. 20 h after the internalization). We show that the nanoparticles are efficiently taken up by macrophages and are able to effectively neutralize the persisting bacilli. Finally, we demonstrate, using a zebrafish model of tuberculosis, that the nanoparticles are well tolerated, have a curative effect, and are significantly more efficient compared to a free form of rifampicin. Hence, these findings demonstrate that this system shows great promise, both in vitro and in vivo, for the treatment of tuberculosis.


Assuntos
Portadores de Fármacos , Macrófagos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Nanopartículas , Rifampina , Tuberculose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Células RAW 264.7 , Rifampina/química , Rifampina/farmacocinética , Rifampina/farmacologia , Tuberculose/metabolismo , Tuberculose/patologia , Peixe-Zebra
18.
Int J Biol Macromol ; 127: 187-196, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30633932

RESUMO

Rifampicin, an important member of ansamycin family, exhibits various biological activities. It is frequently used for the treatment of tuberculosis and leprosy. Recently, its interaction with protein is evidenced. But, its interaction with DNA is still unknown. Whether, exhibition of anti-cancer activity of rifampicin is associated with DNA-cleavage activity is also unknown. In this study, an attempt has been taken to understand these two unknown aspects. Spectroscopic studies indicated that rifampicin binds to CT-DNA with a binding constant of ~5.22 × 105 M-1. Several independent experiments like CD analysis, competitive displacement experiments and viscosity measurements revealed that rifampicin intercalates into the CT-DNA. Molecular docking studies corroborate this fact and depicted that this drug binds to the GC-rich region of DNA through multiple hydrogen bonding having the relative binding energy of -9.21 kcal mol-1. Besides, DNA binding ability, rifampicin causes the photo-cleavage of pUC19 DNA via singlet oxygen pathway. To the best of our knowledge, we report for the first time the DNA binding and DNA cleavage ability of rifampicin. This study provides a clue behind the execution of the anti-cancer activity of rifampicin. Overall, all these information can be used for further understanding the pharmacological effects of rifampicin.


Assuntos
Antibacterianos/química , DNA/química , Desoxirribonucleases/química , Simulação de Acoplamento Molecular , Rifampina/química , Ligação de Hidrogênio
19.
J Vasc Surg ; 69(1): 242-248.e1, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29503005

RESUMO

OBJECTIVE: In the treatment of an infected aorta, open repair and replacement with a rifampin-impregnated Dacron vascular graft decrease the risk of prosthetic graft infections, with several protocols available in the literature. We hypothesize that the same holds true for endovascular aneurysm repair, and after studying and optimizing rifampin solution concentration and incubation period to maximize the coating process of rifampin on Dacron endovascular stent grafts (ESGs), we propose a rapid real-time perioperative protocol. METHODS: Several prepared rifampin solutions, including a negative control solution, were used to coat multiple triplicate sets of Dacron endovascular aortic stent grafts at different but set incubation periods. Rifampin elution from the grafts was studied by spectroscopic analysis. Once an optimized solution concentration and incubation time were determined, the elution of rifampin over time from the graft and the graft's surface characteristics were studied by ultraviolet-visible spectroscopy and atomic force microscopy. RESULTS: All coated ESGs with any concentration of prepared rifampin solution, regardless of incubation time, immediately demonstrated a visible bright orange discoloration and subsequently after elution procedures returned to the original noncolored state. At the 25-minute incubation time (standard flush), there was no statistical difference in the amount of rifampin coated to the ESGs with 10-mg/mL, 30-mg/mL, and 60-mg/mL solutions (0.06 ± 0.01, 0.07 ± 0.05, and 0.044 ± 0.01, respectively; P > .05). This was also true for a 10-minute incubation time (express flush) of 10-mg/mL and 60-mg/mL rifampin solution concentrations (0.04 ± 0.007 and 0.066 ± 0.014, respectively; P = .22). The elution-over-time of coated rifampin ESG, although not statistically significant, did seem to plateau and to reach a steady state by 50 hours and was confirmed by surface characteristics using atomic force microscopy. CONCLUSIONS: Having studied two variables of rifampin coating techniques to Dacron ESGs, the authors propose a rapid real-time perioperative coating protocol by using a 10-mg/mL rifampin solution for a 10-minute incubation period. As rifampin loosely binds to Dacron ESGs by weak intermolecular forces, a rifampin-coated ESG would need to be inserted in a timely fashion to treat the diseased aorta and to deliver its antibiotic affect. A rapid perioperative coating protocol followed by immediate deployment makes our proposed technique especially useful in an urgent and unstable clinical scenario.


Assuntos
Aneurisma Infectado/cirurgia , Antibacterianos/química , Aneurisma Aórtico/cirurgia , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Materiais Revestidos Biocompatíveis , Procedimentos Endovasculares/instrumentação , Rifampina/química , Stents , Aneurisma Infectado/microbiologia , Antibacterianos/administração & dosagem , Aneurisma Aórtico/microbiologia , Liberação Controlada de Fármacos , Cinética , Teste de Materiais , Microscopia de Força Atômica , Polietilenotereftalatos , Desenho de Prótese , Rifampina/administração & dosagem , Espectrofotometria Ultravioleta , Propriedades de Superfície
20.
Drug Deliv Transl Res ; 9(1): 298-310, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30484257

RESUMO

The present study reports about new solid lipid nanoparticle assemblies (SLNas) loaded with rifampicin (RIF) surface-decorated with novel mannose derivatives, designed for anti-tuberculosis (TB) inhaled therapy by dry powder inhaler (DPI). Mannose is considered a relevant ligand to achieve active drug targeting being mannose receptors (MR) overexpressed on membranes of infected alveolar macrophages (AM), which are the preferred site of Mycobacterium tuberculosis. Surface decoration of SLNas was obtained by means of newly synthesized functionalizing compounds used as surfactants in the preparation of carriers. SLNas were fully characterized in vitro determining size, morphology, drug loading, drug release, surface mannosylation, cytotoxicity, macrophage internalization extent and ability to bind MR, and intracellular RIF concentration. Moreover, the influence of these new surface functionalizing agents on SLNas aerodynamic performance was assessed by measuring particle respirability features using next generation impactor. SLNas exhibited suitable drug payload, in vitro release, and more efficient ability to enter macrophages (about 80%) compared to bare RIF (about 20%) and to non-functionalized SLNas (about 40%). The involvement of MR-specific binding has been demonstrated by saturating MR of J774 cells causing a decrease of RIF intracellular concentration of about 40%. Furthermore, it is noteworthy that the surface decoration of particles produced a poor cohesive powder with an adequate respirability (fine particle fraction ranging from about 30 to 50%). Therefore, the proposed SLNas may represent an encouraging opportunity in a perspective of an efficacious anti-TB inhaled therapy.


Assuntos
Antibióticos Antituberculose/farmacologia , Lectinas Tipo C/metabolismo , Macrófagos/microbiologia , Lectinas de Ligação a Manose/metabolismo , Manose/química , Receptores de Superfície Celular/metabolismo , Rifampina/farmacologia , Animais , Antibióticos Antituberculose/química , Linhagem Celular , Liberação Controlada de Fármacos , Inaladores de Pó Seco , Feminino , Macrófagos/metabolismo , Receptor de Manose , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas/química , Rifampina/química , Propriedades de Superfície , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA