Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 20378, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230235

RESUMO

The menstrual cycle is characterized by predictable patterns of physiological change across timescales. Although patterns of reproductive hormones across the menstrual cycle, particularly ultradian rhythms, are well described, monitoring these measures repeatedly to predict the preovulatory luteinizing hormone (LH) surge is not practical. In the present study, we explored whether non-invasive measures coupled to the reproductive system: high frequency distal body temperature (DBT), sleeping heart rate (HR), sleeping heart rate variability (HRV), and sleep timing, could be used to anticipate the preovulatory LH surge in women. To test this possibility, we used signal processing to examine these measures in 45 premenopausal and 10 perimenopausal cycles alongside dates of supra-surge threshold LH and menstruation. Additionally, urinary estradiol and progesterone metabolites were measured daily surrounding the LH surge in 20 cycles. Wavelet analysis revealed a consistent pattern of DBT and HRV ultradian rhythm (2-5 h) power that uniquely enabled anticipation of the LH surge at least 2 days prior to its onset in 100% of individuals. Together, the present findings reveal fluctuations in distal body temperature and heart rate variability that consistently anticipate the LH surge, suggesting that automated ultradian rhythm monitoring may provide a novel and convenient method for non-invasive fertility assessment.


Assuntos
Temperatura Corporal/fisiologia , Fertilidade/fisiologia , Frequência Cardíaca/fisiologia , Hormônio Luteinizante/sangue , Menstruação/fisiologia , Ritmo Ultradiano/fisiologia , Adulto , Estradiol/sangue , Feminino , Humanos , Menopausa/fisiologia , Pessoa de Meia-Idade , Ovulação/fisiologia , Pré-Menopausa/fisiologia , Progesterona/sangue , Sono/fisiologia
2.
Mol Cells ; 43(7): 600-606, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32489185

RESUMO

Numerous physiological processes in nature have multiple oscillations within 24 h, that is, ultradian rhythms. Compared to the circadian rhythm, which has a period of approximately one day, these short oscillations range from seconds to hours, and the mechanisms underlying ultradian rhythms remain largely unknown. This review aims to explore and emphasize the implications of ultradian rhythms and their underlying regulations. Reproduction and developmental processes show ultradian rhythms, and these physiological systems can be regulated by short biological rhythms. Specifically, we recently uncovered synchronized calcium oscillations in the organotypic culture of hypothalamic arcuate nucleus (ARN) kisspeptin neurons that regulate reproduction. Synchronized calcium oscillations were dependent on voltage-gated ion channel-mediated action potentials and were repressed by chemogenetic inhibition, suggesting that the network within the ARN and between the kisspeptin population mediates the oscillation. This minireview describes that ultradian rhythms are a general theme that underlies biological features, with special reference to calcium oscillations in the hypothalamic ARN from a developmental perspective. We expect that more attention to these oscillations might provide insight into physiological or developmental mechanisms, since many oscillatory features in nature still remain to be explored.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Sinalização do Cálcio , Kisspeptinas/metabolismo , Neurônios/metabolismo , Ritmo Ultradiano , Animais , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Núcleo Arqueado do Hipotálamo/fisiologia , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Humanos , Recém-Nascido , Kisspeptinas/genética , Neurônios/citologia , Ritmo Ultradiano/genética , Ritmo Ultradiano/fisiologia
3.
Neuroendocrinology ; 110(11-12): 1010-1027, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31935735

RESUMO

INTRODUCTION: Synchronous and pulsatile neural activation of kisspeptin neurons in the arcuate nucleus (ARN) are important components of the gonadotropin-releasing hormone pulse generator, the final common pathway for central regulation of mammalian reproduction. However, whether ARN kisspeptin neurons can intrinsically generate self-sustained synchronous oscillations from the early neonatal period and how they are regulated remain unclear. OBJECTIVE: This study aimed to examine the endogenous rhythmicity of ARN kisspeptin neurons and its neural regulation using a neonatal organotypic slice culture model. METHODS: We monitored calcium (Ca2+) dynamics in real-time from individual ARN kisspeptin neurons in neonatal organotypic explant cultures of Kiss1-IRES-Cre mice transduced with genetically encoded Ca2+ indicators. Pharmacological approaches were employed to determine the regulations of kisspeptin neuron-specific Ca2+ oscillations. A chemogenetic approach was utilized to assess the contribution of ARN kisspeptin neurons to the population dynamics. RESULTS: ARN kisspeptin neurons in neonatal organotypic cultures exhibited a robust synchronized Ca2+ oscillation with a period of approximately 3 min. Kisspeptin neuron-specific Ca2+ oscillations were dependent on voltage-gated sodium channels and regulated by endoplasmic reticulum-dependent Ca2+ homeostasis. Chemogenetic inhibition of kisspeptin neurons abolished synchronous Ca2+ oscillations, but the autocrine actions of the neuropeptides were marginally effective. Finally, neonatal ARN kisspeptin neurons were regulated by N-methyl-D-aspartate and gamma-aminobutyric acid receptor-mediated neurotransmission. CONCLUSION: These data demonstrate that ARN kisspeptin neurons in organotypic cultures can generate synchronized and self-sustained Ca2+ oscillations. These oscillations controlled by multiple regulators within the ARN are a novel ultradian rhythm generator that is active during the early neonatal period.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Sinalização do Cálcio/fisiologia , Kisspeptinas , Neurônios/fisiologia , Ritmo Ultradiano/fisiologia , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Transgênicos
4.
J Neurosci ; 39(49): 9738-9747, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31645462

RESUMO

Fertility critically depends on the gonadotropin-releasing hormone (GnRH) pulse generator, a neural construct comprised of hypothalamic neurons coexpressing kisspeptin, neurokoinin-B and dynorphin. Here, using mathematical modeling and in vivo optogenetics we reveal for the first time how this neural construct initiates and sustains the appropriate ultradian frequency essential for reproduction. Prompted by mathematical modeling, we show experimentally using female estrous mice that robust pulsatile release of luteinizing hormone, a proxy for GnRH, emerges abruptly as we increase the basal activity of the neuronal network using continuous low-frequency optogenetic stimulation. Further increase in basal activity markedly increases pulse frequency and eventually leads to pulse termination. Additional model predictions that pulsatile dynamics emerge from nonlinear positive and negative feedback interactions mediated through neurokinin-B and dynorphin signaling respectively are confirmed neuropharmacologically. Our results shed light on the long-elusive GnRH pulse generator offering new horizons for reproductive health and wellbeing.SIGNIFICANCE STATEMENT The gonadotropin-releasing hormone (GnRH) pulse generator controls the pulsatile secretion of the gonadotropic hormones LH and FSH and is critical for fertility. The hypothalamic arcuate kisspeptin neurons are thought to represent the GnRH pulse generator, since their oscillatory activity is coincident with LH pulses in the blood; a proxy for GnRH pulses. However, the mechanisms underlying GnRH pulse generation remain elusive. We developed a mathematical model of the kisspeptin neuronal network and confirmed its predictions experimentally, showing how LH secretion is frequency-modulated as we increase the basal activity of the arcuate kisspeptin neurons in vivo using continuous optogenetic stimulation. Our model provides a quantitative framework for understanding the reproductive neuroendocrine system and opens new horizons for fertility regulation.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Animais , Dinorfinas/fisiologia , Ciclo Estral/fisiologia , Retroalimentação Fisiológica , Feminino , Kisspeptinas/fisiologia , Hormônio Luteinizante/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Teóricos , Neurocinina B/fisiologia , Neurônios/fisiologia , Optogenética , Gravidez , Reprodução/fisiologia , Ritmo Ultradiano/fisiologia
5.
Arq. neuropsiquiatr ; 75(1): 9-14, Jan. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-838848

RESUMO

ABSTRACT Objective: The nasal cycle, which is present in a significant number of people, is an ultradian side-to-side rhythm of nasal engorgement associated with cyclic autonomic activity. We studied the nasal cycle during REM/non-REM sleep stages and examined the potentially confounding influence of body position on lateralized nasal airflow. Methods: Left- and right-side nasal airflow was measured in six subjects during an eight-hour sleep period using nasal thermistors. Polysomnography was performed. Simultaneously, body positions were monitored using a video camera in conjunction with infrared lighting. Results: Significantly greater airflow occurred through the right nasal chamber (relative to the left) during periods of REM sleep than during periods of non-REM sleep (p<0.001). Both body position (p < 0.001) and sleep stage (p < 0.001) influenced nasal airflow lateralization. Conclusions: This study demonstrates that the lateralization of nasal airflow and sleep stage are related. Some types of asymmetrical somatosensory stimulation can alter this relationship.


RESUMO Objetivo: O ciclo nasal é um ritmo ultradiano de lado a lado de ingurgitamento associado com o ciclo da atividade autônoma. O objetivo deste estudo foi abordar a questão assim como a relação presente entre o ciclo nasal e os estágios de sono REM/não-REM. Também analisamos a confusão potencial da influência da posição corporal no fluxo de ar nasal. Métodos: Mensuramos o ciclo nasal em seis sujeitos durante um sono de oito horas usando um termistor nasal. Foi realizada uma polissonografia. Simultaneamente, nós monitoramos a posição corporal usando uma câmera de vídeo juntamente com luzes infravermelhas. Resultados: Um fluxo de ar maior ocorreu através da cavidade nasal direita durante as fases de sono REM do que nos períodos de sono não-REM (p < 0,001). Assim como a posição corporal [F(2.2340) = 86,99, p < 0,001] e o estágio de sono [F(1.2340) = 234.82, p < 0,001] influenciaram a lateralização do fluxo de ar nasal. Conclusões: Este estudo evidencia que a lateralização do fluxo de ar nasal e o estágio do sono estão relacionados. Alguns tipos de estimulação somatosensitiva assimétrica podem alterar esta relação.


Assuntos
Humanos , Masculino , Feminino , Adulto , Postura/fisiologia , Fases do Sono/fisiologia , Ritmo Ultradiano/fisiologia , Cavidade Nasal/fisiologia , Mecânica Respiratória/fisiologia , Polissonografia
6.
Curr Med Chem ; 23(24): 2643-2652, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27356532

RESUMO

BACKGROUND: The pioneering work of Robert F. Furchgott, Luis J. Ignaro and Ferid Murad has led us to investigate whether nitric oxide (NO) is present in the brain, its origin and whether it possesses a functional role in brain structures. This review is mainly an outline of own findings obtained by using the push-pull superfusion technique. METHOD: We have used the push-pull superfusion technique that makes it possible to determine quantitatively endogenous transmitters released from their neurons in the synaptic cleft. In some experiments, a NO sensor was inserted into the pushpull cannula for online determination of NO released in the synaptic cleft together with neurotransmitters. RESULTS: The release rates of endogenous NO are not constant but oscillate according to an ultradian rhythm with an apparent frequency of about 24 min per cycle. Similar rhythmic changes have been found in the release of neurotransmitters in several brain regions, as well as in the EEG delta band. Endogenous NO modulates the release of acetylcholine, glutamate, aspartate, GABA, serotonin, histamine in distinct brain areas. The release of adenosine is also increased by NO suggesting the synchronous release of ATP. Endogenous NO influences various brain functions such as blood pressure regulation and responses to stress. Recordings of evoked potentials revealed that NO plays a crucial role in the integration of afferent signals. Furthermore, NO in involved in amphetamine-induced neurotoxicity. CONCLUSION: The multifarious influences of endogenous NO on central neuronal activity, brain functions and integration of afferent signals underpin its universal modulatory role in the brain.


Assuntos
Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Animais , Pressão Sanguínea/fisiologia , Encéfalo/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/toxicidade , Potenciais Evocados/efeitos dos fármacos , Humanos , NG-Nitroarginina Metil Éster/farmacologia , Neurotransmissores/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ritmo Ultradiano/fisiologia
7.
Anim Sci J ; 87(2): 178-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26260675

RESUMO

The ultradian rhythm of growth hormone (GH) secretion has been known in several animal species for years and has recently been observed in cattle. Although the physiological significance of the rhythm is not yet fully understood, it appears essential for normal growth. In this review, previous studies concerning the GH secretory pattern in cattle, including its ultradian rhythm, are introduced and the regulatory mechanism is discussed on the basis of recent findings.


Assuntos
Bovinos/crescimento & desenvolvimento , Bovinos/fisiologia , Hormônio do Crescimento/metabolismo , Ritmo Ultradiano/fisiologia , Animais , Adeno-Hipófise/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA