RESUMO
BACKGROUND: Oral health is closely linked to systemic conditions, particularly non-communicable diseases (NCDs), which can exacerbate oral issues. Essential oils (EOs) have emerged as potential alternatives for oral health due to their antibacterial, anti-inflammatory, and antioxidant properties. Among these, rosemary essential oil (REO) shows promise due to its various biological activities. This study investigates the potential of REO in dental applications using microfluidic devices and electrochemical impedance spectroscopy (EIS) to analyze the electrical properties of REO in artificial saliva (AS) mixtures. RESULTS: The study demonstrated significant variations in impedance across different REO concentrations and their mixtures with AS. Higher impedance was observed in REO mixtures, particularly at lower frequencies, indicating distinct electrical properties compared to pure AS. The impedance of REO was influenced by its concentration, with a 1% REO solution showing higher impedance than a 4% solution, possibly due to micelle formation and changes in dielectric properties. Additionally, microfluidic devices enabled precise control over fluid interactions and real-time monitoring, offering valuable insights into REO's behavior in a simulated oral environment. The impedance data demonstrated significant differences in REO-AS mixtures, highlighting potential interactions critical for oral care applications. CONCLUSIONS: Rosemary essential oil exhibits unique electrical properties, making it a promising candidate for dental applications, particularly in preventing and treating oral diseases. Microfluidic devices enhance the accuracy and reliability of studying REO's interactions with AS, providing a robust platform for future dental research. The findings suggest that REO could be effectively incorporated into oral care products, offering a natural alternative for combating oral pathogens, reducing inflammation, and protecting against oxidative stress. Future research should focus on clinical trials to validate these findings and explore the synergistic effects of REO with other essential oils.
Assuntos
Impedância Elétrica , Óleos Voláteis , Saúde Bucal , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Humanos , Espectroscopia Dielétrica , Dispositivos Lab-On-A-Chip , Microfluídica , Rosmarinus/químicaRESUMO
Recognizing the challenges in using botanicals as sustainable pest control agents due to compositional variation, this study addresses the limitations of traditional component-based approaches such as Hewlett and Plackett or Wadley's models. Based on the assumption of noninteractivity among constituents, these models often fail to predict outcomes accurately due to dynamic intermolecular interactions. We introduce a whole mixture-based approach, employing a combination of experimental design and polynomial modeling. This technique accurately predicts miticidal activity on Tetranychus urticae, ecotoxicity on Daphnia magna, and phytotoxic activities on Phaseolus vulgaris of Rosemarinus officinalis essential oils with varying composition. The RMSE values from the polynomial model are 66.9 and 5.0 for miticidal activity and ecotoxicity, respectively, while they are much higher in component-based models, up to 1097.7 and 41.3, respectively. Additionally, we utilize multiobjective optimization algorithms to identify the optimal supplementary blending of oils and compounds. This strategy aims to maximize miticidal effectiveness while minimizing ecotoxicity and phytotoxicity. Our approach for predicting multicomponent mixture effects is likely to bridge the knowledge gap between research and commercialization.
Assuntos
Óleos Voláteis , Rosmarinus , Tetranychidae , Animais , Óleos Voláteis/química , Óleos Voláteis/toxicidade , Óleos Voláteis/farmacologia , Rosmarinus/química , Tetranychidae/efeitos dos fármacos , Tetranychidae/crescimento & desenvolvimento , Daphnia/efeitos dos fármacos , Phaseolus/química , Phaseolus/efeitos dos fármacos , Phaseolus/crescimento & desenvolvimento , Praguicidas/toxicidade , Praguicidas/química , Praguicidas/farmacologia , Inseticidas/toxicidade , Inseticidas/químicaRESUMO
Rosemary is one of the most important medicinal plants for natural therapy due to its multiple pharmacological properties, such as antioxidant, anti-inflammatory, neuroprotective, antiproliferative, antitumor, hepato- and nephroprotective, hypolipidemic, hypocholesterolemic, antihypertensive, anti-ischemic, hypoglycemic, radioprotective, antimicrobial, antiviral, antiallergic, and wound healing properties. Our study reports for the first time, over a 12-month period, the identification and quantification of polyphenols and the investigation of the antioxidant and acetylcholinesterase (AChE) inhibitory activities of the Rosmarinus officinalis L. species harvested at flowering from the flora of southwestern Romania (Oltenia Region). Identification and quantification of polyphenolic acids was made by ultra-high-performance liquid chromatography/mass spectrometry (UHPLC/MS). Total phenolic content was determined using the spectrophotometric method. In situ antioxidant and anticholinesterase activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and AChE inhibitory assay, respectively, on high-performance thin-layer chromatography (HPTLC) plates. DPPH radical scavenging activity was also assessed spectrophotometrically. The results revealed significant correlations between specific polyphenolic compounds and the measured biological activities, understanding the role of seasonal variations and providing insights into the optimal harvesting times and medicinal benefits of rosemary. Our research brings new information on the phytochemical profile of R. officinalis as a natural source of polyphenols with antioxidant and AChE inhibitory properties.
Assuntos
Antioxidantes , Inibidores da Colinesterase , Extratos Vegetais , Polifenóis , Rosmarinus , Polifenóis/farmacologia , Polifenóis/química , Polifenóis/análise , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Antioxidantes/química , Romênia , Rosmarinus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Cromatografia Líquida de Alta Pressão , Acetilcolinesterase/metabolismo , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/químicaRESUMO
Polyphenolic compounds are common constituents of human and animal diets and undergo extensive metabolism by the gut microbiota before entering circulation. In order to compare the transformations of polyphenols from yerba mate, rosemary, and green tea extracts in the gastrointestinal tract, simulated gastrointestinal digestion coupled with colonic fermentation were used. For enhancing the comparative character of the investigation, colonic fermentation was performed with human, pig and rat intestinal microbiota. Chemical analysis was performed using a HPLC system coupled to a diode-array detector and mass spectrometer. Gastrointestinal digestion diminished the total amount of phenolics in the rosemary and green tea extracts by 27.5 and 59.2 %, respectively. These reductions occurred mainly at the expense of the major constituents of these extracts, namely rosmarinic acid (-45.7 %) and epigalocatechin gallate (-60.6 %). The yerba mate extract was practically not affected in terms of total phenolics, but several conversions and isomerizations occurred (e.g., 30 % of trans-3-O-caffeoylquinic acid was converted into the cis form). The polyphenolics of the yerba mate extract were also the least decomposed by the microbiota of all three species, especially in the case of the human one (-10.8 %). In contrast, the human microbiota transformed the polyphenolics of the rosemary and green extracts by 95.9 and 88.2 %, respectively. The yerba mate-extract had its contents in cis 3-O-caffeoylquinic acid diminished by 78 % by the human microbiota relative to the gastrointestinal digestion, but the content of 5-O-caffeoylquinic acid (also a chlorogenic acid), was increased by 22.2 %. The latter phenomenon did not occur with the rat and pig microbiota. The pronounced interspecies differences indicate the need for considerable caution when translating the results of experiments on the effects of polyphenolics performed in rats, or even pigs, to humans.
Assuntos
Colo , Depsídeos , Digestão , Fermentação , Ilex paraguariensis , Extratos Vegetais , Polifenóis , Ácido Rosmarínico , Rosmarinus , Animais , Humanos , Extratos Vegetais/metabolismo , Rosmarinus/química , Ratos , Ilex paraguariensis/química , Suínos , Depsídeos/metabolismo , Depsídeos/análise , Polifenóis/metabolismo , Polifenóis/análise , Colo/metabolismo , Colo/microbiologia , Masculino , Cinamatos/metabolismo , Cinamatos/análise , Microbioma Gastrointestinal , Chá/química , Ácido Quínico/análogos & derivados , Ácido Quínico/metabolismo , Ácido Quínico/análise , Catequina/análogos & derivados , Catequina/metabolismo , Catequina/análise , Cromatografia Líquida de Alta Pressão , Camellia sinensis/químicaRESUMO
Aging, a natural biological process, presents challenges in maintaining physiological well-being and is associated with increased vulnerability to diseases. Addressing aging mechanisms is crucial for developing effective preventive and therapeutic strategies against age-related ailments. Rosmarinus officinalis L. is a medicinal herb widely used in traditional medicine, containing diverse bioactive compounds that have been studied for their antioxidant and anti-inflammatory properties, which are associated with potential health benefits. Using network pharmacology, this study investigates the anti-aging function and underlying mechanisms of R. officinalis. Through network pharmacology analysis, the top 10 hub genes were identified, including TNF, CTNNB1, JUN, MTOR, SIRT1, and others associated with the anti-aging effects. This analysis revealed a comprehensive network of interactions, providing a holistic perspective on the multi-target mechanism underlying Rosemary's anti-aging properties. GO and KEGG pathway enrichment analysis revealed the relevant biological processes, molecular functions, and cellular components involved in treating aging-related conditions. KEGG pathway analysis shows that anti-aging targets of R. officinalis involved endocrine resistance, pathways in cancer, and relaxin signaling pathways, among others, indicating multifaceted mechanisms. Genes like MAPK1, MMP9, and JUN emerged as significant players. These findings enhance our understanding of R. officinalis's potential in mitigating aging-related disorders through multi-target effects on various biological processes and pathways. Such approaches may reduce the risk of failure in single-target and symptom-based drug discovery and therapy.
Assuntos
Envelhecimento , Farmacologia em Rede , Rosmarinus , Rosmarinus/química , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/genética , Humanos , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacosRESUMO
Chemical residues in food pose health risks such as cancer and liver issues. This has driven the search for safer natural alternatives to synthetic fungicides and preservatives. The aim of this study was to characterize the chemical composition of the essential oils (EO), determine the polyphenolic contents, and evaluate the in vitro antioxidant and antifungal activities of methanol extracts (ME), essential oils (EO), and powders from Rosmarinus officinalis L. (rosemary) and Thymus ciliatus (Desf) Benth. (thyme) from the M'sila region, Algeria. The chemical composition of the EOs was determined by GC-MS. R. officinalis EO was composed of 31 components, mainly camphor (41.22%), camphene (18.14%), and α-pinene (17.49%); T. ciliatus EO was composed of 58 components, mainly, in percentage, α-pinene (22.18), myrcene (13.13), ß-pinene (7.73), ß-caryophyllene (10.21), and germacrene D (9.90). The total phenols and flavonoids were determined spectrophotometrically, and the rosemary ME was found to possess the highest polyphenolic content (127.1 ± 2.40 µg GAE/mg), while the thyme ME had the highest flavonoid content (48.01 ± 0.99 µg QE/mg). The antioxidant activity was assessed using three methods: rosemary ME was the most potent, followed by DPPH (IC50 = 13.43 ± 0.14 µg/mL), ß-carotene/linoleic acid (IC50 = 39.01 ± 2.16 µg/mL), and reducing power (EC50 = 15.03 ± 1.43 µg/mL). Antifungal activity was assessed for 32 pathogenic and foodborne fungi. Four methods were applied to the solid medium. Incorporating the powdered plant into the culture medium (at 10%) reduced the fungal growth to greater than 50% in 21.88% and 6.25% of all fungal isolates, for R. officinalis and T. ciliatus, respectively. The ME, applied by the well diffusion method (0.1 g/mL), was less effective. Different concentrations of EO were tested. Incorporating the EO into the culture medium (1500 µL/L) inhibited 50% of the molds to levels of 50 and 75% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of four fungi. Fumigated EO (15 µL) inhibited 65% of the molds to levels of 65 and 81.25% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of five fungi. There was little to no sporulation in conjunction with the inhibition. Our results revealed some of the potential of the studied plants to fight foodborne molds and presented their promising characteristics as a source of alternatives to chemical pesticides and synthetic preservatives. Further studies are needed to find adequate application techniques in the food safety area.
Assuntos
Antifúngicos , Antioxidantes , Óleos Voláteis , Extratos Vegetais , Rosmarinus , Thymus (Planta) , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Thymus (Planta)/química , Rosmarinus/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antifúngicos/farmacologia , Antifúngicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Monoterpenos Bicíclicos/farmacologia , Monoterpenos Bicíclicos/química , Metanol/química , Pós , Monoterpenos Acíclicos/farmacologia , Monoterpenos/farmacologia , Monoterpenos/análise , Monoterpenos/química , Cânfora/farmacologia , Cânfora/análise , Cânfora/química , AlcenosRESUMO
The present study aimed to evaluate the single and combined effects of Si exogenous treatment and Bacillus subtilis subsp. subtilis M1 strain inoculation on rosemary tolerance to low phosphorus (P) availability. Hence, rosemary plants were fertilized with 250 µmol Ca3HPO4 (stressed plants) or 250 µmol KH2PO4 (control plants) under Si treatment and B. subtilis M1 strain inoculation. P starvation negatively affected rosemary growth and its P nutrition. However, exogenous Si supply or B. subtilis M1 strain inoculation significantly (P < 0.001) alleviated the deficiency-induced effects and significantly improved rhizogenesis, acid phosphatase activity, P uptake, and eventually dry weight of shoot and root. Moreover, Si-treatment and/or B. subtilis M1 strain inoculation significantly (P < 0.001) reduced the oxidative damage, in terms of malondialdehyde and hydrogen peroxide accumulation. This was found positively correlated with the higher superoxide dismutase activity, and the elevated non-enzymatic antioxidant molecules accumulation, including total polyphenols in Si-treated and inoculated P-deficient plants. Taken together, Si supplementation and/or B. subtilis M1 strain inoculation could be a good strategy to sustain rosemary plant growth under P starvation conditions.
Assuntos
Bacillus subtilis , Fertilizantes , Fosfatos , Fósforo , Rosmarinus , Silício , Rosmarinus/química , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Fósforo/metabolismo , Fosfatos/metabolismo , Fertilizantes/análise , Silício/farmacologia , Silício/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Antioxidantes/metabolismoRESUMO
Rosemary has many medicinal and therapeutic properties and therefore it is important to study how to maximize the recovery of its bioactive compounds. In the present study, four different extraction techniques were used, namely stirring extraction (STE), pulsed electric field-assisted extraction (PEF), ultrasound probe-assisted extraction (UPAE), and ultrasound bath-assisted extraction (UBAE). First, some primary experiments were carried out in order to optimize each technique individually through the Plackett-Burman design. Then, each technique was applied under optimal conditions and the results were compared with each other. The optimal total polyphenol content (TPC) of STE is ~19 mg gallic acid equivalents per gram of dry weight (dw), while the antioxidant activity of the extract is 162 µmol ascorbic acid equivalents (AAEs) per gram of dw via FRAP and ~110 µmol AAE per gram of dw via DPPH. As for PEF, the optimal TPC is ~12 mg GAE/g dw, and the FRAP and DPPH values are ~102 and ~70 µmol AAE per gram of dw, respectively. When it comes to UPAE, the optimal TPC is ~16 mg GAE/g dw and the antioxidant capacity of the extract is ~128 µmol AAE/g dw through FRAP and ~98 µmol AAE/g dw through DPPH. UBAE optimal extract yielded ~17 mg GAE/g dw TPC, ~146 µmol AAE/g dw for FRAP, and ~143 µmol AAE/g dw for DPPH. The highest flavonoid content (~6.5 mg rutin equivalent/g dw) and DPPH (~143 µmol ascorbic acid equivalent/g dw) is obtained through UBAE. UPAE has been shown to be more efficient in recovering ascorbic acid (~20 mg/g dw). Additionally, the chlorophyll-to-carotenoid ratios of UPAE and UBAE were 2.98 and 2.96, respectively, indicating that the extracts had a generally positive impact on health. Considering the environmental impact of each extraction technique but also which antioxidant factor needs to be maximized, the most suitable extraction technique will be chosen.
Assuntos
Antioxidantes , Extratos Vegetais , Rosmarinus , Antioxidantes/química , Antioxidantes/isolamento & purificação , Rosmarinus/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Polifenóis/química , Polifenóis/análise , Fracionamento Químico/métodos , Ácido Ascórbico/química , Ácido Ascórbico/análiseRESUMO
Rosemary essential oil (REO) is widely recognized as a food flavoring and traditional herb and possesses potential antioxidant activity. However, its low yield rate and unclarified antioxidant mechanism warrant further investigation. In this study, an enzyme pretreatment-assisted extraction method with Box-Behnken design (BBD) and response surface methodology (RSM) models was employed to optimize the main factors of REO, and its antioxidant molecular mechanism under oxidative stress was elucidated in hydrogen peroxide-induced human lung carcinoma (A549) cells. The optimized yield (4.10%) of REO was recorded with the following optimum conditions: enzyme amount 1.60%, enzyme digestion pH 5.0, enzyme digestion temperature 46.50 °C, and enzyme digestion time 1.7 h. Meanwhile, 1.8-cineole (53.48%) and ß-pinene (20.23%) exhibited radical scavenging activity higher than that of BHA and BHT. At the cellular level, REO (12.5-50 µg/mL) increased the levels of cell viability, CAT, SOD, and GSH significantly while reducing the contents of ROS, MDA, and GSSG, when compared to H2O2 exposure. Mechanically, REO relieved oxidative stress via activating the Nrf2 signaling pathway and enhancing the protein expression of Nrf2, NQO-1, and HO-1, which was further verified by molecular docking between the main component 1.8-cineole and the Kelch domain of KEAP1. Therefore, REO could be considered as a potent natural antioxidant with a potential strategy in the food and pharmaceutical industries.
Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Óleos Voláteis , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Peróxido de Hidrogênio , Rosmarinus/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Simulação de Acoplamento MolecularRESUMO
The study examined the impact of adding oregano extract and/or rosemary to broiler diets to counteract the growth inhibition caused by heat stress (HS). It also investigated the effects on the activity of digestive enzymes, microbiological composition, and the expression of antioxidant and tight junction-related proteins. Three hundred- and fifty-day-old male broilers, were randomly assigned to 7 treatment groups, with each group comprising 5 replicates, and each replicate containing 10 chicks in a cage. The diets were: 1) a basal diet, 2) a diet supplemented with 50 mg/kg of rosemary, 3) a diet supplemented with 100 mg/kg of rosemary, 4) a diet supplemented with 50 mg/kg of oregano, 5) a diet supplemented with 100 mg/kg of oregano, 6) a combination diet containing 50 mg/kg each of rosemary and oregano, and 7) a combination diet containing 100 mg/kg each of rosemary and oregano. Dietary oregano extract enhanced the growth and feed utilization of heat-stressed birds, especially at a concentration of 50 mg/kg. Moreover, oregano extract improved jejunal protease and amylase activities. The extracts of rosemary and oregano significantly reduced IgG and IgM levels. Dietary 50 mg oregano extract significantly upregulated intestinal integrity-related genes including jejunal CLDNI, ZO-1, ZO-2, and MUC2. Dietary 50 mg oregano extract significantly downregulated hepatic NADPH oxidase 4 (NOX4) and nitric oxide synthase 2 (NOS2) expressions. Our results suggest that incorporating oregano leaf extract into the diet at a concentration of 50 mg/kg improves the growth performance of broilers exposed to heat stress. This improvement could be attributed to enhanced gut health and the modulation of genes associated with oxidative stress and tight junction proteins.
Assuntos
Ração Animal , Antioxidantes , Ceco , Galinhas , Dieta , Suplementos Nutricionais , Origanum , Extratos Vegetais , Rosmarinus , Proteínas de Junções Íntimas , Animais , Galinhas/crescimento & desenvolvimento , Rosmarinus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Masculino , Ração Animal/análise , Dieta/veterinária , Origanum/química , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Ceco/microbiologia , Ceco/efeitos dos fármacos , Distribuição Aleatória , Microbioma Gastrointestinal/efeitos dos fármacos , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genéticaRESUMO
Rhinoviruses (RVs) cause upper respiratory tract infections and pneumonia in children and adults. These non-enveloped viruses contain viral coats of four capsid proteins: VP1, VP2, VP3, and VP4. The canyon on VP1 used cell surface receptor ICAM-1 as the site of attachment and for the internalization of viruses. To date, there has been no drug or vaccine available against RVs. In this study, bioactive natural compounds of rosemary (Salvia rosmarinus L.), which are known for their pharmacological potential, were considered to target the VP1 protein. A total of 30 bioactive natural compounds of rosemary were taken as ligands to target viral proteins. The PkCSM tool was used to detect their adherence to Lipinski's rule of five and the ADMET properties of the selected ligands. Further, the CB-Dock tool was used for molecular docking studies between the VP1 protein and ligands. Based on the molecular docking and ADMET profiling results, phenethyl amine (4 methoxy benzyl) was selected as the lead compound. A comparative study was performed between the lead compound and two antiviral drugs, Placonaril and Nitazoxanide, to investigate the higher potential of natural compounds over synthetic drugs. Placonaril also targets VP1 but failed in clinical trials while Nitazoxanide was examined in clinical trials against rhinoviruses. It was discovered from this study that the (4 methoxy benzyl) phenethyl amine exhibited less toxicity in comparison to other tested drugs against RVs. More research is needed to determine its potential and make it a good medication against RVs.
Assuntos
Antivirais , Simulação de Acoplamento Molecular , Óleos Voláteis , Extratos Vegetais , Rhinovirus , Antivirais/farmacologia , Antivirais/química , Rhinovirus/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Rosmarinus/química , Simulação por Computador , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , LigantesRESUMO
Salt-induced stress poses a significant barrier to agricultural productivity by impeding crop growth. Presently, environmentalists are dedicated to safeguarding food security by enhancing agricultural yields in challenging environments. Biostimulants play a crucial role in mitigating abiotic stresses in crop production, and among these, plant essential oils (EOs) stand out as organic substances with diverse biological effects on living organisms. Among the natural promoters of plant growth, Rosmarinus officinalis L. essential oil (RoEO) has gained considerable attention. Although the manifold effects of essential oils (EOs) on plant growth have been extensively demonstrated, their impact on salt stress tolerance in durum wheat seedlings remains unexplored. This investigation was undertaken to evaluate the biostimulatory capabilities of RoEO on the durum wheat cultivar "Mahmoudi." The effects of three RoEO concentrations (1, 2.5, and 5 ppm) on seed germination, growth establishment, and the induction of salt resistance under salinity conditions (150 mM NaCl) were tested. At 5 ppm, RoEO enhanced seedlings' tolerance to salinity by improving growth and reducing membrane deterioration and oxidative stress-induced damage. The expression profile analyses of seven stress-related genes (TdNHX1, TdSOS1, TdSOD, TdCAT, TdGA20-ox1, TdNRT2.1, and TdGS) using RT-qPCR showed enhancement of several important genes in durum wheat seedlings treated with 5 ppm RoEO, even under control conditions, which may be related to salt stress tolerance. The results indicate that the application of RoEO suggests a possible alternative strategy to increase salt tolerance in durum wheat seedlings towards better growth quality, thus increasing ROS scavenging and activation of antioxidant defense.
Assuntos
Antioxidantes , Óleos Voláteis , Espécies Reativas de Oxigênio , Rosmarinus , Plântula , Triticum , Triticum/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Rosmarinus/química , Tolerância ao Sal/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacosRESUMO
Major polyphenols in Rosmarinus officinalis L. primarily consist of phenolic acids, phenolic diterpenes, and flavonoids, all of which have pharmacological properties including anti-inflammatory and antibacterial characteristics. Numerous in vitro and animal studies have found that rosemary polyphenols have the potential to decrease the severity of intestinal inflammation. The beneficial effects of rosemary polyphenols were associated with anti-inflammatory properties, including improved gut barrier (increased mucus secretion and tight junction), increased antioxidant enzymes, inhibiting inflammatory pathways and cytokines (downregulation of NF-κB, NLRP3 inflammasomes, STAT3 and activation of Nrf2), and modulating gut microbiota community (increased core probiotics and SCFA-producing bacteria, and decreased potential pathogens) and metabolism (changes in SCFA and bile acid metabolites). This paper provides a better understanding of the anti-inflammatory properties of rosemary polyphenols and suggests that rosemary polyphenols might be employed as strong anti-inflammatory agents to prevent intestinal inflammation and lower the risk of inflammatory bowel disease and related diseases.
Assuntos
Anti-Inflamatórios , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Compostos Fitoquímicos , Polifenóis , Rosmarinus , Rosmarinus/química , Polifenóis/farmacologia , Polifenóis/isolamento & purificação , Humanos , Anti-Inflamatórios/farmacologia , Animais , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Doenças Inflamatórias Intestinais/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacosRESUMO
Nutraceuticals have gained increasing interest, prompting the need to investigate plant extracts for their beneficial properties and potential side effects. This study aimed to assess the nutraceutical effects of environmentally clean extracts from Rosmarinus officinalis and Gongolaria abies-marina (formerly Cystoseira abies-marina (Phaeophyceae)) on the metabolic profile of streptozotocin-induced diabetic rats. We conducted untargeted LC-QTOF-MS metabolic profiling on six groups of rats: three diabetic groups receiving either a placebo, R. officinalis, or G. abies-marina extracts, and three corresponding control groups. The metabolic analysis revealed significant alterations in the levels of various glycerophospholipids, sterol lipids, and fatty acyls. Both extracts influenced the metabolic profile, partially mitigating diabetes-induced changes. Notably, G. abies-marina extract had a more pronounced impact on the animals' metabolic profiles compared to R. officinalis. In conclusion, our findings suggest that environmentally clean extracts from R. officinalis and G. abies-marina possess nutraceutical potential, as they were able to modulate the metabolic profile in streptozotocin-induced diabetic rats. G. abies-marina extract exhibited a more substantial effect on metabolic alterations induced by diabetes compared to R. officinalis. These results warrant further exploration of these plant extracts for their potential in managing diabetes-related metabolic disturbances.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Suplementos Nutricionais , Extratos Vegetais , Rosmarinus , Animais , Extratos Vegetais/farmacologia , Rosmarinus/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Ratos , Ratos Wistar , Metabolômica , Metaboloma/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Estreptozocina , Hipoglicemiantes/farmacologia , Hipoglicemiantes/isolamento & purificaçãoRESUMO
The perception of polyphenols as a safe, healthy, and sustainable solution for replacing synthetic antioxidants has been an important factor for their rapid growing in the global food market. Therefore, it is essential to use reliable methods for their quantification in commercial products intended for animal or human consumption. The purpose of this study is to evaluate the performance of some solvents used for the extraction of selected polyphenols, explore their stability under different experimental conditions, and validate a liquid chromatography tandem mass-spectrometry method for their quantification in commercial fish feed ingredients by using the standard addition method. The regression models for gallic acid, hydroxytyrosol, catechin, oleuropein, carnosol and carnosic acid were linear in the range 0-30 µg/mL, limit of detection and quantification around 0.03 and 0.1 µg/mL, respectively, and accuracy within ± 15 % of the nominal concentrations. The method was successfully applied to the determination of specific polyphenols in commercial fish feed ingredients supplemented with polyphenols from olive and rosemary extracts.
Assuntos
Ração Animal , Limite de Detecção , Polifenóis , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Polifenóis/análise , Ração Animal/análise , Reprodutibilidade dos Testes , Animais , Cromatografia Líquida/métodos , Modelos Lineares , Peixes , Olea/química , Rosmarinus/químicaRESUMO
This study was conducted to explore the effect of dietary supplementation of water-soluble extract of rosemary (WER) on growth performance and intestinal health of broilers infected with Eimeria tenella (E. tenella), and evaluate the anticoccidial activity of WER. 360 1-d-old Chinese indigenous male yellow-feathered broiler chickens were randomly allocated to six groups: blank control (BC) group and infected control (IC) group received a basal diet; positive control (PC) group, received a basal diet supplemented with 200 mg/kg diclazuril; WER100, WER200, and WER300 groups received a basal diet containing 100, 200, and 300 mg/kg WER, respectively. On day 21, all birds in the infected groups (IC, PC, WER100, WER200, and WER300) were orally gavaged with 1 mL phosphate-buffered saline (PBS) of 8â ×â 104 sporulated oocysts of E. tenella, and birds in the BC group were administrated an aliquot of PBS dilution. The results showed that dietary supplementation of 200 mg/kg WER increased the average daily gain of broilers compared to the IC group from days 22 to 29 (Pâ <â 0.001). The anticoccidial index values of 100, 200, and 300 mg/kg WER were 137.49, 157.41, and 144.22, respectively, which indicated that WER exhibited moderate anticoccidial activity. Compared to the IC group, the groups supplemented with WER (100, 200, and 300 mg/kg) significantly lowered fecal oocyst output (Pâ <â 0.001) and cecal coccidia oocysts, alleviated intestinal damage and maintained the integrity of intestinal epithelium. Dietary supplementation with WER significantly improved antioxidant capacity, elevated the levels of secretory immunoglobulin A, and diminished inflammation within the cecum, particularly at a dosage of 200 mg/kg. The results of this study indicated that dietary supplementation with 200 mg/kg WER could improve broiler growth performance and alleviate intestinal damage caused by coccidiosis.
Avian coccidiosis, a prevalent parasitic disease caused by Eimeria protozoa, leads to significant economic losses in the global poultry industry. Currently, the control of coccidiosis in chickens primarily relies on chemical and ionophore anticoccidials. However, the long-term use of these compounds has resulted in the development of drug-resistant strains, presenting a critical challenge. Additionally, the toxic and side effects of ionophore anticoccidials have become increasingly apparent. Thus, there is an urgent need to find economical and environmentally friendly measures to control coccidiosis in chickens. In this study, we established a model of Eimeria tenella infection in broilers to explore whether the water-soluble extract of rosemary (WER) could serve as an alternative method for controlling avian coccidiosis. Our results showed that dietary supplementation with WER (100, 200, and 300 mg/kg) had a beneficial anticoccidial effect, alleviating intestinal damage caused by coccidiosis by enhancing the intestinal antioxidant defense and activating the immune function of the infected broilers. Specifically, dietary supplementation with 200 mg/kg WER emerged as a promising strategy for controlling avian coccidiosis in the poultry industry.
Assuntos
Ração Animal , Galinhas , Coccidiose , Dieta , Suplementos Nutricionais , Eimeria tenella , Extratos Vegetais , Doenças das Aves Domésticas , Rosmarinus , Animais , Coccidiose/veterinária , Coccidiose/tratamento farmacológico , Coccidiose/parasitologia , Eimeria tenella/efeitos dos fármacos , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Suplementos Nutricionais/análise , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ração Animal/análise , Dieta/veterinária , Rosmarinus/química , Intestinos/efeitos dos fármacos , Intestinos/parasitologia , Coccidiostáticos/farmacologia , Coccidiostáticos/administração & dosagem , Distribuição AleatóriaRESUMO
OBJECTIVES: Improving response rates in colorectal cancer (CRC) is an urgent clinical need. This study aimed to explore the synergistic action of Lebanese rosemary essential oil (REO) and 5-fluorouracil (5-FU) in HCT116 CRC cells. METHODS: We tested the cell viability of monotherapy and combination therapy. The combination index was calculated using CompuSyn software to evaluate drug-drug interactions and the level of synergistic cytotoxicity. We also evaluated cell migration and cytopathology. Furthermore, cell apoptosis-related proteins (i.e. Bax and Bcl-2) were measured by Western blot analysis. KEY FINDINGS: The REO/5-FU combination synergistically reduced cell viability, effectively decreased cell migration, and increased the Bax/Bcl-2 ratio in HCT116 cells. This triggered a proapoptotic morphology and initiated an apoptotic cascade in HCT116 cells, as indicated by a higher Bax/Bcl-2 ratio. CONCLUSIONS: Our results provide evidence of the REO/5-FU combination as a better approach to improve 5-FU anticancer efficacy and allow the use of lower 5-FU doses due to the adjuvant effect of REO.
Assuntos
Apoptose , Sobrevivência Celular , Neoplasias Colorretais , Sinergismo Farmacológico , Fluoruracila , Óleos Voláteis , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína X Associada a bcl-2 , Humanos , Fluoruracila/farmacologia , Óleos Voláteis/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Células HCT116 , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Movimento Celular/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Rosmarinus/químicaRESUMO
BACKGROUND: Minimizing food oxidation remains a challenge in several environments. The addition of rosemary extract (150 mg kg-1) and lyophilized parsley (7.1 g kg-1) at equivalent antioxidant activity (5550 µg Trolox equivalents kg-1) to meat patties was assessed in terms of their effect during microwave cooking and after being subjected to an in vitro digestion process. RESULTS: Regardless of the use of antioxidants, cooking caused a decrease of the fat content as compared to raw samples, without noticing statistical differences in the fatty acid distribution between raw and cooked samples [44%, 47% and 6.8%, of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA), respectively]. However, the bioaccessible lipid fraction obtained after digestion was less saturated (around 34% SFA) and more unsaturated (35% MUFA +30% PUFA). Cooking caused, in all types of samples, an increased lipid [thiobarbituric acid reactive substances (TBARS)] and protein (carbonyls) oxidation values. The increase of TBARS during in vitro digestion was around 7 mg malondialdehyde (MDA) kg-1 for control and samples with parsley and 4.8 mg MDA kg-1 with rosemary. The addition of parsley, and particularly of rosemary, significantly increased the antioxidant activity (DPPH) of cooked and digested microwaved meat patties. CONCLUSION: Whereas rosemary was effective in minimizing protein oxidation during cooking and digestion as compared to control samples, parsley could only limit it during digestion. Lipid oxidation was only limited by rosemary during in vitro digestion. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Antioxidantes , Rosmarinus , Antioxidantes/química , Rosmarinus/química , Petroselinum/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Micro-Ondas , Extratos Vegetais/farmacologia , Carne/análise , Culinária , Ácidos Graxos , Ácidos Graxos Insaturados , DigestãoRESUMO
The chemical composition of 71 oil samples from the leaves of Rosmarinus officinalis L., harvested in three provinces: Naâma (Western Algeria), Béchar and Adrar (Algerian Sahara), was investigated by GC-FID, GC/MS and 13CNMR. In total, 52 compounds were identified accounting for 88.8 % to 99.9 % of the total composition. The chemical composition of the oils was largely dominated by monoterpenes, with 1,8-cineole (9.7-70.2 %), camphor (0.3-31.0 %) being the major compounds followed by borneol (0.3-21.0 %), α-pinene (4.5-14.5 %), ß-pinene (0.1-12.0 %), linalool (0.7-9.9 %) and verbenone (up to 11.1 %) which was present only in the samples harvested in Adrar. All compositions (71 samples) were submitted to statistical analysis. Combination of hierarchical clustering dendrogram and principal component analysis suggested the existence of three groups (one of these being subdivided into two sub-groups) which were distinguished on the basis of 1,8-cineole, camphor and verbenone contents. Four essential oil samples, containing 1,8-cineole and/or camphor as main components, exhibited anti-inflammatory activity against lipoxygenase, with IC50 values in the range 93 to 155â µg/mL.
Assuntos
Monoterpenos Bicíclicos , Óleos Voláteis , Rosmarinus , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Eucaliptol , Cânfora , Rosmarinus/química , África do Norte , Folhas de PlantaRESUMO
In dead biological tissues such as human hair, the ability of antioxidants to minimise autoxidation is determined by their chemical reactions with reactive oxygen species. In order to improve our understanding of factors determining such antioxidant properties, the mechanistic chemistry of four phenolic antioxidants found in tea and rosemary extracts (epicatechin, epigallocatechin gallate, rosmarinic and carnosic acids) has been investigated. The degradation of N-acetyl alanine by photochemically generated hydroxyl radicals was used as a model system. A relatively high concentration of the antioxidants (0.1 equivalent with respect to the substrate) tested the ability of the antioxidants to intercept both initiating hydroxyl radicals (preventive action) and propagating peroxyl radicals (chain-breaking action). LC-MS data showed the formation of hydroxylated derivatives, quinones and hydroperoxides of the antioxidants. The structure of the assignment was aided by deuterium exchange experiments. Tea polyphenolics (epicatechin and epigallocatechin gallate) outperformed the rosemary compounds in preventing substrate degradation and were particularly effective in capturing the initiating radicals. Carnosic acid was suggested to act mostly as a chain-breaking antioxidant. All of the antioxidants except for rosmarinic acid generated hydroperoxides which was tentatively ascribed to the insufficient lability of the benzylic C-H bond of rosmarinic acid.