Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Immunotoxicol ; 21(1): 2332177, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38578203

RESUMO

Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.


Assuntos
Rotas de Resultados Adversos , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hepatopatias , Humanos , Interleucina-2 , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Preparações Farmacêuticas
2.
Sci Total Environ ; 926: 172015, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547973

RESUMO

Parabens are esters of p-hydroxybenzoic acid, which have been used as preservatives and considered safe for nearly a century, until the last two decades when concerns began to be raised about their association with cancers. Knowledge of the mode of action of parabens on the metastatic properties of different cancer cells is still very limited. In the present study, we investigated the effects of methylparaben (MP) and propylparaben (PP) on cell invasion and/or migration in multiple human cancerous and noncancerous cells, including hepatocellular carcinoma cells (HepG2), cervical carcinoma cells (HeLa), breast carcinoma cells (MCF-7), and human placental trophoblasts (HTR-8/SVneo). MP and PP at concentrations in a range of 5-500 µg/L significantly promoted the invasion of four cell lines, with a minimum effective concentration of 5 µg/L. MP and PP up-regulated the expression levels and enzymatic activities of matrix metalloproteinase 2 and 9 (MMP2 and MMP9), as well as altered the expression of the tissue inhibitors of metalloproteinase 1 and 2 (TIMP1 and TIMP2) in four cell lines, suggesting MMPs/TIMPs as potential key events (KEs) for paraben-induced cell invasion. Activation of the p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal protein kinases 1/2 (JNK1/2) signaling pathways was required for MP- and PP-promoted invasion of four cell lines, suggesting MAPK signaling pathways as candidates for KEs in cancer or noncancerous cells response to paraben exposure. This study showed for the first time that the two widely used parabens, MP and PP, promoted invasive capacity of multiple human cells through a common mode of action. This study provides evidence for the establishment of a potential cancer-associated AOP for parabens based on pathway-specific mechanism(s), which contributes towards assessing the health risks of these environmental chemicals.


Assuntos
Rotas de Resultados Adversos , Neoplasias , Humanos , Feminino , Gravidez , Parabenos/toxicidade , Metaloproteinase 2 da Matriz , Placenta , Proteínas Quinases p38 Ativadas por Mitógeno
3.
Environ Pollut ; 347: 123716, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458526

RESUMO

Parabens are widely used as antibacterial preservatives in foods and personal care products. The knowledge about the modes of toxic action of parabens on development and reproduction remain very limited. The present study attempted to establish a development and reproduction-associated adverse outcome pathway (AOP) by evaluating the effects of methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) on the biosynthesis of gonadotropins, which are key hormones for development and reproduction. MP and BP significantly upregulated the mRNA and protein levels of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in pituitary gonadotropic cells in a concentration-dependent manner. Activation of gonadotropin-releasing hormone receptor (GnRHR) was required for gonadotropin biosynthesis induced by BP, but not MP. Molecular docking data further demonstrated the higher binding efficiency of BP to human GnRHR than that of MP, suggesting GnRHR as a potential molecular initiative event (MIE) for BP-induced gonadotropin production. L-type voltage-gated calcium channels (VGCCs) were found to be another candidate for MIE in gonadotropic cells response to both MP and BP exposure. The calcium-dependent activation of extracellular signal-regulated kinase 1 (ERK1) and ERK2 was subsequently required for MP- and BP-induced activation of GnRHR and L-type VGCCs pathways. In summary, MP and BP promoted gonadotropin biosynthesis through their interactions with cellular macromolecules GnRHR, L-type VGCCs, and subsequent key event ERK1/2. This is the first study to report the direct interference of parabens with gonadotropin biosynthesis and establish a potential AOP based on pathway-specific mechanism, which contributes to the effective screening of environmental chemicals with developmental and reproductive health risks.


Assuntos
Rotas de Resultados Adversos , Parabenos , Humanos , Parabenos/toxicidade , Parabenos/metabolismo , Simulação de Acoplamento Molecular , Gonadotropinas , Hormônio Foliculoestimulante , Reprodução , Hormônio Liberador de Gonadotropina
4.
Expert Opin Drug Saf ; 23(4): 425-438, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430529

RESUMO

INTRODUCTION: The evaluation of the potential carcinogenicity is a key consideration in the risk assessment of chemicals. Predictive toxicology is currently switching toward non-animal approaches that rely on the mechanistic understanding of toxicity. AREAS COVERED: Adverse outcome pathways (AOPs) present toxicological processes, including chemical-induced carcinogenicity, in a visual and comprehensive manner, which serve as the conceptual backbone for the development of non-animal approaches eligible for hazard identification. The current review provides an overview of the available AOPs leading to liver cancer and discusses their use in advanced testing of liver carcinogenic chemicals. Moreover, the challenges related to their use in risk assessment are outlined, including the exploitation of available data, the need for semantic ontologies, and the development of quantitative AOPs. EXPERT OPINION: To exploit the potential of liver cancer AOPs in the field of risk assessment, 3 immediate prerequisites need to be fulfilled. These include developing human relevant AOPs for chemical-induced liver cancer, increasing the number of AOPs integrating quantitative toxicodynamic and toxicokinetic data, and developing a liver cancer AOP network. As AOPs and other areas in the field continue to evolve, liver cancer AOPs will progress into a reliable and robust tool serving future risk assessment and management.


Assuntos
Rotas de Resultados Adversos , Neoplasias Hepáticas , Humanos , Medição de Risco , Neoplasias Hepáticas/induzido quimicamente
5.
Sci Total Environ ; 920: 170968, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367714

RESUMO

Cadmium is a prominent toxic heavy metal that contaminates both terrestrial and aquatic environments. Owing to its high biological half-life and low excretion rates, cadmium causes a variety of adverse biological outcomes. Adverse outcome pathway (AOP) networks were envisioned to systematically capture toxicological information to enable risk assessment and chemical regulation. Here, we leveraged AOP-Wiki and integrated heterogeneous data from four other exposome-relevant resources to build the first AOP network relevant for inorganic cadmium-induced toxicity. From AOP-Wiki, we filtered 309 high confidence AOPs, identified 312 key events (KEs) associated with inorganic cadmium from five exposome-relevant databases using a data-centric approach, and thereafter, curated 30 cadmium relevant AOPs (cadmium-AOPs). By constructing the undirected AOP network, we identified a large connected component of 18 cadmium-AOPs. Further, we analyzed the directed network of 59 KEs and 82 key event relationships (KERs) in the largest component using graph-theoretic approaches. Subsequently, we mined published literature using artificial intelligence-based tools to provide auxiliary evidence of cadmium association for all KEs in the largest component. Finally, we performed case studies to verify the rationality of cadmium-induced toxicity in humans and aquatic species. Overall, cadmium-AOP network constructed in this study will aid ongoing research in systems toxicology and chemical exposome.


Assuntos
Rotas de Resultados Adversos , Humanos , Cádmio/toxicidade , Inteligência Artificial , Medição de Risco , Bases de Dados Factuais
6.
Environ Sci Technol ; 58(9): 4083-4091, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373277

RESUMO

Emerging studies implicate fine particulate matter (PM2.5) and its organic components (OCs) as urgent hazard factors for lung cancer progression in nonsmokers. Establishing the adverse outcome pathway (AOP)-directed nontargeted identification method, this study aimed to explore whether PM2.5 exposure in coal-burning areas promoted lung tumor metastasis and how we identify its effective OCs to support traceability and control of regional PM2.5 pollution. First, we used a nude mouse model of lung cancer for PM2.5 exposure and found that the exposure significantly promoted the hematogenous metastases of A549-Luc cells in lung tissues and the adverse outcomes (AOs), with key events (KEs) including the changed expression of epithelial-mesenchymal transition (EMT) markers, such as suppression of E-cad and increased expression of Fib. Subsequently, using AOs and KEs as adverse outcome directors, we identified a total of 35 candidate chemicals based on the in vitro model and nontargeted analysis. Among them, tributyl phosphate (C12H27O4P), 2-bromotetradecane (C14H29Br), and methyl decanoate (C11H22O2) made greater contributions to the AOs. Finally, we clarified the interactions between these OCs and EMT-activating transcription factors (EMT-ATFs) as the molecular initiation event (MIE) to support the feasibility of the above identification strategy. The present study updates a new framework for identifying tumor metastasis-promoting OCs in PM2.5 and provides solid data for screening out chemicals that need priority control in polluted areas posing higher lung cancer risk.


Assuntos
Rotas de Resultados Adversos , Poluentes Atmosféricos , Neoplasias Pulmonares , Animais , Camundongos , Material Particulado , Neoplasias Pulmonares/patologia , Pulmão , Transição Epitelial-Mesenquimal
7.
Environ Sci Process Impacts ; 26(3): 611-621, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38329146

RESUMO

Pesticides due to their extensive use have entered the soil and water environment through various pathways, causing great harm to the environment. Herbicides and insecticides are common pesticides with long-term biological toxicity and bioaccumulation, which can harm the human body. The concept of the adverse outcome pathway (AOP) involves systematically analyzing the response levels of chemical mixtures to health-related indicators at the molecular and cellular levels. The AOP correlates the structures of chemical pollutants, toxic molecular initiation events and adverse outcomes of biological toxicity, providing a new model for toxicity testing, prediction, and evaluation of pollutants. Therefore, typical pesticides including diquat (DIQ), cyanazine (CYA), dipterex (DIP), propoxur (PRO), and oxamyl (OXA) were selected as research objects to explore the combined toxicity of typical pesticides on Chlorella pyrenoidosa (C. pyrenoidosa) and their adverse outcome pathways (AOPs). The mixture systems of pesticides were designed by the direct equipartition ray (EquRay) method and uniform design ray (UD-Ray) method. The toxic effects of single pesticides and their mixtures were systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. The interactions of their mixtures were analyzed by the concentration addition model (CA) and the deviation from the CA model (dCA). The toxicity data showed a good concentration-effect relationship; the toxicities of five pesticides were different and the order was CYA > DIQ > OXA > PRO > DIP. Binary, ternary and quaternary mixture systems exhibited antagonism, while quinary mixture systems exhibited an additive effect. The AOP of pesticides showed that an excessive accumulation of peroxide in green algae cells led to a decline in stress resistance, inhibition of the synthesis of chlorophyll and protein in algal cells, destruction of the cellular structure, and eventually led to algal cell death.


Assuntos
Rotas de Resultados Adversos , Chlorella , Poluentes Ambientais , Inseticidas , Praguicidas , Poluentes Químicos da Água , Humanos , Praguicidas/toxicidade , Propoxur/farmacologia , Poluentes Químicos da Água/farmacologia
8.
Toxicol Lett ; 393: 107-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350531

RESUMO

In the absence of epidemiological data, there is a need to develop computational models that convert in vitro findings to human disease risk predictions following toxicant exposure. In such efforts, in vitro data can be evaluated in the context of adverse outcome pathways (AOPs) that organize mechanistic knowledge based on empirical evidence into a sequence of molecular-, cellular-, tissue-, and organ-level key events that precede an adverse outcome (AO). Here we combined data from advanced in vitro organotypic airway models exposed to combustible cigarette (CC) smoke or Tobacco Heating System (THS) aerosol with an AOP for increased oxidative stress leads to decreased lung function. The mathematical modeling predicted reduced risk of decreased ciliary beating frequency (CBF) based on oxidative stress measurements and reduced risk of decreased mucociliary clearance (MCC) based on CBF measurements in THS aerosol- compared with CC smoke-exposed cultures. To extend the predictions to the AO of decreased lung function, we leveraged human MCC data from current smokers, nonsmokers, former smokers, and users of heated tobacco products. This approach provided a plausible prediction of diminished reduction in lung function in response to THS use compared with continued smoking. The current approach may also present a basis for an integrated approach to testing and assessment of tobacco products for future regulatory decision-making.


Assuntos
Rotas de Resultados Adversos , Produtos do Tabaco , Humanos , Produtos do Tabaco/toxicidade , Fumaça/efeitos adversos , Medição de Risco , Pulmão/metabolismo , Aerossóis
9.
Sci Total Environ ; 912: 168573, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981146

RESUMO

The ability to predict which chemicals are of concern for environmental safety is dependent, in part, on the ability to extrapolate chemical effects across many species. This work investigated the complementary use of two computational new approach methodologies to support cross-species predictions of chemical susceptibility: the US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool and Unilever's recently developed Genes to Pathways - Species Conservation Analysis (G2P-SCAN) tool. These stand-alone tools rely on existing biological knowledge to help understand chemical susceptibility and biological pathway conservation across species. The utility and challenges of these combined computational approaches were demonstrated using case examples focused on chemical interactions with peroxisome proliferator activated receptor alpha (PPARα), estrogen receptor 1 (ESR1), and gamma-aminobutyric acid type A receptor subunit alpha (GABRA1). Overall, the biological pathway information enhanced the weight of evidence to support cross-species susceptibility predictions. Through comparisons of relevant molecular and functional data gleaned from adverse outcome pathways (AOPs) to mapped biological pathways, it was possible to gain a toxicological context for various chemical-protein interactions. The information gained through this computational approach could ultimately inform chemical safety assessments by enhancing cross-species predictions of chemical susceptibility. It could also help fulfill a core objective of the AOP framework by potentially expanding the biologically plausible taxonomic domain of applicability of relevant AOPs.


Assuntos
Rotas de Resultados Adversos , Medição de Risco/métodos , Alinhamento de Sequência
10.
Toxicology ; 500: 153687, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38040083

RESUMO

Exposure to multiple pesticides in daily life has become an important public health concern. However, the combined effects of pesticide mixtures have not been fully elucidated by the conventional toxicological testing used for individual chemicals. Grouping of chemicals by mode of action using common key events (KEs) in the adverse outcome pathway (AOP) as endpoints could be applied for efficient risk assessment of combined exposure to multiple chemicals. The purpose of this study was to investigate whether exposure to multiple pesticides has synergistic neurotoxic effects on mammalian nervous systems. According to the AOP-based approach, we evaluated the effects of 10 current-use pesticides (4 neonicotinoids, 4 pyrethroids and 2 phenylpyrazoles) on the common KEs in AOPs for neurotoxicity, such as KEs involving mitochondrial and proteolytic functions, in a mammalian neuronal cell model. Our data showed that several pyrethroids and phenylpyrazoles partly shared the effects on several common KEs, including decreases in mitochondrial membrane potential and proteasome activity and increases in autophagy activity. Furthermore, we also found that combined exposure to a type-I pyrethroid permethrin or a type-II pyrethroid deltamethrin and the phenylpyrazole fipronil decreased the cell viability and the benchmark doses much more than either single exposure, indicating that the pair exhibited synergistic effects, since the combination indexes were less than 1. These findings revealed that novel pairs of different classes of pesticides with similar effects on common KEs exhibited synergistic neurotoxicity and provide new insights into the risk assessment of combined exposure to multiple chemicals.


Assuntos
Rotas de Resultados Adversos , Síndromes Neurotóxicas , Praguicidas , Piretrinas , Animais , Humanos , Praguicidas/toxicidade , Piretrinas/toxicidade , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Medição de Risco , Mamíferos
11.
Environ Toxicol Chem ; 42(12): 2519-2528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37849373

RESUMO

We propose an adverse outcome pathway (AOP) for reproductive dysfunction via oxidative stress (OS). The AOP was developed based on Organisation for Economic Co-operation and Development (OECD) Guidance Document 184 and on the specific considerations of the OECD users' handbook supplement to the guidance document for developing and assessing AOPs (no. 233). According to the qualitative and quantitative experimental data evaluation, glutathione (GSH) conjugation is the first upstream key event (KE) of this AOP to reproductive dysfunction triggering OS. This event causes depletion of GSH basal levels (KE2 ). Consequently, this drop of free GSH induces an increase of reactive oxygen species (KE3 ) generated by the natural cellular metabolic processes (cellular respiration) of the organism. Increased levels of these reactive species, in turn, induce an increase of lipid peroxidation (KE4 ). This KE consequently leads to a rise in the amount of toxic substances, such as malondialdehyde and hydroxynonenal, which are associated with decreased quality and competence of gamete cell division, consequently impairing fertility (KE5 and adverse outcome). The overall assessment of the general biological plausibility, the empirical support, and the essentiality of KE relationships was considered as high for this AOP. We conclude that GSH conjugation is able to lead to reproductive disorder in fishes and mammals, via OS, but that the amount of stressor needed to trigger the AOP differs between stressors. Environ Toxicol Chem 2023;42:2519-2528. © 2023 SETAC.


Assuntos
Rotas de Resultados Adversos , Animais , Estresse Oxidativo , Espécies Reativas de Oxigênio , Peixes , Glutationa , Medição de Risco , Mamíferos
12.
Environ Int ; 180: 108202, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37734146

RESUMO

BACKGROUND: Environmental pollutant measurement is essential for accurate health risk assessment. However, the detection of humans' internal exposure to pollutants is cost-intensive and consumes time and energy. Polygenic risk scores (PRSs) have been widely applied in genetic studies of complex trait diseases. It is important to construct a genetically relevant environmental surrogate for pollutant exposure and to explore its utility for disease prediction and risk assessment. OBJECTIVES: This study enrolled 714 individuals with complete genomic data and exposomic data on 22 plasma-persistent organic pollutants (POPs). METHODS: We first conducted 22 POP genome-wide association studies (GWAS) and constructed the corresponding environmental pollutant-based PRS (EpPRS) by clumping and P value thresholding (C + T), lassosum, and PRS-CS methods. The best-fit EpPRS was chosen by its regression R2. An adverse outcome pathway (AOP) framework was developed to assess the effects of contaminants on candidate diseases. Furthermore, Mendelian randomization (MR) analysis was performed to explore the causal association between POPs and cancer risk. RESULTS: The C + T method produced the best-performing EpPRSs for 7 PCBs and 4 PBDEs. EpPRSs replicated the correlations of environmental exposure measurements based on consistent patterns. The diagnostic performance of type 2 diabetes mellitus (T2DM) PRS was improved by the combined model of T2DM-EpPRS of PCB126/BDE153. Finally, the AKT1-mediated AOP framework illustrated that PCB126 and BDE153 may increase the risk of T2DM by decreasing AKT1 phosphorylation through the cGMP-PKG pathway and promoting abnormal glucose homeostasis. MR analysis showed that digestive system tumors, such as colorectal cancer and biliary tract cancer, are more sensitive to POP exposure. CONCLUSIONS: EpPRSs can serve as a proxy for assessing pollutant internal exposure. The application of the EpPRS to disease risk assessment can reveal the toxic pathway and mode of action linking exposure and disease in detail, providing a basis for the development of environmental pollutant control strategies.


Assuntos
Rotas de Resultados Adversos , Diabetes Mellitus Tipo 2 , Poluentes Ambientais , Humanos , Poluentes Ambientais/análise , Estudo de Associação Genômica Ampla , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
13.
Chemosphere ; 341: 139998, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657698

RESUMO

Furan is a widespread endogenous contaminant in heat-processed foods that can accumulate rapidly in the food chain and has been widely detected in foods, such as wheat, bread, coffee, canned meat products, and baby food. Dietary exposure to this chemical may bring health risk. Furan is classified as a possible category 2B human carcinogen by the International Agency for Research on Cancer, with the liver as its primary target organ. Hepatic fibrosis is the most important nontumoral harmful effect of furan and also an important event in the carcinogenesis of furan. Although the specific mechanism of furan-induced liver fibrosis is still unclear, it may involve oxidative stress and genetic toxicity, in which the activation of cytochrome P450 2E1 (CYP2E1) may be the key event. Thus, we conducted a study using an integrating multi-endpoint genotoxicity platform in 120-day in vivo subchronic toxicity test in rats. Results showed that the rats with activated CYP2E1 exhibited DNA double-strand breaks in D4, gene mutations in D60, and increased expression of reactive oxygen species and nuclear factor erythroid 2-related factor 2 in D120. Necrosis, apoptosis, hepatic stellate cell activation, and fibrosis also occurred in the liver, suggesting that furan can independently affect liver fibrosis through oxidative stress and genotoxicity pathways. Point of Departure (PoD) was obtained by benchmark-dose (BMD) method to establish health-based guidance values. The human equivalent dose of PoD derived from BMDL05 was 2.26 µg/kg bw/d. The findings laid a foundation for the safety evaluation and risk assessment of furan and provided data for the further construction and improvement of the adverse outcome pathway network in liver fibrosis.


Assuntos
Rotas de Resultados Adversos , Citocromo P-450 CYP2E1 , Animais , Ratos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Furanos/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Estresse Oxidativo
14.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569865

RESUMO

Lung fibrosis is a progressive fatal disease in which deregulated wound healing of lung epithelial cells drives progressive fibrotic changes. Persistent lung injury due to oxidative stress and chronic inflammation are central features of lung fibrosis. Chronic cigarette smoking causes oxidative stress and is a major risk factor for lung fibrosis. The objective of this manuscript is to develop an adverse outcome pathway (AOP) that serves as a framework for investigation of the mechanisms of lung fibrosis due to lung injury caused by inhaled toxicants, including cigarette smoke. Based on the weight of evidence, oxidative stress is proposed as a molecular initiating event (MIE) which leads to increased secretion of proinflammatory and profibrotic mediators (key event 1 (KE1)). At the cellular level, these proinflammatory signals induce the recruitment of inflammatory cells (KE2), which in turn, increase fibroblast proliferation and myofibroblast differentiation (KE3). At the tissue level, an increase in extracellular matrix deposition (KE4) subsequently culminates in lung fibrosis, the adverse outcome. We have also defined a new KE relationship between the MIE and KE3. This AOP provides a mechanistic platform to understand and evaluate how persistent oxidative stress from lung injury may develop into lung fibrosis.


Assuntos
Rotas de Resultados Adversos , Lesão Pulmonar , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/metabolismo , Lesão Pulmonar/patologia , Pulmão/patologia , Estresse Oxidativo , Fibrose
15.
STAR Protoc ; 4(3): 102500, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37616165

RESUMO

Here, we present an in vitro test battery to analyze chemicals for their potential to induce liver triglyceride accumulation, a hallmark of liver steatosis. We describe steps for using HepG2 and HepaRG human hepatoma cells in conjunction with a combination of several in vitro assays covering the different molecular initiating events and key events of the respective adverse outcome pathway. This protocol is suitable for assessing single substance effects as well as mixtures allowing their classification as steatotic or non-steatotic. For complete details on the use and execution of this protocol, please refer to Luckert et al. (2018),1 Lichtenstein et al. (2020),2 and Knebel et al. (2019).3.


Assuntos
Rotas de Resultados Adversos , Carcinoma Hepatocelular , Fígado Gorduroso , Humanos , Fígado Gorduroso/metabolismo , Linhagem Celular
16.
Food Chem Toxicol ; 178: 113930, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406755

RESUMO

To explore the potential the adverse outcome pathway of Gardenia Yellow (GY)-induced sensitive endpoint for nephrotoxicity, an integrated strategy was applied in the present study. Using bioinformatic analysis, based on the constructed Protein-protein interaction networks, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis on the core target network were performed to illustrate the potential gene targets and signal pathways. Then, the most enriched pathway was validated with Cell counting kit-8 assays and Western blot analysis in embryonic kidney epithelial 293 cell models. According to the findings, GY may interact with 321 targets related to the endpoint. The five targets on the top ranking in the PPI network were STAT3, SRC, HRAS, AKT1, EP300. Among them, PI3K/Akt was the most enriched pathway. In vitro testing showed that GY exerted a proliferative effect on the cell variability in a dose-dependent manner. GY at concentration of 1000 µg/ml and stimulation for 30 min can significantly enhance the expression of phosphorylated Akt. Thus, after the quantitative weight of evidence evaluation, Akt phosphorylation induced PI3K/Akt activation was speculated as a molecular initiating event leading to a proliferative and inflammatory response in renal tubular epithelial cells.


Assuntos
Rotas de Resultados Adversos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Biologia Computacional , Técnicas In Vitro , Simulação de Acoplamento Molecular
17.
Sci Total Environ ; 893: 164881, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321500

RESUMO

Increasing and widely detected contaminants of emerging concern (CECs) pose a threat to drinking water safety. Compared with traditional methods, the exposure-activity ratio (EAR) method based on the ToxCast database may have unique advantages in risk assessment of drinking water sources because it provides massive multi-target high-throughput screening toxicity effect data assessment for chemicals with missing traditional toxicity data. In this study, 112 CECs at 52 sampling sites in drinking water sources in Zhejiang Province of eastern China were investigated. Based on EARs and occurrence, priority chemicals were identified as difenoconazole (priority level 1), dimethomorph (priority level 2), acetochlor, caffeine, carbamazepine, carbendazim, paclobutrazol and pyrimethanil (priority level 3). Different from single observable biological effect in traditional methods, a variety of observable biological effects caused by high-risk targets were explored through adverse outcomes pathways (AOPs), revealing ecological risks as well as human health risks, for example, hepatocellular adenomas and carcinomas. Furthermore, the difference between the maximum EAR for a given chemical in a sample (EARmax) and the toxicity quotient (TQ) in priority screening of CECs was compared. The results show that screening priority CECs based on the EAR method is acceptable and more sensitive, suggesting the difference between in vitro and in vivo toxic effects and the necessity of incorporating the harm degree of biological effects into the EAR method to screen priority chemicals in the future.


Assuntos
Rotas de Resultados Adversos , Água Potável , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Medição de Risco/métodos
18.
Aquat Toxicol ; 261: 106607, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354817

RESUMO

Several adverse outcome pathways (AOPs) have linked molecular initiating events like aromatase inhibition, androgen receptor (AR) agonism, and estrogen receptor (ER) antagonism to reproductive impairment in adult fish. Estrogen receptor agonists can also cause adverse reproductive effects, however, the early key events (KEs) in an AOP leading to this are mostly unknown. The primary aim of this study was to develop hypotheses regarding the potential mechanisms through which exposure to ER agonists might lead to reproductive impairment in female fish. Mature fathead minnows were exposed to 1 or 10 ng 17α-ethynylestradiol (EE2)/L or 10 or 100 µg bisphenol A (BPA)/L for 14 d. The response to EE2 and BPA was contrasted with the effects of 500 ng/L of 17ß-trenbolone (TRB), an AR agonist, as well as TRB combined with the low and high concentrations of EE2 or BPA tested individually. Exposure to 10 ng EE2/L, 100 µg BPA/L, TRB, or the various mixtures with TRB caused significant decreases in plasma concentrations of 17ß-estradiol. Exposure to TRB alone caused a significant reduction in plasma vitellogenin (VTG), but VTG was unaffected or even increased in females exposed to EE2 or BPA alone or, in most cases, in mixtures with TRB. Over the course of the 14-d exposure, the only treatments that clearly did not affect egg production were 1 ng EE2/L and 10 µg BPA/L. Based on these results and knowledge of hypothalamic-pituitary-gonadal axis function, we hypothesize an AOP whereby decreased production of maturation-inducing steroid leading to impaired oocyte maturation and ovulation, possibly due to negative feedback or direct inhibitory effects of membrane ER activation, could be responsible for causing adverse reproductive impacts in female fish exposed to ER agonists.


Assuntos
Rotas de Resultados Adversos , Cyprinidae , Poluentes Químicos da Água , Animais , Feminino , Androgênios/metabolismo , Poluentes Químicos da Água/toxicidade , Estrogênios/toxicidade , Estrogênios/metabolismo , Etinilestradiol/toxicidade , Etinilestradiol/metabolismo , Cyprinidae/metabolismo , Vitelogeninas/metabolismo
19.
Chem Res Toxicol ; 36(6): 805-817, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37156502

RESUMO

Nongenotoxic (NGTX) carcinogens induce cancer via other mechanisms than direct DNA damage. A recognized mode of action for NGTX carcinogens is induction of oxidative stress, a state in which the amount of oxidants in a cell exceeds its antioxidant capacity, leading to regenerative proliferation. Currently, carcinogenicity assessment of environmental chemicals primarily relies on genetic toxicity end points. Since NGTX carcinogens lack genotoxic potential, these chemicals may remain undetected in such evaluations. To enhance the predictivity of test strategies for carcinogenicity assessment, a shift toward mechanism-based approaches is required. Here, we present an adverse outcome pathway (AOP) network for chemically induced oxidative stress leading to (NGTX) carcinogenesis. To develop this AOP network, we first investigated the role of oxidative stress in the various cancer hallmarks. Next, possible mechanisms for chemical induction of oxidative stress and the biological effects of oxidative damage to macromolecules were considered. This resulted in an AOP network, of which associated uncertainties were explored. Ultimately, development of AOP networks relevant for carcinogenesis in humans will aid the transition to a mechanism-based, human relevant carcinogenicity assessment that involves a substantially lower number of laboratory animals.


Assuntos
Rotas de Resultados Adversos , Neoplasias , Animais , Humanos , Carcinógenos/toxicidade , Carcinógenos/metabolismo , Carcinogênese/induzido quimicamente , Neoplasias/induzido quimicamente , Estresse Oxidativo , Dano ao DNA , Testes de Carcinogenicidade
20.
J Hazard Mater ; 454: 131541, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146326

RESUMO

Aromatic amines, one of the most widely used low-cost antioxidants in rubbers, have been regarded as pollutants with human health concerns. To overcome this problem, this study developed a systematic molecular design, screening, and performance evaluation method to design functionally improved, environmentally friendly and synthesizable aromatic amine alternatives for the first time. Nine of 33 designed aromatic amine derivatives have improved antioxidant property (lower bond dissociation energy of N-H), and their environmental and bladder carcinogenicity impacts were evaluated through toxicokinetic model and molecular dynamics simulation. The environmental fate of the designed AAs-11-8, AAs-11-16, and AAs-12-2 after antioxidation (i.e., peroxyl radicals (ROO·), hydroxyl radicals (HO·), superoxide anion radicals (O2·-) and ozonation reaction) was also analyzed. Results showed that the by-products of AAs-11-8 and AAs-12-2 have less toxicity after antioxidation. In addition, human bladder carcinogenicity of the screened alternatives was also evaluated through adverse outcome pathway. The carcinogenic mechanisms were analyzed and verified through amino acid residue distribution characteristics, 3D-QSAR and 2D-QSAR models. AAs-12-2, with high antioxidation property, low environmental impacts and carcinogenicity, was screened as the optimum alternative for 3,5-Dimethylbenzenamine. This study provided theoretical support for designing environmentally friendly and functionally improved aromatic amine alternatives from toxicity evaluation and mechanism analysis.


Assuntos
Rotas de Resultados Adversos , Carcinógenos , Humanos , Carcinógenos/toxicidade , Carcinógenos/química , Toxicocinética , Aminas/toxicidade , Aminas/química , Radical Hidroxila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA