Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.487
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Physiol Res ; 73(2): 227-237, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710058

RESUMO

Nephrotoxicity as a cause of acute kidney injury (AKI) induced by cisplatin (CP), limits its usefulness as an anticancer agent. Diminazene, an angiotensin converting enzyme 2 activator, exhibited renoprotective properties on rat models of kidney diseases. This research aims to investigate the salutary effect of diminazene in comparison with lisinopril or valsartan in CP-induced AKI. The first and second groups of rats received oral vehicle (distilled water) for 9 days, and saline injection or intraperitoneal CP (6 mg/kg) on day 6, respectively. Third, fourth, and fifth groups received intraperitoneal injections of CP on day 6 and diminazene (15 mg/kg/day, orally), lisinopril (10 mg/kg/day, orally), or valsartan (30 mg/kg/day, orally), for 9 days, respectively. 24h after the last day of treatment, blood and kidneys were removed under anesthesia for biochemical and histopathological examination. Urine during the last 24 h before sacrificing the rats was also collected. CP significantly increased plasma urea, creatinine, neutrophil gelatinase-associated lipocalin, calcium, phosphorus, and uric acid. It also increased urinary albumin/creatinine ratio, N-Acetyl-beta-D-Glucosaminidase/creatinine ratio, and reduced creatinine clearance, as well the plasma concentrations of inflammatory cytokines [plasma tumor necrosis factor-alpha, and interleukin-1beta], and significantly reduced antioxidant indices [catalase, glutathione reductase , and superoxide dismutase]. Histopathologically, CP treatment caused necrosis of renal tubules, tubular casts, shrunken glomeruli, and increased renal fibrosis. Diminazine, lisinopril, and valsartan ameliorated CP-induced biochemical and histopathological changes to a similar extent. The salutary effect of the three drugs used is, at least partially, due to their anti-inflammatory and antioxidant effects. Keywords: Cisplatin, Diminazene, ACE2 activator, Lisinopril, Valsartan, Acute kidney injury.


Assuntos
Injúria Renal Aguda , Cisplatino , Diminazena , Lisinopril , Ratos Wistar , Valsartana , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/tratamento farmacológico , Lisinopril/farmacologia , Cisplatino/toxicidade , Valsartana/farmacologia , Masculino , Diminazena/análogos & derivados , Diminazena/farmacologia , Diminazena/uso terapêutico , Ratos , Antineoplásicos/toxicidade , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo
2.
J Diabetes Res ; 2024: 1222395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725443

RESUMO

This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inflamação , Inulina , Rim , Metabolômica , Camundongos Endogâmicos ICR , Estresse Oxidativo , Animais , Inulina/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Camundongos , Masculino , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Ácidos Graxos Voláteis/metabolismo , Dieta Hiperlipídica , Nitrogênio da Ureia Sanguínea
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731907

RESUMO

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is obtained from the maternal diet during pregnancy, and is essential for normal fetal growth and development. A maternal high-LA (HLA) diet alters maternal and offspring fatty acids, maternal leptin and male/female ratio at embryonic (E) day 20 (E20). We investigated the effects of an HLA diet on embryonic offspring renal branching morphogenesis, leptin signalling, megalin signalling and angiogenesis gene expression. Female Wistar Kyoto rats were fed low-LA (LLA; 1.44% energy from LA) or high-LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring were sacrificed and mRNA from kidneys was analysed by real-time PCR. Maternal HLA decreased the targets involved in branching morphogenesis Ret and Gdnf in offspring, independent of sex. Furthermore, downstream targets of megalin, namely mTOR, Akt3 and Prkab2, were reduced in offspring from mothers consuming an HLA diet, independent of sex. There was a trend of an increase in the branching morphogenesis target Gfra1 in females (p = 0.0517). These findings suggest that an HLA diet during pregnancy may lead to altered renal function in offspring. Future research should investigate the effects an HLA diet has on offspring kidney function in adolescence and adulthood.


Assuntos
Rim , Ácido Linoleico , Morfogênese , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Feminino , Gravidez , Serina-Treonina Quinases TOR/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Ácido Linoleico/metabolismo , Masculino , Ratos Endogâmicos WKY , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Feto/metabolismo , Feto/efeitos dos fármacos
4.
Int Immunopharmacol ; 133: 112170, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691919

RESUMO

Acute kidney injury (AKI) is characterized by a sudden decline in renal function. Traditional Chinese medicine has employed Fuzi for kidney diseases; however, concerns about neurotoxicity and cardiotoxicity have constrained its clinical use. This study explored mesaconine, derived from processed Fuzi, as a promising low-toxicity alternative for AKI treatment. In this study, we assessed the protective effects of mesaconine in gentamicin (GM)-induced NRK-52E cells and AKI rat models in vitro and in vivo, respectively. Mesaconine promotes the proliferation of damaged NRK-52E cells and down-regulates intracellular transforming growth factor ß1 (TGF-ß1) and kidney injury molecule 1 (KIM-1) to promote renal cell repair. Concurrently, mesaconine restored mitochondrial morphology and permeability transition pores, reversed the decrease in mitochondrial membrane potential, mitigated mitochondrial dysfunction, decreased ATP production, inhibited inflammatory factor release, and reduced early apoptosis rates. In vivo, GM-induced AKI rat models exhibited elevated AKI biomarkers, in which mesaconine was effectively reduced, indicating improved renal function. Mesaconine enhanced superoxide dismutase activity, reduced malondialdehyde content, alleviated inflammatory infiltrate, mitigated tubular and glomerular lesions, and downregulated NF-κB (nuclear factor-κb) p65 expression, leading to decreased tumor necrosis factor-α (TNF-α) and IL-1ß (interleukin-1ß) levels in GM-induced AKI animals. Furthermore, mesaconine inhibited the expression of renal pro-apoptotic proteins (Bax, cytochrome c, cleaved-caspase 9, and cleaved-caspase 3) and induced the release of the anti-apoptotic protein bcl-2, further suppressing apoptosis. This study highlighted the therapeutic potential of mesaconine in GM-induced AKI. Its multifaceted mechanisms, including the restoration of mitochondrial dysfunction, anti-inflammatory and antioxidant effects, and apoptosis mitigation, make mesaconine a promising candidate for further exploration in AKI management.


Assuntos
Aconitum , Injúria Renal Aguda , Apoptose , Rim , Mitocôndrias , Ratos Sprague-Dawley , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Apoptose/efeitos dos fármacos , Aconitum/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Ratos , Linhagem Celular , Rim/efeitos dos fármacos , Rim/patologia , Gentamicinas/toxicidade , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Aconitina/análogos & derivados , Aconitina/farmacologia , Aconitina/uso terapêutico , Modelos Animais de Doenças , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Diterpenos
5.
Balkan Med J ; 41(3): 193-205, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700358

RESUMO

Background: Paclitaxel (PAX) is a widely used chemotherapy drug for various cancer types but often induces significant toxicity in multiple organ systems. Silymarin (SIL), a natural flavonoid, has shown therapeutic potential due to its multiple benefits. Aims: To evaluate the therapeutic efficacy of SIL in mitigating liver and kidney damage induced by PAX in rats, focusing on oxidative stress, inflammation, and apoptosis pathways. Study Design: Experimental animal model. Methods: The study included 28 male Wistar rats aged 12-14 weeks weighing 270-300 g. The rats were divided into four groups: control, SIL, PAX, and PAX + SIL, with seven in each group. The rats received intraperitoneal (i.p.) injections at a dose of 2 mg per kilogram of body weight of PAX for 5 successive days, followed by oral gavage with 200 mg/kg body mass of SIL for 10 uninterrupted days. We examined the effect of SIL on specific serum biochemical parameters using an autoanalyzer and rat-specific kits. The spectrophotometric methods was used to investigate oxidative stress indicators in kidney and liver tissues. Aquaporin-2 (AQP-2), B-cell lymphoma-2 (Bcl-2), cysteine aspartate-specific protease-3 (caspase-3), interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), and streptavidin-biotin staining were used to assess immunoreactivity in PAX-induced liver and kidney injury models. Results: SIL treatment significantly reduced serum levels of alanine aminotransferase, aspartate aminotransferase, creatinine, urea, and C-reactive protein, indicating its effectiveness in treating PAX-induced liver and kidney injury. SIL treatment significantly reduced oxidative stress by increasing essential antioxidant parameters, such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione. It also reduced malondialdehyde levels in liver and kidney tissues of SIL-PAX groups (p < 0.05). SIL administration reduced NF-κB, caspase-3, and IL-6 expression while increasing Bcl-2 and AQP2 levels in liver and kidney tissues of rats treated with SIL and PAX (p < 0.05). Conclusion: Our findings indicate the potential of SIL to alleviate PAX-induced liver and kidney damage in rats by reducing oxidative stress, inflammation, and apoptotic processes.


Assuntos
Apoptose , Inflamação , Estresse Oxidativo , Paclitaxel , Ratos Wistar , Silimarina , Animais , Estresse Oxidativo/efeitos dos fármacos , Ratos , Masculino , Apoptose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Silimarina/farmacologia , Silimarina/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fígado/efeitos dos fármacos , Rim/efeitos dos fármacos , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia
6.
Sci Rep ; 14(1): 10251, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704512

RESUMO

Mesenchymal stem cells (MSCs) exert their anti-inflammatory and anti-fibrotic effects by secreting various humoral factors. Interferon-gamma (IFN-γ) can enhance these effects of MSCs, and enhancement of regulatory T (Treg) cell induction is thought to be an underlying mechanism. However, the extent to which Treg cell induction by MSCs pretreated with IFN-γ (IFN-γ MSCs) ameliorates renal fibrosis remains unknown. In this study, we investigated the effects of Treg cell induction by IFN-γ MSCs on renal inflammation and fibrosis using an siRNA knockdown system. Administration of IFN-γ MSCs induced Treg cells and inhibited infiltration of inflammatory cells in ischemia reperfusion injury (IRI) rats more drastically than control MSCs without IFN-γ pretreatment. In addition, administration of IFN-γ MSCs more significantly attenuated renal fibrosis compared with control MSCs. Indoleamine 2,3-dioxygenase (IDO) expression levels in conditioned medium from MSCs were enhanced by IFN-γ pretreatment. Moreover, IDO1 knockdown in IFN-γ MSCs reduced their anti-inflammatory and anti-fibrotic effects in IRI rats by reducing Treg cell induction. Our findings suggest that the increase of Treg cells induced by enhanced secretion of IDO by IFN-γ MSCs played a pivotal role in their anti-fibrotic effects. Administration of IFN-γ MSCs may potentially be a useful therapy to prevent renal fibrosis progression.


Assuntos
Fibrose , Indolamina-Pirrol 2,3,-Dioxigenase , Interferon gama , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Linfócitos T Reguladores , Animais , Interferon gama/metabolismo , Linfócitos T Reguladores/imunologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Rim/patologia , Rim/efeitos dos fármacos , Traumatismo por Reperfusão/imunologia , Nefropatias/terapia , Nefropatias/patologia , Ratos Sprague-Dawley
7.
Mol Biol Rep ; 51(1): 608, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704766

RESUMO

BACKGROUND: Tacrolimus (TAC) is a frequently used immunosuppressive medication in organ transplantation. However, its nephrotoxic impact limits its long-term usage. This study aims to investigate the effect of linagliptin (Lina) on TAC-induced renal injury and its underlying mechanisms. METHODS AND RESULTS: Thirty-two Sprague Dawley rats were treated with TAC (1.5 mg/kg/day, subcutaneously) and/or Lina (5 mg/kg/day, orally) for 4 weeks. Histological examination was conducted, and serum and urinary biomarkers were measured to assess kidney function and integrity. Furthermore, ELISA, Western blot analysis and immunohistochemical assay were employed to determine signaling molecules of oxidative stress, profibrogenic, hypoxic, and apoptotic proteins. Tacrolimus caused renal dysfunction and histological deterioration evidenced by increased serum creatinine, blood urea nitrogen (BUN), urinary cystatin C, and decreased serum albumin as well as elevated tubular injury and interstitial fibrosis scores. Additionally, TAC significantly increased the expression of collagen type-1, alpha-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and transforming growth factor-beta1 (TGF-ß1) renal content. Moreover, TAC decreased the expression of nuclear factor erythroid-2-related factor2 (Nrf2), heme oxygenase 1 (HO-1), and mitochondrial superoxide dismutase (SOD2). In addition, TAC increased protein expression of hypoxia-inducible factor1-alpha (HIF-1α), connective tissue growth factor (CTGF), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG), as well as nitric oxide (NO), 4-hydroxynonenal, caspase-3 and Bax renal contents. Furthermore, TAC decreased Bcl-2 renal contents. The Lina administration markedly attenuated these alterations. CONCLUSION: Lina ameliorated TAC-induced kidney injury through modulation of oxidative stress, hypoxia, and apoptosis related proteins.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Rim , Linagliptina , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Ratos Sprague-Dawley , Tacrolimo , Animais , Tacrolimo/farmacologia , Ratos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Linagliptina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Imunossupressores/farmacologia
8.
Nefrologia (Engl Ed) ; 44(2): 139-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38697694

RESUMO

Losartan is widely used in the treatment of chronic kidney disease (CKD) and has achieved good clinical efficacy, but its exact mechanism is not clear. We performed high-throughput sequencing (HTS) technology to screen the potential target of losartan in treating CKD. According to the HTS results, we found that the tumor necrosis factor (TNF) signal pathway was enriched. Therefore, we conducted in vivo and in vitro experiments to verify it. We found that TNF signal pathway was activated in both unilateral ureteral obstruction (UUO) rats and human proximal renal tubular epithelial cells (HK-2) treated with transforming growth factor-ß1 (TGF-ß1), while losartan can significantly inhibit TNF signal pathway as well as the expression of fibrosis related genes (such as COL-1, α-SMA and Vimentin). These data suggest that losartan may ameliorate renal fibrosis through modulating the TNF pathway.


Assuntos
Fibrose , Losartan , Transdução de Sinais , Fator de Necrose Tumoral alfa , Losartan/farmacologia , Losartan/uso terapêutico , Animais , Transdução de Sinais/efeitos dos fármacos , Ratos , Masculino , Humanos , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Ratos Sprague-Dawley , Rim/patologia , Rim/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia
9.
J Hypertens ; 42(6): 1027-1038, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690904

RESUMO

OBJECTIVE: Reno-renal reflexes are disturbed in cardiovascular and hypertensive conditions when elevated levels of pro-inflammatory mediators/cytokines are present within the kidney. We hypothesised that exogenously administered inflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL)-1ß modulate the renal sympatho-excitatory response to chemical stimulation of renal pelvic sensory nerves. METHODS: In anaesthetised rats, intrarenal pelvic infusions of vehicle [0.9% sodium chloride (NaCl)], TNF-α (500 and 1000 ng/kg) and IL-1ß (1000 ng/kg) were maintained for 30 min before chemical activation of renal pelvic sensory receptors was performed using randomized intrarenal pelvic infusions of hypertonic NaCl, potassium chloride (KCl), bradykinin, adenosine and capsaicin. RESULTS: The increase in renal sympathetic nerve activity (RSNA) in response to intrarenal pelvic hypertonic NaCl was enhanced during intrapelvic TNF-α (1000 ng/kg) and IL-1ß infusions by almost 800% above vehicle with minimal changes in mean arterial pressure (MAP) and heart rate (HR). Similarly, the RSNA response to intrarenal pelvic adenosine in the presence of TNF-α (500 ng/kg), but not IL-1ß, was almost 200% above vehicle but neither MAP nor HR were changed. There was a blunted sympatho-excitatory response to intrapelvic bradykinin in the presence of TNF-α (1000 ng/kg), but not IL-1ß, by almost 80% below vehicle, again without effect on either MAP or HR. CONCLUSION: The renal sympatho-excitatory response to renal pelvic chemoreceptor stimulation is modulated by exogenous TNF-α and IL-1ß. This suggests that inflammatory mediators within the kidney can play a significant role in modulating the renal afferent nerve-mediated sympatho-excitatory response.


Assuntos
Interleucina-1beta , Rim , Sistema Nervoso Simpático , Fator de Necrose Tumoral alfa , Animais , Interleucina-1beta/farmacologia , Ratos , Rim/inervação , Rim/efeitos dos fármacos , Masculino , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Ratos Sprague-Dawley , Frequência Cardíaca/efeitos dos fármacos , Bradicinina/farmacologia , Reflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Adenosina/administração & dosagem , Adenosina/farmacologia , Solução Salina Hipertônica/administração & dosagem , Solução Salina Hipertônica/farmacologia
10.
Sci Rep ; 14(1): 10787, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734765

RESUMO

Radioligand therapy with [177Lu]Lu-PSMA-617 can be used to prolong life and reduce tumor burden in terminally ill castration resistant prostate cancer patients. Still, accumulation in healthy tissue limits the activity that can be administered. Therefore, fractionated therapy is used to lower toxicity. However, there might be a need to reduce toxicity even further with e.g. radioprotectors. The aim of this study was to (i). establish a preclinical mouse model with fractionated high activity therapy of three consecutive doses of 200 MBq [177Lu]Lu-PSMA-617 in which we aimed to (ii). achieve measurable hematotoxicity and nephrotoxicity and to (iii). analyze the potential protective effect of co-injecting recombinant α1-microglobulin (rA1M), a human antioxidant previously shown to have radioprotective effects. In both groups, three cycles resulted in increased albuminuria for each cycle, with large individual variation. Another marker of kidney injury, serum blood urea nitrogen (BUN), was only significantly increased compared to control animals after the third cycle. The number of white and red blood cells decreased significantly and did not reach the levels of control animals during the experiment. rA1M did reduce absorbed dose to kidney but did not show significant protection here, but future studies are warranted due to the recent clinical studies showing a significant renoprotective effect in patients.


Assuntos
alfa-Globulinas , Dipeptídeos , Compostos Heterocíclicos com 1 Anel , Lutécio , Animais , alfa-Globulinas/metabolismo , Camundongos , Masculino , Humanos , Dipeptídeos/farmacologia , Rim/patologia , Rim/efeitos da radiação , Rim/efeitos dos fármacos , Rim/metabolismo , Compostos Radiofarmacêuticos , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/patologia , Nitrogênio da Ureia Sanguínea , Antígeno Prostático Específico
11.
Int J Nanomedicine ; 19: 4103-4120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736658

RESUMO

Introduction: Gold nanoparticles are promising candidates as vehicles for drug delivery systems and could be developed into effective anticancer treatments. However, concerns about their safety need to be identified, addressed, and satisfactorily answered. Although gold nanoparticles are considered biocompatible and nontoxic, most of the toxicology evidence originates from in vitro studies, which may not reflect the responses in complex living organisms. Methods: We used an animal model to study the long-term effects of 20 nm spherical AuNPs coated with bovine serum albumin. Mice received a 1 mg/kg single intravenous dose of nanoparticles, and the biodistribution and accumulation, as well as the organ changes caused by the nanoparticles, were characterized in the liver, spleen, and kidneys during 120 days. Results: The amount of nanoparticles in the organs remained high at 120 days compared with day 1, showing a 39% reduction in the liver, a 53% increase in the spleen, and a 150% increase in the kidneys. The biological effects of chronic nanoparticle exposure were associated with early inflammatory and fibrotic responses in the organs and were more pronounced in the kidneys, despite a negligible amount of nanoparticles found in renal tissues. Conclusion: Our data suggest, that although AuNPs belong to the safest nanomaterial platforms nowadays, due to their slow tissue elimination leading to long-term accumulation in the biological systems, they may induce toxic responses in the vital organs, and so understanding of their long-term biological impact is important to consider their potential therapeutic applications.


Assuntos
Ouro , Rim , Fígado , Nanopartículas Metálicas , Soroalbumina Bovina , Baço , Animais , Ouro/química , Ouro/farmacocinética , Ouro/toxicidade , Ouro/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/administração & dosagem , Baço/efeitos dos fármacos , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Rim/efeitos dos fármacos , Rim/metabolismo , Distribuição Tecidual , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Masculino , Tamanho da Partícula
12.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731418

RESUMO

Cisplatin is a potent compound in anti-tumor chemotherapy; however, its clinical utility is hampered by dose-limiting nephrotoxicity. This study investigated whether papaverine could mitigate cisplatin-induced kidney damage while preserving its chemotherapeutic efficacy. Integrative bioinformatics analysis predicted papaverine modulation of the mechanistic pathways related to cisplatin renal toxicity; notably, mitogen-activated protein kinase 1 (MAPK1) signaling. We validated protective effects in normal kidney cells without interfering with cisplatin cytotoxicity on a cancer cell line. Concurrent in vivo administration of papaverine alongside cisplatin in rats prevented elevations in nephrotoxicity markers, including serum creatinine, blood urea nitrogen, and renal oxidative stress markers (malondialdehyde, inducible nitric oxide synthase (iNOS), and pro-inflammatory cytokines), as tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6). Papaverine also reduced apoptosis markers such as Bcl2 and Bcl-2-associated X protein (Bax) and kidney injury molecule-1 (KIM-1), and histological damage. In addition, it upregulates antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) while boosting anti-inflammatory signaling interleukin-10 (IL-10). These effects were underlined by the ability of Papaverine to downregulate MAPK-1 expression. Overall, these findings show papaverine could protect against cisplatin kidney damage without reducing its cytotoxic activity. Further research would allow the transition of these results to clinical practice.


Assuntos
Cisplatino , Inflamação , Estresse Oxidativo , Papaverina , Cisplatino/efeitos adversos , Papaverina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Ratos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/induzido quimicamente , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Masculino , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Substâncias Protetoras/farmacologia , Antioxidantes/farmacologia , Citocinas/metabolismo , Simulação por Computador , Biomarcadores
13.
Int Immunopharmacol ; 133: 112001, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608443

RESUMO

Acute kidney injury (AKI) is a critical complication known for their extremely high mortality rate and lack of effective clinical therapy. Disorders in mitochondrial dynamics possess a pivotal role in the occurrence and progression of contrast-induced nephropathy (CIN) by activating NLRP3 inflammasome. The activation of dynamin-related protein-1 (Drp1) can trigger mitochondrial dynamic disorders by regulating excessive mitochondrial fission. However, the precise role of Drp1 during CIN has not been clarified. In vivo experiments revealed that inhibiting Drp1 through Mdivi-1 (one selective inhibitor of Drp1) can significantly decrease the expression of p-Drp1 (Ser616), mitochondrial p-Drp1 (Ser616), mitochondrial Bax, mitochondrial reactive oxygen species (mROS), NLRP3, caspase-1, ASC, TNF-α, IL-1ß, interleukin (IL)-18, IL-6, creatinine (Cr), malondialdehyde (MDA), blood urea nitrogen (BUN), and KIM-1. Moreover, Mdivi-1 reduced kidney pathological injury and downregulated the interaction between NLRP3 and thioredoxin-interacting protein (TXNIP), which was accompanied by decreased interactions between TRX and TXNIP. This resulted in increasing superoxide dismutase (SOD) and CAT activity, TRX expression, up-regulating mitochondrial membrane potential, and augmenting ATP contents and p-Drp1 (Ser616) levels in the cytoplasm. However, it did not bring impact on the expression of p-Drp1 (Ser637) and TXNIP. Activating Drp-1though Acetaldehyde abrogated the effects of Mdivi-1. In addition, the results of in vitro studies employing siRNA-Drp1 and plasmid-Drp1 intervention in HK-2 cells treated with iohexol were consistent with the in vivo experiments. Our findings revealed inhibiting Drp1 phosphorylation at Ser616 could ameliorate iohexol -induced acute kidney injury though alleviating the activation of the TXNIP-NLRP3 inflammasome pathway.


Assuntos
Injúria Renal Aguda , Proteínas de Transporte , Meios de Contraste , Dinaminas , Inflamassomos , Dinâmica Mitocondrial , Proteína 3 que Contém Domínio de Pirina da Família NLR , Quinazolinonas , Espécies Reativas de Oxigênio , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dinaminas/metabolismo , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/tratamento farmacológico , Dinâmica Mitocondrial/efeitos dos fármacos , Inflamassomos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Masculino , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Camundongos , Meios de Contraste/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Transdução de Sinais/efeitos dos fármacos , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Linhagem Celular
14.
Biochem Biophys Res Commun ; 715: 149997, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678782

RESUMO

The immune system is involved in hypertension development with different immune cells reported to have either pro or anti-hypertensive effects. In hypertension, immune cells have been thought to infiltrate blood pressure-regulating organs, resulting in either elevation or reduction of blood pressure. There is controversy over whether macrophages play a detrimental or beneficial role in the development of hypertension, and the few existing studies have yielded conflicting results. This study aimed to determine the effects of angiotensin II (Ang II) salt-induced hypertension on renal immune cells and to determine whether renal macrophages are involved in the induction of hypertension. Hypertension was induced by administration of Ang II and saline for two weeks. The effects of hypertension on kidney immune cells were assessed using flow cytometry. Macrophage infiltration in the kidney was assessed by immunohistochemistry and kidney fibrosis was assessed using trichrome stain and kidney real time-qPCR. Liposome encapsulated clodronate was used to deplete macrophages in C57BL/6J mice and investigate the direct role of macrophages in hypertension induction. Ang II saline mice group developed hypertension, had increased renal macrophages, and had increased expression of Acta2 and Col1a1 and kidney fibrotic areas. Macrophage depletion blunted hypertension development and reduced the expression of Acta2 and Col1a1 in the kidney and kidney fibrotic areas in Ang II saline group. The results of this study demonstrate that macrophages infiltrate the kidneys and increase kidney fibrosis in Ang II salt-induced hypertension, and depletion of macrophages suppresses the development of hypertension and decreases kidney fibrosis. This indicates that macrophages play a direct role in hypertension development. Hence macrophages have a potential to be considered as therapeutic target in hypertension management.


Assuntos
Angiotensina II , Modelos Animais de Doenças , Fibrose , Hipertensão , Rim , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Angiotensina II/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/efeitos dos fármacos , Hipertensão/induzido quimicamente , Hipertensão/patologia , Hipertensão/metabolismo , Rim/patologia , Rim/metabolismo , Rim/efeitos dos fármacos , Camundongos , Masculino , Cloreto de Sódio na Dieta/efeitos adversos , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/metabolismo , Nefropatias/etiologia , Pressão Sanguínea/efeitos dos fármacos
15.
Eur J Pharmacol ; 973: 176605, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653362

RESUMO

The main objective of this study was to determine if the telmisartan-ameliorative effects of metabolic syndrome (MetS)-evoked nephropathy are attributed to the Hippo pathway. A secondary objective was to investigate the potential of vitamin D3 to enhance telmisartan-favourable effects. A diet composed of 24% fat and 3% salt, along with drinking water containing 10% fructose, was administered for 12 weeks to induce MetS. MetS-rats were given telmisartan (5 mg/kg/day), vitamin D3 (10 µg/kg/day) or both by gavage, starting in the sixth week of experimental diet administration. Assessments performed at closure included renal function, histological examination, catalase, malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), peroxisome proliferator-activated receptor-γ (PPAR-γ), phosphatase and tensin homolog (PTEN), and transforming growth factor-ß (TGF-ß). Matrix metalloproteinase-9 (MMP-9) immunostaining was conducted. The expression of the Hippo pathway components, as well as that of angiotensin II type 1 and type 2 (AT1 and AT2), receptors was evaluated. Telmisartan attenuated MetS-evoked nephropathy, as demonstrated by improvement of renal function and histological features, enhancement of catalase, reduction of MDA, inflammation (NF-κB, IL-6), and renal fibrosis (increased PPAR-γ and PTEN and reduced MMP-9 and TGF-ß). Telmisartan downregulated AT1-receptor, upregulated AT2-receptor and restored the Hippo pathway. Vitamin D3 replicated most of the telmisartan-elicited effects and enhanced the antifibrotic actions of telmisartan. The alleviative effects of telmisartan on MetS-evoked nephropathy may be related to the restoration of the Hippo pathway. The combination of vitamin D3 and telmisartan exerted more favourable effects on metabolic and nephropathic biomarkers compared with either one administered alone.


Assuntos
Via de Sinalização Hippo , Nefropatias , Rim , Síndrome Metabólica , Telmisartan , Animais , Telmisartan/farmacologia , Telmisartan/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/patologia , Masculino , Ratos , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Nefropatias/patologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , NF-kappa B/metabolismo , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Ratos Wistar , Metaloproteinase 9 da Matriz/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , PPAR gama/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Malondialdeído/metabolismo , Interleucina-6/metabolismo , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico
16.
J Hazard Mater ; 470: 134129, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565019

RESUMO

Butylparaben, a common endocrine disruptor in the environment, is known to be toxic to the reproductive system, heart, and intestines, but its nephrotoxicity has rarely been reported. In order to study the nephrotoxicity and mechanism of butylparaben, we examined the acute and chronic effects on human embryonic kidney cells (HEK293T) and zebrafish. Additionally, we assessed the potential remedial effects of salidroside against butylparaben-induced nephrotoxicity. Our in vitro findings demonstrated oxidative stress and cytotoxicity to HEK293T cells caused by butylparaben. In the zebrafish model, the concentration of butylparaben exposure ranged from 0.5 to 15 µM. An assortment of experimental techniques was employed, including the assessment of kidney tissue morphology using Hematoxylin-Eosin staining, kidney function analysis via fluorescent dextran injection, and gene expression studies related to kidney injury, development, and function. Additionally, butylparaben caused lipid peroxidation in the kidney, thereby damaging glomeruli and renal tubules, which resulted from the downregulation of the PI3K-AKT signaling pathway. Furthermore, salidroside ameliorated butylparaben-induced nephrotoxicity through the PI3K-AKT signaling pathway. This study reveals the seldom-reported kidney toxicity of butylparaben and the protective effect of salidroside against toxicological reactions related to nephrotoxicity. It offers valuable insights into the risks to kidney health posed by environmental toxins.


Assuntos
Rim , Parabenos , Transdução de Sinais , Peixe-Zebra , Animais , Humanos , Regulação para Baixo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Glucosídeos/farmacologia , Células HEK293 , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Parabenos/toxicidade , Fenóis/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Food Chem Toxicol ; 188: 114640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583501

RESUMO

This study investigates the individual and combined effects of the mycotoxins, Aflatoxin B1 (AFB1), Enniatin B (ENNB) and Sterigmatocystin (STG), on the cellular viability of gastric (NCI-N87), intestinal (Caco-2), hepatic (Hep-G2) and renal (Hek-293) cells, shedding light on synergistic or antagonistic effects using a constant ratio combination design proposed by Chou-Talalay. These toxins are prevalent in cereal-based foods, frequently consumed by children which raises concerns about their exposure to these mycotoxins. This population is particularly vulnerable to the effects of these toxins due to their underdeveloped organs and incompletely structured physiological processes. Results showed that ENB was the most toxic of the three mycotoxins across all cell lines, while STG and AFB1 showed lower toxicity. The combination of ENNB + STG was found to be the most potent in terms of binary mixtures. In regard to ternary combinations, Caco-2 cells are more sensitive to the tested mycotoxins, whereas NCI-N87 cells show lower levels of cell damage. Worrying dose reduction values (>10-fold) were found for ENNB in binary and ternary combinations at low exposure levels. These findings are significant for establishing initial reference values, which play a pivotal role in estimating reference doses that are subsequently incorporated into the broader risk assessment process.


Assuntos
Aflatoxina B1 , Depsipeptídeos , Esterigmatocistina , Humanos , Esterigmatocistina/toxicidade , Aflatoxina B1/toxicidade , Depsipeptídeos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células CACO-2 , Fígado/efeitos dos fármacos , Rim/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Células HEK293 , Células Hep G2
18.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673870

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are widely used in versatile applications, from high technology to household products. While numerous studies have examined the toxic gene profile of ZnO NPs across various tissues, the specific lipid species associated with adverse effects and potential biomarkers remain elusive. In this study, we conducted a liquid chromatography-mass spectrometry based lipidomics analysis to uncover potential lipid biomarkers in human kidney cells following treatment with ZnO NPs. Furthermore, we employed lipid pathway enrichment analysis (LIPEA) to elucidate altered lipid-related signaling pathways. Our results demonstrate that ZnO NPs induce cytotoxicity in renal epithelial cells and modulate lipid species; we identified 64 lipids with a fold change (FC) > 2 and p < 0.01 with corrected p < 0.05 in HK2 cells post-treatment with ZnO NPs. Notably, the altered lipids between control HK2 cells and those treated with ZnO NPs were associated with the sphingolipid, autophagy, and glycerophospholipid pathways. This study unveils novel potential lipid biomarkers of ZnO NP nanotoxicity, representing the first lipidomic profiling of ZnO NPs in human renal epithelial cells.


Assuntos
Rim , Metabolismo dos Lipídeos , Lipidômica , Óxido de Zinco , Óxido de Zinco/toxicidade , Humanos , Lipidômica/métodos , Rim/metabolismo , Rim/efeitos dos fármacos , Linhagem Celular , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/análise , Lipídeos/química , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Biomarcadores/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Pestic Biochem Physiol ; 201: 105903, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685225

RESUMO

Abamectin (AB) is widely used in agriculture and has been employed as an insecticide, nematicide, and livestock pest control agent. However, it may also pose a serious threat to mammals. The primary purpose of this research was to compare the sex variations between male and female rats during exposure and to assess the risk of toxicity of abamectin, which are still largely unknown. The twenty albino rats were divided randomly into four groups (n = 5): 1) the male control group; 2) the male treatment group treated with AB (1 mg/kg B.W.); 3) the female control group; and 4) the female treatment group treated with AB (1 mg/kg B.W.). AB administration caused a drop in body weight in females more than males with showing oxidative stress in both sexes of animals, as characterized by an increase in MDA content and a decrease in glutathione (GSH) content and superoxide dismutase (SOD) activity. Reported sex-specific effects suggested that females are more susceptible from males in brain tissues for alteration of antioxidant markers while females' liver and kidney tissues showed more level of lipid peroxidation than males. In addition, mitochondrial dysfunction was associated with a significant decrease in NADH dehydrogenase (Complex I) and a significant decrease in mitochondrial ATPase, which led to apoptosis and histopathological alterations in the targeted tissues, indicating that females are higher sensitive than males to these biological events. In brief, the results of this study led to female rats are generally more sensitive than male rats to neurobehavioral and hepatic complications associated with abamectin treatment. Further evaluation should be performed to determine the adverse outcome pathways involved and to determine the effects of sex on improving the risk assessment of abamectin in both sexes.


Assuntos
Apoptose , Ivermectina , Ivermectina/análogos & derivados , Mitocôndrias , Estresse Oxidativo , Animais , Ivermectina/toxicidade , Feminino , Masculino , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ratos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Malondialdeído/metabolismo , Inseticidas/toxicidade
20.
Molecules ; 29(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675549

RESUMO

Derived from hazelnuts, hazel leaf has been utilized in traditional folk medicine for centuries in countries such as Portugal, Sweden, and Iran. In our previous investigations, we conducted a preliminary assessment of the hazel leaf polyphenol extract (referred to as ZP) and identified nine compounds, such as kaempferol and chlorogenic acid, in its composition. ZP has shown promising properties as an antioxidant and anti-inflammatory agent. Our research has revealed that ZP has protective effects against cisplatin-induced acute kidney injury (AKI). We conducted a comprehensive examination of both the pathological and ultrastructural aspects and found that ZP effectively ameliorated renal tissue lesions and mitigated mitochondrial damage. Moreover, ZP significantly suppressed malondialdehyde levels while increasing glutathione and catalase concentrations in the kidneys of AKI-induced mice. ZP decreased the number of apoptotic cells and decreased pro-apoptotic protein expression in the kidneys of mice and human renal tubular epithelial cells (HK-2). Furthermore, treatment with ZP increased the levels of proteins marking anti-ferroptosis, such as GPX4, FTH1, and FSP1, in experiments both in vivo and in vitro. We elucidated the underlying mechanisms of ZP's actions, revealing its inhibitory effect on Yap phosphorylation and its regulation of Lats expression, which exert a protective influence on the kidneys. Furthermore, we found that inhibiting the Hippo pathway compromised ZP's nephroprotective effects in both in vitro and in vivo studies. In summary, this research shows that ZP exhibits renoprotective properties, effectively reducing oxidative damage, apoptosis, and ferroptosis in the kidneys by targeting the Hippo pathway.


Assuntos
Injúria Renal Aguda , Cisplatino , Ferroptose , Via de Sinalização Hippo , Extratos Vegetais , Folhas de Planta , Polifenóis , Transdução de Sinais , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/induzido quimicamente , Ferroptose/efeitos dos fármacos , Cisplatino/efeitos adversos , Polifenóis/farmacologia , Polifenóis/química , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Transdução de Sinais/efeitos dos fármacos , Folhas de Planta/química , Proteínas Serina-Treonina Quinases/metabolismo , Masculino , Linhagem Celular , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA