Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107413, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696844

RESUMO

Cyclin-dependent kinase 2 (CDK2) is a vital protein for controlling cell cycle progression that is critically associated with various malignancies and its inhibition could offer a convenient therapeutic approach in designing anticancer remedies. Consequently, this study aimed to design and synthesize new CDK2 inhibitors featuring roscovitine as a template model. The purine ring of roscovitine was bioisosterically replaced with the pyrazolo[3,4-d]pyrimidine scaffold, in addition to some modifications in the side chains. A preliminary molecular docking study for the target chemotypes in the CDK2 binding domain revealed their ability to accomplish similar binding patterns and interactions to that of the lead compound roscovitine. Afterwards, synthesis of the new derivatives was accomplished. Then, the initial anticancer screening at a single dose by the NCI revealed that compounds 7a, 9c, 11c, 17a and 17b achieved the highest GI% values reaching up to 150 % indicating their remarkable activity. These derivatives were subsequently selected to undertake five-dose testing, where compounds 7a, 9c, 11c and 17a unveiled the most pronounced activity against almost the full panel with GI50 ranges; 1.41-28.2, 0.116-2.39, 0.578-60.6 and 1.75-42.4 µM, respectively and full panel GI50 (MG-MID); 8.24, 0.6, 2.46 and 6.84 µM, respectively. CDK2 inhibition assay presented compounds 7a and 9c as the most potent inhibitors with IC50 values of 0.262 and 0.281 µM, respectively which are nearly 2.4 folds higher than the reference ligand roscovitine (IC50 = 0.641 µM). Besides, flow cytometric analysis on the most susceptible and safe cell lines depicted that 7a caused cell cycle arrest at G1/S phase in renal cancer cell line (RXF393) while 9c led to cell growth arrest at S phase in breast cancer cell line (T-47D) along with pronounced apoptotic induction in the mentioned cell lines. These findings afforded new anticancer pyrazolo[3,4-d]pyrimidine, roscovitine analogs, acting via CDK2 inhibition.


Assuntos
Antineoplásicos , Proliferação de Células , Quinase 2 Dependente de Ciclina , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Pirazóis , Pirimidinas , Roscovitina , Humanos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Roscovitina/farmacologia , Roscovitina/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Linhagem Celular Tumoral , Purinas/farmacologia , Purinas/química , Purinas/síntese química
2.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 71-81, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38013469

RESUMO

Epithelial-mesenchymal transformation (EMT) plays an important role in the progression of diabetic nephropathy. Dexmedetomidine (DEX) has shown renoprotective effects against ischemic reperfusion injury; however, whether and how DEX prevents high glucose-induced EMT in renal tubular epithelial cells is incompletely known. Here, we conduct in vitro experiments using HK-2 cells, a human tubular epithelial cell line. Our results demonstrate that high glucose increases the expressions of EMT-related proteins, including Vimentin, Slug, Snail and Twist, while decreasing the expression of E-cadherin and increasing Cdk5 expression in HK-2 cells. Both Cdk5 knockdown and inhibition by roscovitine increase the expressions of E-cadherin while decreasing the expressions of other EMT-related markers. DEX inhibits Cdk5 expression without affecting cell viability and changes the expressions of EMT-related markers, similar to effects of Cdk5 inhibition. Furthermore, Cdk5 is found to interact with Drp1 at the protein level and mediate the phosphorylation of Drp1. In addition, Drp1 inhibition with mdivi-1 could also restrain the high glucose-induced EMT process in HK-2 cells. Immunofluorescence results show that roscovitine, Mdivi-1 and DEX inhibit high glucose-induced intracellular ROS accumulation, while the oxidant H 2O 2 eliminates the protective effect of DEX on the EMT process. These results indicate that DEX mitigates high glucose-induced EMT progression in HK-2 cells via inhibition of the Cdk5/Drp1/ROS pathway.


Assuntos
Dexmedetomidina , Transição Epitelial-Mesenquimal , Transdução de Sinais , Humanos , Caderinas/metabolismo , Dexmedetomidina/farmacologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucose/toxicidade , Glucose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Roscovitina/metabolismo , Roscovitina/farmacologia , Quinase 5 Dependente de Ciclina/efeitos dos fármacos , Quinase 5 Dependente de Ciclina/metabolismo , Dinaminas/efeitos dos fármacos , Dinaminas/metabolismo
3.
Arch Pharm (Weinheim) ; 356(8): e2300185, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37253118

RESUMO

A series of 16 novel spirooxindole analogs 8a-p were designed and constructed via cost-effective single-step multicomponent [3+2] cycloaddition reaction of azomethine ylide (AY) generated in situ from substituted isatin (6a-d) with suitable amino acids (7a-c) and ethylene-engrafted pyrazole derivatives (5a,b). The potency of all compounds was assayed against a human breast cancer cell line (MCF-7) and a human liver cell line (HepG2). Spiro compound 8c was the most active member among the synthesized candidates, with exceptional cytotoxicity against the MCF-7 and HepG2 cell lines, with IC50 values of 0.189 ± 0.01 and 1.04 ± 0.21 µM, respectively. The candidate 8c exhibited more potent activity (10.10- and 2.27-fold) than the standard drug roscovitine (IC50 = 1.91 ± 0.17 µM (MCF-7) and 2.36 ± 0.21 µM (HepG2)). Compound 8c was investigated for epidermal growth factor receptor (EGFR) inhibition; it exhibited promising IC50 values of 96.6 nM compared with 67.3 nM for erlotinib. The IC50 value of 8c (34.98 nM) exhibited cyclin-dependent kinase 2 (CDK-2) inhibition, being more active than roscovitine the (IC50 = 140 nM) in targeting the CDK-2 kinase enzyme. Additionally, for apoptosis induction of compound 8c in MCF-7, it upregulated the expression levels of proapoptotic genes for P53, Bax, caspases-3, 8, and 9 at up to 6.18, 4.8, 9.8, 4.6, 11.3 fold-change, respectively, and downregualted the level of the antiapoptotic gene for Bcl-2 by 0.14-fold. Finally, a molecular docking study of the most active compound 8c highlighted a good binding affinity with Lys89 as the key amino acid for CDK-2 inhibition.


Assuntos
Antineoplásicos , Humanos , Oxindóis/farmacologia , Oxindóis/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Roscovitina/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Apoptose
4.
Expert Opin Ther Targets ; 27(3): 251-261, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37015886

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a leading cause of cancer death. Certain signaling pathways are implicated in colorectal carcinogenesis. Cyclin-dependent kinases (CDKs) are commonly hyperactivated in CRC and hence multitarget CDK inhibitors serve as promising therapeutic drugs against CRC. OBJECTIVE: Off-target effects of multitarget CDK inhibitors with differential CDK inhibitory spectrum viz. P276-00 (also known as riviciclib), roscovitine and UCN-01 on CRC cell lines of varied genetic background were delineated. METHOD: Protein expression was analyzed for key signaling proteins by western blotting. ß-catenin localization was assessed using immunofluorescence. HIF-1 transcriptional activity and target gene expression were studied by reporter gene assay and RT-PCR respectively. Anti-migratory and anti-angiogenic potential was evaluated by wound healing assay and endothelial tube formation assay. RESULTS: CDK inhibitors modulated various signaling pathways in CRC and for certain proteins showed a highly cell line-dependent response. Riviciclib and roscovitine inhibited HIF-1 transcriptional activity and HIF-1α accumulation in hypoxic HCT116 cells. Both of these drugs also abrogated migration of HCT116 and in vitro angiogenesis in HUVECs. CONCLUSION: Anticancer activity of multitarget CDK inhibitors can be certainly attributed to their off-target effects and should be analyzed while assessing their therapeutic utility against CRC.


Assuntos
Neoplasias Colorretais , Quinases Ciclina-Dependentes , Humanos , Linhagem Celular Tumoral , Roscovitina/farmacologia , Roscovitina/uso terapêutico , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/farmacologia , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia
5.
Leukemia ; 36(6): 1596-1608, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35383271

RESUMO

Fadraciclib (CYC065) is a second-generation aminopurine CDK2/9 inhibitor with increased potency and selectivity toward CDK2 and CDK9 compared to seliciclib (R-roscovitine). In chronic lymphocytic leukemia (CLL), a disease that depends on the over-expression of anti-apoptotic proteins for its survival, inhibition of CDK9 by fadraciclib reduced phosphorylation of the C-terminal domain of RNA polymerase II and blocked transcription in vitro; these actions depleted the intrinsically short-lived anti-apoptotic protein Mcl-1 and induced apoptosis. While the simulated bone marrow and lymph node microenvironments induced Mcl-1 expression and protected CLL cells from apoptosis, these conditions did not prolong the turnover rate of Mcl-1, and fadraciclib efficiently abrogated the protective effect. Further, fadraciclib was synergistic with the Bcl-2 antagonist venetoclax, inducing more profound CLL cell death, especially in samples with 17p deletion. While fadraciclib, venetoclax, and the combination each had distinct kinetics of cell death induction, their activities were reversible, as no additional cell death was induced upon removal of the drugs. The best combination effects were achieved when both drugs were maintained together. Altogether, this study provides a rationale for the clinical development of fadraciclib in CLL, either alone or in combination with a Bcl-2 antagonist.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adenosina/análogos & derivados , Apoptose , Proteínas Reguladoras de Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Roscovitina/farmacologia , Sulfonamidas , Microambiente Tumoral
6.
Am J Respir Cell Mol Biol ; 66(4): 439-451, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35081328

RESUMO

Persistent neutrophilic inflammation associated with chronic pulmonary infection causes progressive lung injury and, eventually, death in individuals with cystic fibrosis (CF), a genetic disease caused by biallelic mutations in the CF transmembrane conductance regulator (CFTR) gene. Therefore, we examined whether roscovitine, a cyclin-dependent kinase inhibitor that (in other conditions) reduces inflammation while promoting host defense, might provide a beneficial effect in the context of CF. Herein, using CFTR-depleted zebrafish larvae as an innovative vertebrate model of CF immunopathophysiology, combined with murine and human approaches, we sought to determine the effects of roscovitine on innate immune responses to tissue injury and pathogens in the CF condition. We show that roscovitine exerts antiinflammatory and proresolution effects in neutrophilic inflammation induced by infection or tail amputation in zebrafish. Roscovitine reduces overactive epithelial reactive oxygen species (ROS)-mediated neutrophil trafficking by reducing DUOX2/NADPH-oxidase activity and accelerates inflammation resolution by inducing neutrophil apoptosis and reverse migration. It is important to note that, although roscovitine efficiently enhances intracellular bacterial killing of Mycobacterium abscessus in human CF macrophages ex vivo, we found that treatment with roscovitine results in worse infection in mouse and zebrafish models. By interfering with DUOX2/NADPH oxidase-dependent ROS production, roscovitine reduces the number of neutrophils at infection sites and, consequently, compromises granuloma formation and maintenance, favoring extracellular multiplication of M. abscessus and more severe infection. Our findings bring important new understanding of the immune-targeted action of roscovitine and have significant therapeutic implications for safely targeting inflammation in CF.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Neutrófilos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Oxidases Duais , Camundongos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Roscovitina/farmacologia , Roscovitina/uso terapêutico , Peixe-Zebra
7.
Amino Acids ; 53(9): 1373-1389, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34386848

RESUMO

Glycogen synthase kinase 3ß (GSK3ß) is considered an important element of glycogen metabolism; however, it has many other regulatory roles. Changes in the GSK3ß signaling mechanism have been associated with various disorders, such as Alzheimer's disease (AD), type II diabetes, and cancer. Although the effects of GSK3ß inhibitors on reducing the pathological effects of AD have been described, an effective inhibitor has not yet been developed. Epibrassinolide (EBR), a brassinosteroid (BR), is structurally similar to mammalian steroid hormones. Our studies have shown that EBR has an inhibitory effect on GSK3ß in different cell lines. Roscovitine (ROSC), a cyclin-dependent kinase (CDK) inhibitor, has also been identified as a potential GSK3 inhibitor. Within the scope of this study, we propose that EBR and/or ROSC might have mechanistic action in AD models. To test this hypothesis, we used in vitro models and Caenorhabditis elegans (C. elegans) AD strains. Finally, EBR treatment successfully protected cells from apoptosis and increased the inhibitory phosphorylation of GSK3ß. In addition, EBR and/or ROSC treatment had a positive effect on the survival rates of C. elegans strains. More interestingly, the paralysis phenotype of the C. elegans AD model due to Aß42 toxicity was prevented by EBR and/or ROSC. Our findings suggest that EBR and ROSC administration have neuroprotective effects on both in vitro and C. elegans models via inhibitory GSK3ß phosphorylation at Ser9.


Assuntos
Brassinosteroides/farmacologia , Caenorhabditis elegans/crescimento & desenvolvimento , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Longevidade , Transtornos Motores/tratamento farmacológico , Roscovitina/farmacologia , Esteroides Heterocíclicos/farmacologia , Proteínas tau/metabolismo , Animais , Brassinosteroides/química , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quimioterapia Combinada , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Esteroides Heterocíclicos/química , Proteínas tau/genética
8.
Cells ; 10(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066059

RESUMO

Several anticancer drugs including cisplatin (CDDP) induce hypomagnesemia. However, it remains fully uncertain whether Mg2+ deficiency affects chemosensitivity of cancer cells. Here, we investigated the effect of low Mg2+ concentration (LM) on proliferation and chemosensitivity using human lung adenocarcinoma A549 cells. Cell proliferation was reduced by continuous culture with LM accompanied with the elevation of G1 phase proportion. The amounts of reactive oxygen species (ROS) and stress makers such as phosphorylated-ataxia telangiectasia mutated and phosphorylated-p53 were increased by LM. Cell injury was dose-dependently increased by anticancer drugs such as CDDP and doxorubicin (DXR), which were suppressed by LM. Similar results were obtained by roscovitine, a cell cycle inhibitor. These results suggest that LM induces chemoresistance mediated by ROS production and G1 arrest. The mRNA and protein levels of ATP binding cassette subfamily B member 1 (ABCB1) were increased by LM and roscovitine. The LM-induced elevation of ABCB1 and nuclear p38 expression was suppressed by SB203580, a p38 MAPK inhibitor. PSC833, an ABCB1 inhibitor, and SB203580 rescued the sensitivity to anticancer drugs. In addition, cancer stemness properties were suppressed by SB203580. We suggest that Mg2+ deficiency reduces the chemotherapy sensitivity of A549 cells, although it suppresses cell proliferation.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Magnésio/química , Células A549 , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Ciclo Celular , Proliferação de Células , Cisplatino/administração & dosagem , Ciclosporinas/farmacologia , Dano ao DNA , Doxorrubicina/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Linfonodos/patologia , Fosforilação , Piridinas/farmacologia , Espécies Reativas de Oxigênio , Roscovitina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Cell Rep ; 35(11): 109255, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133928

RESUMO

The formation of new vessels requires a tight synchronization between proliferation, differentiation, and sprouting. However, how these processes are differentially activated, often by neighboring endothelial cells (ECs), remains unclear. Here, we identify cell cycle progression as a regulator of EC sprouting and differentiation. Using transgenic zebrafish illuminating cell cycle stages, we show that venous and lymphatic precursors sprout from the cardinal vein exclusively in G1 and reveal that cell-cycle arrest is induced in these ECs by overexpression of p53 and the cyclin-dependent kinase (CDK) inhibitors p27 and p21. We further demonstrate that, in vivo, forcing G1 cell-cycle arrest results in enhanced vascular sprouting. Mechanistically, we identify the mitogenic VEGFC/VEGFR3/ERK axis as a direct inducer of cell-cycle arrest in ECs and characterize the cascade of events that render "sprouting-competent" ECs. Overall, our results uncover a mechanism whereby mitogen-controlled cell-cycle arrest boosts sprouting, raising important questions about the use of cell cycle inhibitors in pathological angiogenesis and lymphangiogenesis.


Assuntos
Pontos de Checagem do Ciclo Celular , Células Endoteliais , Vasos Linfáticos , Neovascularização Fisiológica , Fator C de Crescimento do Endotélio Vascular , Veias , Proteínas de Peixe-Zebra , Animais , Animais Geneticamente Modificados , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fase G1 , Vasos Linfáticos/citologia , Sistema de Sinalização das MAP Quinases , Neovascularização Fisiológica/efeitos dos fármacos , Roscovitina/farmacologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Veias/citologia , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
10.
Cancer Med ; 10(11): 3689-3699, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960694

RESUMO

The marked overexpression of cyclin-dependent kinase 5 (CDK5) or Notch1 receptor, which plays critical roles in pancreatic ductal adenocarcinoma (PDAC) development, has been detected in numerous PDAC cell lines and tissues. Although, a previous study has demonstrated that CDK5 inhibition disrupts Notch1 functions in human umbilical vein endothelial cells, the mechanism underlying Notch1 activation regulated by CDK5 remains unclear. Herein, we identified a physical interaction between CDK5 and Notch1 in PDAC cells, with the Notch1 peptide phosphorylated by CDK5/p25 kinase. CDK5 blockade resulted in the profound inhibition of Notch signaling. Accordingly, CDK5 inhibition sensitized PDAC cell proliferation and migration following Notch inhibition. In conclusion, CDK5 positively regulates Notch1 function via phosphorylation, which in turn promotes cell proliferation and migration. The combinational inhibition of CDK5 and Notch signaling may be an effective strategy in the treatment of PDAC.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor Notch1/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Dipeptídeos/farmacologia , Inativação Gênica , Humanos , Imunoprecipitação , Neoplasias Pancreáticas/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Roscovitina/farmacologia , Transdução de Sinais
11.
J Mol Biol ; 433(10): 166949, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33744317

RESUMO

Checkpoint Kinase 1 (Chk1) prevents DNA damage by adjusting the replication choreography in the face of replication stress. Chk1 depletion provokes slow and asymmetrical fork movement, yet the signals governing such changes remain unclear. We sought to investigate whether poly(ADP-ribose) polymerases (PARPs), key players of the DNA damage response, intervene in the DNA replication of Chk1-depleted cells. We demonstrate that PARP inhibition selectively alleviates the reduced fork elongation rates, without relieving fork asymmetry in Chk1-depleted cells. While the contribution of PARPs to fork elongation is not unprecedented, we found that their role in Chk1-depleted cells extends beyond fork movement. PARP-dependent fork deceleration induced mild dormant origin firing upon Chk1 depletion, augmenting the global rates of DNA synthesis. Thus, we have identified PARPs as novel regulators of replication fork dynamics in Chk1-depleted cells.


Assuntos
Quinase 1 do Ponto de Checagem/genética , Replicação do DNA , Poli(ADP-Ribose) Polimerases/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Regulação da Expressão Gênica , Humanos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Roscovitina/farmacologia , Timidina/análogos & derivados , Timidina/farmacologia
12.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669352

RESUMO

Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fibrose Cística/tratamento farmacológico , Inflamação/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Azitromicina/farmacologia , Azitromicina/uso terapêutico , COVID-19/complicações , COVID-19/metabolismo , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Eicosanoides/metabolismo , Humanos , Inflamação/complicações , Inflamação/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Roscovitina/farmacologia , Roscovitina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Timalfasina/farmacologia , Timalfasina/uso terapêutico , Tratamento Farmacológico da COVID-19
13.
Biol Pharm Bull ; 44(3): 416-421, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328427

RESUMO

In hepatitis, activated hepatic stellate cells (HSCs) produce collagens, causing liver fibrosis. Microenvironmental stiffness is a known trigger of HSC activation and is communicated through mechanotransduction. Cell proliferation, alpha smooth muscle actin (α-SMA) and collagen type Iα (Col1α) are indicative of activated HSCs. We hypothesized that certain compounds could interfere with the HSC's recognition of microenvironmental stiffness by blocking cell adhesion signaling. To verify the potential of mechanotransduction, and in particular of focal adhesion proteins, as liver fibrosis drug targets, we evaluated existing drugs. We examined the effects of the integrin antagonist, BS-1417; the focal adhesion kinase (FAK) inhibitor, defactinib; the cyclin-dependent kinase (CDK) inhibitor, roscovitine; and two microtubule modulators, paclitaxel and colchicine, on stiffness-induced HSC activation. To determine the extent of transforming growth factor ß (TGF-ß) participation in mechanotransduction, we measured gene expression levels of α-SMA and Col1α. We also measured ATP levels to determine cell number. Results revealed that interestingly, although TGF-ß did not show additional HSC activation after stiffness stimulation, the TGF-ß receptor inhibitor, SB525334, markedly suppressed stiffness-induced α-SMA and Col1α mRNA expression. BS-1417, roscovitine, defactinib and colchicine suppressed α-SMA and Col1α mRNA expression as well as the number of HSCs. Paclitaxel also suppressed stiffness-induced α-SMA mRNA expression and the number of HSCs, but mildly reduced that of Col1α mRNA. Together, these results show that an integrin antagonist and mechanotransduction-targeting drugs reduced stiffness-induced HSC activation in a dose-dependent fashion. The targeting of focal adhesion proteins involved in mechanotransduction is promising in liver fibrosis drug development.


Assuntos
Células Estreladas do Fígado/fisiologia , Mecanotransdução Celular , Actinas/genética , Trifosfato de Adenosina/metabolismo , Animais , Benzamidas/farmacologia , Células Cultivadas , Colchicina/farmacologia , Colágeno Tipo I/genética , Células Estreladas do Fígado/efeitos dos fármacos , Imidazóis/farmacologia , Integrinas/antagonistas & inibidores , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Paclitaxel/farmacologia , Piperazinas/farmacologia , Pirazinas/farmacologia , Quinoxalinas/farmacologia , Ratos Sprague-Dawley , Roscovitina/farmacologia , Sulfonamidas/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Moduladores de Tubulina/farmacologia
14.
Sci Rep ; 10(1): 21700, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303916

RESUMO

Cystic fibrosis (CF) is characterized by chronic bacterial infections and heightened inflammation. Widespread ineffective antibiotic use has led to increased isolation of drug resistant bacterial strains from respiratory samples. (R)-roscovitine (Seliciclib) is a unique drug that has many benefits in CF studies. We sought to determine roscovitine's impact on macrophage function and killing of multi-drug resistant bacteria. Human blood monocytes were isolated from CF (F508del/F508del) and non-CF persons and derived into macrophages (MDMs). MDMs were infected with CF clinical isolates of B. cenocepacia and P. aeruginosa. MDMs were treated with (R)-roscovitine or its main hepatic metabolite (M3). Macrophage responses to infection and subsequent treatment were determined. (R)-roscovitine and M3 significantly increased killing of B. cenocepacia and P. aeruginosa in CF MDMs in a dose-dependent manner. (R)-roscovitine-mediated effects were partially dependent on CFTR and the TRPC6 channel. (R)-roscovitine-mediated killing of B. cenocepacia was enhanced by combination with the CFTR modulator tezacaftor/ivacaftor and/or the alternative CFTR modulator cysteamine. (R)-roscovitine also increased MDM CFTR function compared to tezacaftor/ivacaftor treatment alone. (R)-roscovitine increases CF macrophage-mediated killing of antibiotic-resistant bacteria. (R)-roscovitine also enhances other macrophage functions including CFTR-mediated ion efflux. Effects of (R)-roscovitine are greatest when combined with CFTR modulators or cysteamine, justifying further clinical testing of (R)-roscovitine or optimized derivatives.


Assuntos
Burkholderia cenocepacia/imunologia , Burkholderia cenocepacia/patogenicidade , Regulador de Condutância Transmembrana em Fibrose Cística/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Macrófagos/imunologia , Fagocitose/efeitos dos fármacos , Roscovitina/farmacologia , Roscovitina/uso terapêutico , Adolescente , Adulto , Cisteamina/farmacologia , Cisteamina/uso terapêutico , Fibrose Cística/imunologia , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade , Adulto Jovem
15.
Cell Death Dis ; 11(9): 754, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934219

RESUMO

The identification of the essential role of cyclin-dependent kinases (CDKs) in the control of cell division has prompted the development of small-molecule CDK inhibitors as anticancer drugs. For many of these compounds, the precise mechanism of action in individual tumor types remains unclear as they simultaneously target different classes of CDKs - enzymes controlling the cell cycle progression as well as CDKs involved in the regulation of transcription. CDK inhibitors are also capable of activating p53 tumor suppressor in tumor cells retaining wild-type p53 gene by modulating MDM2 levels and activity. In the current study, we link, for the first time, CDK activity to the overexpression of the MDM4 (MDMX) oncogene in cancer cells. Small-molecule drugs targeting the CDK9 kinase, dinaciclib, flavopiridol, roscovitine, AT-7519, SNS-032, and DRB, diminished MDM4 levels and activated p53 in A375 melanoma and MCF7 breast carcinoma cells with only a limited effect on MDM2. These results suggest that MDM4, rather than MDM2, could be the primary transcriptional target of pharmacological CDK inhibitors in the p53 pathway. CDK9 inhibitor atuveciclib downregulated MDM4 and enhanced p53 activity induced by nutlin-3a, an inhibitor of p53-MDM2 interaction, and synergized with nutlin-3a in killing A375 melanoma cells. Furthermore, we found that human pluripotent stem cell lines express significant levels of MDM4, which are also maintained by CDK9 activity. In summary, we show that CDK9 activity is essential for the maintenance of high levels of MDM4 in human cells, and drugs targeting CDK9 might restore p53 tumor suppressor function in malignancies overexpressing MDM4.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Melanoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Sinergismo Farmacológico , Humanos , Imidazóis/farmacologia , Células MCF-7 , Melanoma/genética , Melanoma/patologia , Camundongos , Piperazinas/farmacologia , Células-Tronco Pluripotentes/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Roscovitina/farmacologia , Sulfonamidas/farmacologia , Transcrição Gênica , Transfecção , Triazinas/farmacologia
16.
Cell Death Dis ; 11(9): 720, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883957

RESUMO

Radiation-induced optic neuropathy (RION) is a devastating complication following external beam radiation therapy (EBRT) that leads to acute vision loss. To date, no efficient, available treatment for this complication, due partly to the lack of understanding regarding the developmental processes behind RION. Here, we report radiation caused changes in mitochondrial dynamics by regulating the mitochondrial fission proteins dynamin-related protein 1 (Drp1) and fission-1 (Fis1). Concurrent with an excessive production of reactive oxygen species (ROS), both neuronal injury and visual dysfunction resulted. Further, our findings delineate an important mechanism by which cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of Drp1 (Ser616) regulates defects in mitochondrial dynamics associated with neuronal injury in the development of RION. Both the pharmacological inhibition of Cdk5 by roscovitine and the inhibition of Drp1 by mdivi-1 inhibited mitochondrial fission and the production of ROS associated with radiation-induced neuronal loss. Taken together, these findings may have clinical significance in preventing the development of RION.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Dinaminas/metabolismo , Mitocôndrias/efeitos da radiação , Doenças do Nervo Óptico/etiologia , Animais , Apoptose/efeitos da radiação , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Dinaminas/antagonistas & inibidores , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos da radiação , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos da radiação , Doenças do Nervo Óptico/sangue , Doenças do Nervo Óptico/metabolismo , Doenças do Nervo Óptico/patologia , Fosforilação , Quinazolinonas/farmacologia , Lesões Experimentais por Radiação/metabolismo , Radioterapia/efeitos adversos , Ratos , Roscovitina/farmacologia
17.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 8): 350-356, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32744246

RESUMO

CVT-313 is a potent CDK2 inhibitor that was identified by screening a purine-analogue library and is currently in preclinical studies. Since this molecule has the potential to be developed as a CDK2 inhibitor for cancer therapy, the potency of CVT-313 to bind and stabilize CDK2 was evaluated, together with its ability to inhibit aberrant cell proliferation. CVT-313 increased the melting temperature of CDK2 by 7°C in thermal stabilization studies, thus indicating its protein-stabilizing effect. CVT-313 inhibited the growth of human lung carcinoma cell line A549 in a dose-dependent manner, with an IC50 of 1.2 µM, which is in line with the reported biochemical potency of 0.5 µM. To support the further chemical modification of CVT-313 and to improve its biochemical and cellular potency, a crystal structure was elucidated in order to understand the molecular interaction of CVT-313 and CDK2. The crystal structure of CDK2 bound to CVT-313 was determined to a resolution of 1.74 Šand clearly demonstrated that CVT-313 binds in the ATP-binding pocket, interacting with Leu83, Asp86 and Asp145 directly, and the binding was further stabilized by a water-mediated interaction with Asn132. Based on the crystal structure, further modifications of CVT-313 are proposed to provide additional interactions with CDK2 in the active site, which may significantly increase the biochemical and cellular potency of CVT-313.


Assuntos
Trifosfato de Adenosina/química , Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/química , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Células A549 , Trifosfato de Adenosina/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Cristalografia por Raios X , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/metabolismo , Óxidos N-Cíclicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Indolizinas/química , Indolizinas/metabolismo , Indolizinas/farmacologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Purinas/química , Purinas/metabolismo , Compostos de Piridínio/química , Compostos de Piridínio/metabolismo , Compostos de Piridínio/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Roscovitina/química , Roscovitina/metabolismo , Roscovitina/farmacologia
18.
Mol Neurobiol ; 57(10): 4090-4105, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32666227

RESUMO

Mild hypothermia has promising effects in the treatment of acute brain insults and also affects cell cycle progression. Mitochondrial dynamics, fusion and fission, are changed along with the cell cycle and disrupted in neurodegenerative diseases, including Parkinson's disease (PD). However, the effects of hypothermia on aberrant mitochondrial dynamics in PD remain unknown. We hypothesized that mild hypothermia protects neurons by regulating cell cycle-dependent protein expression and mitochondrial dynamics in a 1-methyl-4-phenylpyridinium (MPP+)-induced cell model of PD. We found that the hypothermia treatment at 32 °C prevented MPP+-induced neuron death; however, 32 °C treatment itself also reduced cell viability. This reduction was associated with cell cycle arrest and downregulation of cyclin-dependent kinase 4 (CDK4) in proliferating human SK-N-SH neuroblastoma cells but upregulation in well-differentiated primary rat cortical neurons. In both types of neurons, hypothermia upregulated p27 (an endogenous inhibitor of CDKs) and p35 (CDK5 activator) protein expression. Treatment with hypothermia, or a selective CDK4 inhibitor, or roscovitine (CDK5 inhibitor) prevented MPP+-induced mitochondrial fission, upregulation of mitochondrial fission protein dynamin-related protein 1 (Drp1), and neuron death. In addition, overexpression of dominant negative mutant Drp1K38A improved MPP+-induced mitochondrial fission while overexpression of wild-type Drp1 blunted the prevention of mitochondrial fission by hypothermia as well as CDK4 inhibitor and roscovitine. These results elucidate that hypothermia may inhibit CDK4 and CDK5 activation by upregulating p27 and p35 expression to prevent Drp1-dependent mitochondrial fission and neuron loss after MPP+ treatment. CDK4 and CDK5 inhibition imitates the neuroprotective functions of hypothermia as a potential therapy for PD.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Dinaminas/metabolismo , Hipotermia Induzida , Dinâmica Mitocondrial , Neurônios/patologia , 1-Metil-4-fenilpiridínio , Animais , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Córtex Cerebral/patologia , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Roscovitina/farmacologia , Regulação para Cima/efeitos dos fármacos
19.
Cell Signal ; 71: 109555, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32032659

RESUMO

All-trans retinoic acid (ATRA)-based differentiation therapy has been unsuccessful in treating t(15;17) negative acute myeloid leukemia (AML) patients, motivating interest in combination therapies using ATRA plus other agents. Using the t (15, 17) negative HL-60 human myeloblastic leukemia model, we find that the cyclin-dependent kinase (CDK) inhibitor, roscovitine, augments signaling by an ATRA-induced macromolecular signalsome that propels differentiation and enhances ATRA-induced differentiation. Roscovitine co-treatment enhanced ATRA-induced expression of pS259- pS289/296/301- pS621-c-Raf, pS217/221-Mek, Src Family Kinases (SFKs) Lyn and Fgr and SFK Y416 phosphorylation, adaptor proteins c-Cbl and SLP-76, Vav, and acetylated 14-3-3 in the signalsome. Roscovitine enhanced ATRA-induced c-Raf interaction with Lyn, Vav, and c-Cbl. Consistent with signalsome hyper-activation, roscovitine co-treatment enhanced ATRA-induced G1/0 arrest and expression of differentiation markers, CD11b, ROS and p47 Phox. Because roscovitine regulated Lyn expression, activation and partnering, a stably transfected Lyn knockdown was generated from wt-parental cells to investigate its function in ATRA-induced differentiation. Lyn-knockdown enhanced ATRA-induced up-regulation of key signalsome molecules, c-Raf, pS259-c-Raf, pS289/296/301-c-Raf, Vav1, SLP-76, and Fgr, but with essentially total loss of pY416-SFK. Compared to ATRA-treated wt-parental cells, differentiation markers p47 phox, CD11b, G1/G0 arrest and ROS production were enhanced in ATRA-treated Lyn-knockdown stable transfectants, and addition of roscovitine further enhanced these ATRA-inducible markers. The Lyn-knockdown cells expressed slightly higher c-Raf, pS259-c-Raf, pS289/296/301-c-Raf, and SLP-76 than wt-parental cells, and this was associated with enhanced ATRA-induced upregulation of Fgr and cell differentiation, consistent with heightened signaling, suggesting that enhanced Fgr may have compensated for loss of Lyn to enhance differentiation in the Lyn-knockdown cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Leucemia Mieloide Aguda/patologia , Inibidores de Proteínas Quinases/farmacologia , Roscovitina/farmacologia , Transdução de Sinais , Tretinoína/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células HL-60 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/patologia , NADPH Oxidases/metabolismo , Fosforilação/efeitos dos fármacos , Análise de Componente Principal , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Explosão Respiratória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Quinases da Família src/metabolismo
20.
Neuroendocrinology ; 110(6): 535-551, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31509830

RESUMO

BACKGROUND: Synaptic plasticity is the neuronal capacity to modify the function and structure of dendritic spines (DS) in response to neuromodulators. Sex steroids, particularly 17ß-estradiol (E2) and progesterone (P4), are key regulators in the control of DS formation through multiprotein complexes including WAVE1 protein, and are thus fundamental for the development of learning and memory. OBJECTIVES: The aim of this work was to evaluate the molecular switch Cdk5 kinase/protein phosphatase 2A (PP2A) in the control of WAVE1 protein (phosphorylation/dephosphorylation) and the regulation of WAVE1 and cortactin to the Arp2/3 complex, in response to rapid treatments with E2 and P4 in cortical neuronal cells. RESULTS: Rapid treatment with E2 and P4 modified neuronal morphology and significantly increased the number of DS. This effect was reduced by the use of a Cdk5 inhibitor (Roscovitine). In contrast, inhibition of PP2A with PP2A dominant negative construct significantly increased DS formation, evidencing the participation of kinase/phosphatase in the regulation of WAVE1 in DS formation induced by E2 and P4. Cortactin regulates DS formation via Src and PAK1 kinase induced by E2 and P4. Both cortactin and WAVE1 signal to Arp2/3 complex to synergistically promote actin nucleation. CONCLUSION: These results suggest that E2 and P4 dynamically regulate neuron morphology through nongenomic signaling via cortactin/WAVE1-Arp2/3 complex. The control of these proteins is tightly orchestrated by phosphorylation, where kinases and phosphatases are essential for actin nucleation and, finally, DS formation. This work provides a deeper understanding of the biological actions of sex steroids in the regulation of DS turnover and neuronal plasticity processes.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Córtex Cerebral/fisiologia , Espinhas Dendríticas/fisiologia , Estradiol/fisiologia , Progesterona/fisiologia , Proteína Fosfatase 2/metabolismo , Transdução de Sinais/fisiologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/efeitos dos fármacos , Animais , Córtex Cerebral/efeitos dos fármacos , Cortactina , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Espinhas Dendríticas/efeitos dos fármacos , Embrião de Mamíferos , Estradiol/farmacologia , Progesterona/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína Fosfatase 2/efeitos dos fármacos , Ratos , Roscovitina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Família de Proteínas da Síndrome de Wiskott-Aldrich/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA