Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 44(10): 1357-1363, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602542

RESUMO

In life science research, methods to control biological activities with stimuli such as light, heat, pressure and chemicals have been widely utilized to understand their molecular mechanisms. The knowledge obtained by those methods has built a basis for the development of medicinal products. Among those various stimuli, light has the advantage of a high spatiotemporal resolution that allows for the precise control of biological activities. Photoactive membrane protein rhodopsins from microorganisms (called microbial rhodopsins) absorb visible light and that light absorption triggers the trans-cis photoisomerization of the chromophore retinal, leading to various functions such as ion pumps, ion channels, transcriptional regulators and enzymes. In addition to their biological significance, microbial rhodopsins are widely utilized as fundamental molecular tools for optogenetics, a method to control biological activities by light. In this review, we briefly introduce the molecular basis of representative rhodopsin molecules and their applications for optogenetics. Based on those examples, we discuss the high potential of rhodopsin-based optogenetics tools for basic and clinical research in pharmaceutical sciences.


Assuntos
Desenvolvimento de Medicamentos/métodos , Proteínas de Membrana/metabolismo , Optogenética/métodos , Rodopsinas Microbianas/metabolismo , Animais , Humanos , Luz , Proteínas de Membrana/efeitos da radiação , Modelos Animais , Fototerapia/métodos , Rodopsinas Microbianas/efeitos da radiação
2.
Nature ; 583(7815): 314-318, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32499654

RESUMO

Light-driven sodium pumps actively transport small cations across cellular membranes1. These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved2,3, it is unclear how structural alterations over time allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser4, we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion binds transiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.


Assuntos
Flavobacteriaceae/química , Rodopsinas Microbianas/química , Rodopsinas Microbianas/efeitos da radiação , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/efeitos da radiação , Sítios de Ligação , Cristalografia , Elétrons , Transporte de Íons , Isomerismo , Lasers , Prótons , Teoria Quântica , Retinaldeído/química , Retinaldeído/metabolismo , Bases de Schiff/química , Sódio/metabolismo , Análise Espectral , Eletricidade Estática , Fatores de Tempo
3.
Phys Chem Chem Phys ; 21(8): 4461-4471, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30734791

RESUMO

We report a comparative study on the structural dynamics of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 wild type under sodium and proton pumping conditions by means of time-resolved IR spectroscopy. The kinetics of KR2 under sodium pumping conditions exhibits a sequential character, whereas the kinetics of KR2 under proton pumping conditions involves several equilibrium states. The sodium translocation itself is characterized by major conformational changes of the protein backbone, such as distortions of the α-helices and probably of the ECL1 domain, indicated by distinct marker bands in the amide I region. Carbonyl stretch modes of specific amino acid residues helped to elucidate structural changes in the retinal Schiff base moiety, including the protonation and deprotonation of D116, which is crucial for a deeper understanding of the mechanistic features in the photocycle of KR2.


Assuntos
Flavobacteriaceae/metabolismo , Rodopsinas Microbianas/metabolismo , Canais de Sódio/metabolismo , Membrana Celular/metabolismo , Escherichia coli/genética , Flavobacteriaceae/efeitos da radiação , Transporte de Íons , Cinética , Luz , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Rodopsinas Microbianas/efeitos da radiação , Canais de Sódio/efeitos da radiação , ATPase Trocadora de Sódio-Potássio/metabolismo , Espectrofotometria Infravermelho , Termodinâmica
4.
Biochim Biophys Acta ; 1857(12): 1900-1908, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27659506

RESUMO

Actinorhodopsin (ActR) is a light-driven outward H+ pump. Although the genes of ActRs are widely spread among freshwater bacterioplankton, there are no prior data on their functional expression in native cell membranes. Here, we demonstrate ActR phototrophy in the native actinobacterium. Genome analysis showed that Candidatus Rhodoluna planktonica, a freshwater actinobacterium, encodes one microbial rhodopsin (RpActR) belonging to the ActR family. Reflecting the functional expression of RpActR, illumination induced the acidification of the actinobacterial cell suspension and then elevated the ATP content inside the cells. The photochemistry of RpActR was also examined using heterologously expressed RpActR in Escherichia coli membranes. The purified RpActR showed λmax at 534nm and underwent a photocycle characterized by the very fast formation of M intermediate. The subsequent intermediate, named P620, could be assigned to the O intermediate in other H+ pumps. In contrast to conventional O, the accumulation of P620 remains prominent, even at high pH. Flash-induced absorbance changes suggested that there exists only one kind of photocycle at any pH. However, above pH7, RpActR shows heterogeneity in the H+ transfer sequences: one first captures H+ and then releases it during the formation and decay of P620, while the other first releases H+ prior to H+ uptake during P620 formation.


Assuntos
Actinobacteria/efeitos da radiação , Trifosfato de Adenosina/metabolismo , Metabolismo Energético/efeitos da radiação , Luz , Processos Fototróficos/efeitos da radiação , Rodopsinas Microbianas/efeitos da radiação , Actinobacteria/genética , Actinobacteria/metabolismo , Transferência de Energia , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Concentração de Íons de Hidrogênio , Cinética , Fotólise , Conformação Proteica , Prótons , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Análise Espectral , Relação Estrutura-Atividade
5.
Biochemistry ; 53(48): 7549-61, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25375769

RESUMO

A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from Krokinobacter. In this paper, we examine a similar protein, GLR from Gillisia limnaea, expressed in Escherichia coli, which shares some properties with KR2 but transports only Na(+). The absorption spectrum of GLR is insensitive to Na(+) at concentrations of ≤3 M. However, very low concentrations of Na(+) cause profound differences in the decay and rise time of photocycle intermediates, consistent with a switch from a "Na(+)-independent" to a "Na(+)-dependent" photocycle (or photocycle branch) at ∼60 µM Na(+). The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na(+) concentration. This suggests that a high-affinity Na(+) binding site is created transiently after photoexcitation, and entry of Na(+) from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na(+) is needed for switching the reaction path at lower pH. The data suggest therefore competition between H(+) and Na(+) to determine the two alternative pathways. The idea that a Na(+) binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na(+) binds without photoexcitation. Binding of Na(+) to the mutant shifts the chromophore maximum to the red like that of H(+), which occurs in the photocycle of the wild type.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/efeitos da radiação , Flavobacteriaceae/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/efeitos da radiação , Sequência de Aminoácidos , Substituição de Aminoácidos , Ácido Aspártico/química , Proteínas de Bactérias/genética , Sítios de Ligação , Flavobacteriaceae/genética , Flavobacteriaceae/efeitos da radiação , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Processos Fotoquímicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efeitos da radiação , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efeitos da radiação , Bases de Schiff/química , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA