Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.095
Filtrar
1.
Environ Monit Assess ; 196(5): 491, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691183

RESUMO

This study explores the dual applications of a greenly synthesized ZnO@CTAB nanocomposite for the efficient remediation of Rhodamine B (RhB) and lead (Pb). The synthesis method involves a sustainable approach, emphasizing environmentally friendly practices. FT-IR, XRD, FESEM, zeta potential, and particle size analyzer (PSA), BET, and UV-VIS were used to physically characterize the zinc oxide and CTAB nanocomposite (ZnO@CTAB). The size and crystalline index of ZnO@CTAB are 77.941 nm and 63.56% respectively. The Zeta potential of ZnO@CTAB is about - 22.4 mV. The pore diameter of the ZnO@CTAB was 3.216 nm, and its total surface area was 97.42 m2/g. The mechanism of adsorption was investigated through pHZPC measurements. The nanocomposite's adsorption performance was systematically investigated through batch adsorption experiments. At pH 2, adsorbent dose of 0.025 g, and temperature 50 °C, ZnO@CTAB removed the most RhB, while at pH 6, adsorbent dose of 0.11 g, and temperature 60 °C, ZnO@CTAB removed the most Pb. With an adsorption efficiency of 214.59 mg/g and 128.86 mg/g for RhB and Pb, the Langmuir isotherm model outperforms the Freundlich isotherm model in terms of adsorption. The pseudo-2nd-order model with an R2 of 0.99 for both RhB and Pb offers a more convincing explanation of adsorption than the pseudo-1st-order model. The results demonstrated rapid adsorption kinetics and high adsorption capacities for RhB and Pb. Furthermore, there was minimal deterioration and a high reusability of ZnO@CTAB till 4 cycles were observed.


Assuntos
Chumbo , Nanocompostos , Rodaminas , Poluentes Químicos da Água , Óxido de Zinco , Chumbo/química , Óxido de Zinco/química , Rodaminas/química , Nanocompostos/química , Poluentes Químicos da Água/química , Adsorção , Cetrimônio/química , Recuperação e Remediação Ambiental/métodos , Química Verde , Nanoestruturas/química
2.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792206

RESUMO

Various conjugates with rhodamines were prepared by starting with betulinic acid (BA) and platanic acid (PA). The molecules homopiperazine and piperazine, which were identified in earlier research, served as linkers between the rhodamine and the triterpene. The pentacyclic triterpene's ring A was modified with two acetyloxy groups in order to possibly boost its cytotoxic activity. The SRB assays' cytotoxicity data showed that conjugates 13-22, derived from betulinic acid, had a significantly higher cytotoxicity. Of these hybrids, derivatives 19 (containing rhodamine B) and 22 (containing rhodamine 101) showed the best values with EC50 = 0.016 and 0.019 µM for A2780 ovarian carcinoma cells. Additionally, based on the ratio of EC50 values, these two compounds demonstrated the strongest selectivity between malignant A2780 cells and non-malignant NIH 3T3 fibroblasts. A375 melanoma cells were used in cell cycle investigations, which showed that the cells were halted in the G1/G0 phase. Annexin V/FITC/PI staining demonstrated that the tumor cells were affected by both necrosis and apoptosis.


Assuntos
Apoptose , Rodaminas , Triterpenos , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/síntese química , Humanos , Rodaminas/química , Camundongos , Animais , Linhagem Celular Tumoral , Células NIH 3T3 , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ácido Betulínico , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/síntese química , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Lupanos
3.
Food Chem ; 450: 139209, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615529

RESUMO

Adenosine triphosphate (ATP) plays a vital role in physiological processes and is an essential indicator of microbial content in food. Herein, a new sensitive, rapid and water-soluble probe for ATP detection was developed. Rhodamine B and pentaethylenehexamine were employed to design and synthesise the probe rhodamine-pentaethylenehexamine (RP) for selective ATP detection. The synthesised probe RP was characterized using Fourier transform infrared, NMR and dynamic light scattering size distributions. Upon the addition of ATP, the probe exhibited a distinct change in fluorescence intensity, with fluorescence emission at 580 nm. A linear relationship was observed between fluorescence intensity and ATP concentrations at 0-50 µmol/L, with a limit of detection of 10.97 × 10-9 mol/L. The results of the zeta potential and molecular dynamics simulation demonstrated that the detection mechanism of the probe RP is associated with the electrostatic adsorption interaction between the multi-positively charged sites of RP and the negatively charged triphosphate structure of ATP. Our study provides new insights into improving charge site identification in small molecule detection. Furthermore, the successful detection of ATP on meat surfaces indicates that RP has the potential to assess meat freshness.


Assuntos
Trifosfato de Adenosina , Corantes Fluorescentes , Carne , Rodaminas , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Rodaminas/química , Corantes Fluorescentes/química , Animais , Carne/análise , Espectrometria de Fluorescência/métodos
4.
Talanta ; 274: 126002, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613948

RESUMO

Developing probes for simultaneous diagnosis and killing of cancer cells is crucial, yet challenging. This article presents the design and synthesis of a novel Rhodamine B fluorescence probe. The design strategy involves utilizing an anticancer drug (Melphalan) to bind with a fluorescent group (HRhod-OH), forming HRhod-MeL, which is non-fluorescent. However, when exposed to the high levels of reactive oxygen species (ROS) of cancer cells, HRhod-MeL transforms into a red-emitting Photocage (Rhod-MeL), and selectively accumulates in the mitochondria of cancer cells, where, when activated with green light (556 nm), anti-cancer drugs released. The Photocage improve the efficacy of anti-cancer drugs and enables the precise diagnosis and killing of cancer cells. Therefore, the prepared Photocage can detect cancer cells and release anticancer drugs in situ, which provides a new method for the development of prodrugs.


Assuntos
Antineoplásicos , Liberação Controlada de Fármacos , Corantes Fluorescentes , Pró-Fármacos , Rodaminas , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Rodaminas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Desenho de Fármacos , Luz , Linhagem Celular Tumoral
5.
Anal Chem ; 96(18): 7257-7264, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38664861

RESUMO

Confocal fluorescence imaging of fine structures of the cell membrane is important for understanding their biofunctions but is often neglected due to the lack of an effective method. Herein, we develop new amphiphilic rhodamine fluorescent probe RMGs in combination with basal imaging for this purpose. The probes show high signal-to-noise ratio and brightness and low internalization rate, making them suitable for imaging the fine substructures of the cell membrane. Using the representative probe RMG3, we not only observed the cell pseudopodia and intercellular nanotubes but also monitored the formation of migrasomes in real time. More importantly, in-depth imaging studies on more cell lines revealed for the first time that hepatocellular carcinoma cells secreted much more adherent extracellular vesicles than other cell lines, which might serve as a potential indicator of liver cells. We believe that RMGs may be useful for investigating the fine structures of the cell membrane.


Assuntos
Membrana Celular , Corantes Fluorescentes , Rodaminas , Corantes Fluorescentes/química , Rodaminas/química , Humanos , Membrana Celular/química , Imagem Óptica , Microscopia Confocal/métodos , Tensoativos/química
6.
Int J Biol Macromol ; 266(Pt 1): 131141, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537855

RESUMO

Wood fiber as a natural and renewable material has low cost and plenty of functional groups, which owns the ability to adsorb dyes. In order to improve the application performance of wood fiber in dye-pollution wastewater, Eucalyptus wood fiber loaded nanoscale zero-valent iron (EWF-nZVI) was developed to give EWF magnetism and the ability to degrade dyes. EWF-nZVI was characterized via FTIR, XRD, zeta potential, VSM, SEM-EDS and XPS. Results showed that EWF-nZVI owned a strong magnetism of 96.51 emu/g. The dye removal process of EWF-nZVI was more in line with the pseudo-second-order kinetics model. In addition, the Langmuir isotherm model fitting results showed that the maximum removal capacities of Congo red and Rhodamine B by EWF-nZVI were 714.29 mg/g and 68.49 mg/g at 328 K, respectively. After five adsorption-desorption cycles, the regeneration efficiencies of Congo red and Rhodamine B were 74 % and 42 % in turn. The dye removal mechanisms of EWF-nZVI included redox degradation (Congo red and Rhodamine B) and electrostatic adsorption (Congo red). In summary, EWF-nZVI is a promising biomass-based material with high dye removal capacities. This work is beneficial to promote the large-scale application of wood fiber in water treatment.


Assuntos
Corantes , Eucalyptus , Ferro , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Madeira , Eucalyptus/química , Águas Residuárias/química , Madeira/química , Corantes/química , Corantes/isolamento & purificação , Ferro/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Purificação da Água/métodos , Cinética , Nanopartículas Metálicas/química , Concentração de Íons de Hidrogênio , Vermelho Congo/química , Vermelho Congo/isolamento & purificação , Rodaminas/química
7.
ACS Sens ; 9(3): 1419-1427, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38449354

RESUMO

Fluorescent probes are widely studied for metal ion detection because of their multiple favorable properties such as high sensitivity and selectivity, quick response, naked eye detection, and in situ monitoring. However, optical probes that can effectively detect the Cu(I) level in cell interiors are rare due to the difficulty associated with selectively and sensitively detecting this metal ion in a cell environment. Therefore, we designed and synthesized three water-soluble probes (1-3) with a 1,3,5-triazine core decorated by three substituents: a hydrophobic alkyl chain, a hydrophilic maltose, and a rhodamine B hydrazine fluorophore. Among the probes, probe 1, which has an octyl chain and a branched maltose group, was the most effective at sensing Cu+ in aqueous solution. Upon addition of Cu+, this probe showed a dramatic color change from colorless to pink in daylight and displayed an intense yellow fluorescence emission under 365 nm light. The limit of detection and dissociation constant (Kd) of this probe were 20 nM and 1.1 × 10-12 M, respectively, which are the lowest values reported to date. The two metal ion-binding sites and the aggregation-induced emission enhancement effect, endowed by the branched maltose group and the octyl chain, respectively, are responsible for the high sensitivity and selectivity of this probe for Cu+ detection, as demonstrated by 1H NMR, dynamic light scattering, and transmission electron microscopy studies. Furthermore, the probe successfully differentiated the Cu(I) level of cancer cells from that of the normal cells. Thus, the probe holds potential for real-time monitoring of Cu(I) level in biological samples and bioimaging of cancer cells.


Assuntos
Corantes Fluorescentes , Maltose , Rodaminas/química , Corantes Fluorescentes/química , Água/química , Espectroscopia de Ressonância Magnética
8.
Anal Chim Acta ; 1294: 342292, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336413

RESUMO

BACKGROUND: Hypochlorous acid (HClO) is an important biomarker for inflammation, cardiovascular disease, and even cancer. It is of great significance to accurately monitor and quantitatively analyze the fluctuations of HClO to better understand their physiological functions. Traditional HClO detection methods such as high-performance liquid chromatography (HPLC), and mass spectrometry are preferred, but are costly and unsuitable in vivo. Near-infrared (NIR) fluorescence imaging has the advantages of high sensitivity, high temporal and spatial resolutions, minimal autofluorescence, and deep tissue penetration, which facilitates its application in biological systems. Therefore, the development of sensitivity and simple NIR fluorescence monitoring HClO methods in vivo and in vitro is essential and desirable. RESULTS: Herein, we present a NIR probe NOF3 by integrating the rhodamine scaffold and HClO-triggered moiety for the real-time detection of HClO in vitro and in vivo. NOF3 reacts with the HClO and releases the NOF-OH fluorophore of emitted signals at 730 nm, which is in the NIR region. The designed probe detected concentrations of HClO ranging from 0 to 17 µM with a low detection limit of 0.146 µM, presenting excellent sensitivity and selectivity toward HClO over other species. NOF3 manifests significantly turn-on NIR fluorescent signals in response to HClO concentration, which makes it favorable for monitoring dynamic HClO distribution in vivo. We exemplify NOF3 for the tracking of endogenously overexpressed HClO distribution in RAW 264.7 cells, and further realize real-time in vivo bioimaging of HClO activity in inflammation mice. SIGNIFICANCE: The facile NIR NOF3 probe was successfully applied to visualize endogenous and exogenous HClO in living cells and mice. This study provides not only an effective tool for spatial and temporal resolution HClO bioimaging in vivo but also possesses great potential for use in future research on HClO-related biology and pathology.


Assuntos
Ácido Hipocloroso , Xantenos , Camundongos , Animais , Ácido Hipocloroso/análise , Rodaminas/química , Corantes Fluorescentes/química , Inflamação/diagnóstico por imagem
9.
Anal Methods ; 16(3): 403-410, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38164930

RESUMO

We synthesized a fluorescence ratiometric probe by combining coumarin and rhodamine B with ethylenediamine to sense Fe3+ and measure ionizing radiation doses. The presence of Fe3+ caused rhodamine to transition from a closed helical structure to an open-ring structure. Additionally, fluorescence resonance energy transfer (FRET) occurred between coumarin and rhodamine B. As a result, the fluorescence intensity at 405 nm (I405) due to coumarin was decreased, whereas that at 585 nm (I585) derived from open-ring structure rhodamine B was increased. The ratio of I585 and I405 (I585/I405) linearly increased as the Fe3+ concentration increased. The probe sensed Fe3+ in a 0-110 µM range, with a lower limit of detection (LOD) of 0.226 µM. Inspired by Fricke dosimeters, we extended the probe to measure X-ray doses using the fluorescence methodology. The probe measured X-ray doses in a 0-30 Gy range with a lower LOD of 0.5 Gy. Additionally, the dosing capability was independent of the dosing rates. Our probe showed potential for detecting Fe3+ and measuring ionizing radiation doses.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Rodaminas/química , Corantes Fluorescentes/química , Transferência Ressonante de Energia de Fluorescência/métodos , Cumarínicos/química , Doses de Radiação
10.
Talanta ; 270: 125530, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091746

RESUMO

A colorimetric and fluorescent sensor, selective for Cu2+ ions, was synthesized in two steps using a rhodamine-based compound attached to the semicarbazide-picolylamine moiety (RBP). Spectroscopic measurements, including UV-Vis absorption and fluorescence emission, were conducted in the semi-aqueous medium containing acetonitrile/4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, denoted as MeCN/HEPES buffer (2:8, v/v, pH 7.0). The sensor exhibited high selectivity towards Cu2+ ions compared to other cations and demonstrated remarkable sensitivity towards Cu2+ ions, with a limit of detection at the nanomolar level. The calculated transitions indicated a 1:1 stoichiometric binding of RBP to Cu2+ ions based on a 4-coordination mode involving additional chelation in the semi-aqueous medium. The sensing mechanism for the detection of Cu2+ ions was investigated using high-resolution mass spectroscopy. The sensor could be employed as a real-time chemosensor for monitoring Cu2+ ions. Furthermore, the sensor has the potential for utilization in the detection of Cu2+ ions in actual water samples with the high precision and accuracy, as indicated by the small relative standard derivation values. The 50th percentile cytotoxicity concentration of RBP was found to be 22.92 µM. Additionally, the fluorescence bioimaging capability of RBP was demonstrated for the detection of Cu2+ ions in human hepatocellular carcinoma (HepG2) cells.


Assuntos
Cobre , Corantes Fluorescentes , Semicarbazidas , Humanos , Rodaminas/química , Cobre/química , Fluorescência , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química , Células Hep G2 , Cátions , Água , Espectrometria de Fluorescência
11.
Analyst ; 149(2): 435-441, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099462

RESUMO

Antenna, as a converter, could receive and convert signals from the outside world flexibly. Inspired by the behavior of antennas receiving external signals, we developed a pH-stimulated and aptamer-anchored Y-shaped DNA nanoantenna (termed pH-Apt-YNA) for sensitive and specific sensing of tumor extracellular pH gradients. The nanoantenna consisted of three functional nucleic acid sequences, an I-strand, Apt-Y-R and Y-L-G, where the I-strand endowed the DNA nanoantenna with the ability to receive and convert signals, the Apt-Y-R containing an aptamer fragment gave the DNA nanoantenna the ability to specifically anchor target tumor cells, and the complementarity of Y-L-G with the other two sequences ensured the stability of the DNA nanoantenna. Initially, the DNA nanoantenna was in a "silent" state, and rhodamine green was close to BHQ2, leading to suppressed signal emission. When the DNA nanoantenna anchored on the surface of target cancer cells through the aptamer recognition domain, the I-strand tended to fold into a hairpin-contained i-motif tetramer structure owing to the extracellular low pH stimuli, resulting in the DNA nanoantenna changing into an "active" state. In the meantime, rhodamine green moved far away from BHQ2, resulting in a strong signal output. The results demonstrate that the pH-Apt-YNA presents a sensitive pH sensing capacity within a narrow pH range of 6.2-7.4 and exhibits excellent specificity for the imaging of target cancer cell extracellular pH. Based on these advantages, we therefore anticipate that our facile design of the DNA nanoantenna with sensitive responsiveness provides a new way and great promise in the application of sensing pH-related physiological and pathological processes.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias , Humanos , Força Próton-Motriz , DNA/química , Rodaminas/química , Oligonucleotídeos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos
12.
Angew Chem Int Ed Engl ; 62(17): e202218613, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36855015

RESUMO

Probes allowing high-contrast discrimination of cancer cells and effective retention are powerful tools for the early diagnosis and treatment of cancer. However, conventional small-molecule probes often show limited performance in both aspects. Herein, we report an ingenious molecular engineering strategy for tuning the cellular uptake and retention of rhodamine dyes. Introduction of polar aminoethyl leads to the increased brightness and reduced cellular uptake of dyes, and this change can be reversed by amino acetylation. Moreover, these modifications allow cancer cells to take up more dyes than normal cells (16-fold) through active transport. Specifically, we further improve the signal contrast (56-fold) between cancer and normal cells by constructing activatable probes and confirm that the released fluorophore can remain in cancer cells with extended time, enabling long-term and specific tumor imaging.


Assuntos
Neoplasias , Humanos , Linhagem Celular Tumoral , Bioengenharia/métodos , Rodaminas/análise , Rodaminas/química , Rodaminas/metabolismo , Animais , Camundongos
13.
Environ Sci Pollut Res Int ; 30(22): 62847-62866, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36947379

RESUMO

The development of photocatalysts has an influential role in solving the environmental pollution crisis. Herein, the two different noble metals of silver (Ag)/ruthenium (Ru) were separately decorated on cadmium sulfide (CdS) photocatalysts by novel chemical methods. Characterization tests confirmed the formation of Ag/Ru-decorated CdS with spherical morphologies. According to the DRS and PL experiments, Ru-decorated CdS accounted for the highest light absorbance and the most accelerated transfer and detachment of photoelectrons/holes, followed by Ag-decorated CdS compared to pure CdS, which brought proper optical properties of Ag/Ru-decorated CdS. The photodecomposition of methylene blue (MB)/rhodamine B (RhB) as dyes and phenol as a colorless pollutant in the presence of Ag-decorated CdS (96%, 95%, and 69%) and Ru-decorated CdS (100%, 100%, and 80%) exposed to visible light radiation climbed compared to pure CdS (80%, 67%, and 61%) respectively. The influence of various parameters on the MB/RhB photocatalytic activity was investigated. The quenching experiment determined the functions of active species. Finally, experimental results proved that the MB/RhB photodecomposition by Ag/Ru-decorated CdS followed the pseudo-first-order kinetic model.


Assuntos
Azul de Metileno , Rutênio , Azul de Metileno/química , Catálise , Luz , Rodaminas/química
14.
Angew Chem Int Ed Engl ; 62(12): e202217326, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36564368

RESUMO

Quantifying glutathione (GSH) in cells and organisms is of great significance for understanding the mechanism of oxidative stress in various physiological and pathological processes. However, the quantification by fluorescence bioimaging in living tissues has much stricter requirements than the "Petri dish"-cultured cells in flat plates. Based on the evaluation of the electronic structure and steric hindrance-tuned reactivity of phospha-substituted rhodamine with GSH, a reversible Förster resonance energy transfer (FRET) probe ZpSiP with a distinct performance (Kd =4.9 mM, t1/2 =0.57 s, k=81 M-1 s-1 ) is developed for real time quantifying GSH in living cells. Furthermore, the near-infrared (NIR) probe succeeded in sensitively tracking the dynamics of GSH in the real organisms bearing tumors, chronic renal failure, and liver fibrosis for unveiling the related pathological processes. We believe that the advance in chemistry with quantitative analysis methods will initiate more promising progress and broad applications.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Corantes Fluorescentes/química , Rodaminas/química , Glutationa/química , Limite de Detecção
15.
Environ Technol ; 44(6): 792-803, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35108163

RESUMO

Green iron tea nanoparticles (GT-Fe NPs) were used as persulfate(PS) activators to oxidize rhodamine B (RhB) in this study. Optimized oxidative degradation condition was 0.033 mM Fe, 5 mM PS at pH 3.0 and 298 K with an initial RhB content of 50 mg/L. After 120 min of RhB degradation utilizing GT-Fe NPs activated PS, 99% of RhB reduction was achieved, while 98% RhB reduction with PS activated by citric acid-Fe2+(CA-Fe) with the same amount of Fe2+. This RhB reduction was due to the delayed release of Fe(II) in the GT-Fe NPs. The addition of GT-Fe NPs enhanced the synthesis of OH· and SO4-· while inhibiting the formation of O2-·. A possible RhB degradation pathway was the chromophore destruction and ring-opening processes using GT-Fe NPs/PS, which produced a range of low molecular weight carboxylic acids (oxalic acid, lactic acid, acetic acid, and formic acid). GT-Fe NPs seem to be a promising persulfate activator in comparison to common activators such as CA-Fe.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Ferro/química , Chá , Rodaminas/química , Oxirredução , Poluentes Químicos da Água/química
16.
Anal Methods ; 15(1): 17-26, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36472156

RESUMO

A new rhodamine derivative, HL-CIN, derived from a reaction between N-(rhodamine-6G)lactam-ethylenediamine (L1) and trans-cinnamaldehyde, is reported here for the colorimetric and fluorogenic sensing of Group 13 trivalent cations, namely Al3+, Ga3+, In3+ and Tl3+. The absorption intensity of the probe increases significantly at 530 nm whereas the fluorescence intensity enhances massively at 558 nm upon interaction with these metal ions. Other relevant metal ions could not impart any noticeable color change or fluorescence enhancement. The quantum yield or fluorescence life time of HL-CIN increases considerably in the presence of these Group 13 metal ions. Different spectral studies such as ESI-mass, FT-IR, 1H and 13C NMR spectra, establish that HL-CIN undergoes hydrolysis in the presence of the trivalent cations and a rhodamine species in its ring opened form (i.e. N-(2-aminoethyl)-2-((6Z)-3-(ethylamino)-6-(ethylimino)-2,7-dimethyl-6H-xanthen-9-yl)benzamide, (L2)) along with cinnamaldehyde are produced. The rhodamine species in its ring opened form (L2) is responsible for the color change and strong increment in the absorbance and fluorescence of HL-CIN with Group 13 cations. Interaction between L1 and these metal ions could not produce the same outcome. It has been used in test paper strips and to detect these cations in real samples.


Assuntos
Corantes Fluorescentes , Mercúrio , Corantes Fluorescentes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Fluorescência , Rodaminas/química , Metais , Cátions
17.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235281

RESUMO

Fluorescent imaging has been expanded, as a non-invasive diagnostic modality for cancers, in recent years. Fluorescent probes in the near-infrared window can provide high sensitivity, resolution, and signal-to-noise ratio, without the use of ionizing radiation. Some fluorescent compounds with low molecular weight, such as rhodamine B (RhB) and indocyanine green (ICG), have been used in fluorescent imaging to improve imaging contrast and sensitivity; however, since these probes are excreted from the body quickly, they possess significant restrictions for imaging. To find a potential solution to this, this work investigated the synthesis and properties of novel macromolecular fluorescent compounds. Herein, water-soluble dextran fluorescent compounds (SD-Dextran-RhB) were prepared by the attachment of RhB and sulfadiazine (SD) derivatives to dextran carrier. These fluorescent compounds were then characterized through IR, 1H NMR, 13C NMR, UV, GPC, and other methods. Assays of their cellular uptake and cell cytotoxicity and fluorescent imaging were also performed. Through this study, it was found that SD-Dextran-RhB is sensitive to acidic conditions and possesses low cell cytotoxicities compared to normal 293 cells and HepG2 and HeLa tumor cells. Moreover, SD-Dextran-RhB demonstrated good fluorescent imaging in HepG2 and HeLa cells. Therefore, SD-Dextran-RhB is suitable to be potentially applied as a probe in the fluorescent imaging of tumors.


Assuntos
Dextranos , Corantes Fluorescentes , Corantes Fluorescentes/química , Células HeLa , Humanos , Verde de Indocianina/química , Rodaminas/química , Sulfadiazina/farmacologia , Água
18.
Dalton Trans ; 51(40): 15555-15570, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36168977

RESUMO

Two rhodamine and azo based chemosensors (HL1 = (3',6'-bis(ethylamino)-2-((2-hydroxy-3-methoxy-5-(phenyldiazenyl)benzylidene)amino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one) and HL2 = (3',6'-bis(ethylamino)-2-(((2-hydroxy-3-methoxy-5-(p-tolyldiazenyl)benzylidene)amino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one) have been synthesized for colorimetric and fluorometric detection of three trivalent metal ions, Al3+, Cr3+ and Fe3+. The chemosensors have been thoroughly characterized by different spectroscopic techniques and X-ray crystallography. They are non-fluorescent due to the presence of a spirolactam ring. The trivalent metal ions initiate an opening of the spirolactam ring when excited at 490 nm in Britton-Robinson buffer solution (H2O/MeOH 1 : 9 v/v; pH 7.4). The opening of the spirolactam ring increases conjugation within the probe, which is supported by an intense fluorescent pinkish-yellow colouration and an enhancement of the fluorescence intensity of the chemosensors by ∼400 times in the presence of Al3+ and Cr3+ ions and by ∼100 times in the presence of Fe3+ ions. Such a type of enormous fluorescence enhancement is rarely observed in other chemosensors for the detection of trivalent metal ions. A 2 : 1 binding stoichiometry of the probes with the respective ions has been confirmed by Job's plot analysis. Elucidation of the crystal structures of the Al3+ bound chemosensors (1 and 4) also justifies the 2 : 1 binding stoichiometry and the presence of an open spirolactam ring within the chemosensor framework. The limit of detection (LOD) values for both the chemosensors towards the respective metal ions are in the order of ∼10-9 M which supports their application in the biological field. The biocompatibility of the ligands has been studied with the help of the MTT assay. The results show that no significant toxicity was observed up to 100 µM of chemosensor concentration. The capability of our synthesized chemosensors to detect intracellular Al3+, Cr3+ and Fe3+ ions in the cervical cancer cell line HeLa was evaluated with the aid of fluorescence imaging.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Alumínio/análise , Corantes Fluorescentes/química , Íons/análise , Metais , Rodaminas/química , Espectrometria de Fluorescência
19.
J Photochem Photobiol B ; 234: 112485, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35809431

RESUMO

Mitochondria-targetable fluorescent chemosensors, Rhodamine-B and rhodamine 6G bearing syringaldehyde based receptors were designed and synthesized for efficient chemosensing of Zinc(II) ions. The probes showed the very selective naked eye color change to pink from colorless upon addition of Zinc(II) ions, further these probes showing turn-on fluorescence enhancement with Zn(II) ions by opening of rhodamine spirolactam. The probes are very sensitive towards Zn(II) ions among other ions. These probes RBS and R6S will be applicable to detect zinc ions upto the low level concentration 0.18 and 0.19 nano molar respectively. The affinity of these sensors RBS and R6S for Zinc (II) ions was found to be in the range of 1.12 × 104 M-1 and 7.28 × 104 M-1 respectively. 1H-nmr titrations of the probes with Zn(II) ions clearly indicating the spiroring opening of the spirolactam. DFT calculations supporting that the perceived photophysical changes of the probes on appendage of the zinc ions. Probes RBS and R6S are useable for selective staining mitochondria. Both of the probes are applicable to reveal labile Zn(II) in live Hela and MCF-7 cells via fluorescence imaging. RBS and R6S are also finding application on quantification of Zinc(II) ions inside mitochondria via fluorescence imaging.


Assuntos
Corantes Fluorescentes , Zinco , Corantes Fluorescentes/química , Humanos , Íons/química , Mitocôndrias , Rodaminas/química , Espectrometria de Fluorescência , Zinco/química
20.
Sci Rep ; 12(1): 9100, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650221

RESUMO

Rapid identification of lung-cancer micro-lesions is becoming increasingly important to improve the outcome of surgery by accurately defining the tumor/normal tissue margins and detecting tiny tumors, especially for patients with low lung function and early-stage cancer. The purpose of this study is to select and validate the best red fluorescent probe for rapid diagnosis of lung cancer by screening a library of 400 red fluorescent probes based on 2-methyl silicon rhodamine (2MeSiR) as the fluorescent scaffold, as well as to identify the target enzymes that activate the selected probe, and to confirm their expression in cancer cells. The selected probe, glutamine-alanine-2-methyl silicon rhodamine (QA-2MeSiR), showed 96.3% sensitivity and 85.2% specificity for visualization of lung cancer in surgically resected specimens within 10 min. In order to further reduce the background fluorescence while retaining the same side-chain structure, we modified QA-2MeSiR to obtain glutamine-alanine-2-methoxy silicon rhodamine (QA-2OMeSiR). This probe rapidly visualized even borderline lesions. Dipeptidyl peptidase 4 and puromycin-sensitive aminopeptidase were identified as enzymes mediating the cleavage and consequent fluorescence activation of QA-2OMeSiR, and it was confirmed that both enzymes are expressed in lung cancer. QA-2OMeSiR is a promising candidate for clinical application.


Assuntos
Corantes Fluorescentes , Neoplasias Pulmonares , Alanina , Aminopeptidases , Dipeptidil Peptidase 4/metabolismo , Corantes Fluorescentes/química , Glutamina , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Rodaminas/química , Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA