Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 31(12): 2488-2494, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32813518

RESUMO

Rotaxane dendrimers with hyperbranched macromolecular interlocked structures and size modulation capacity demonstrate drug binding and release ability upon external stimuli. Mass spectrometry imaging (MSI) can offer the high-throughput screening of endogenous/exogenous compounds. Herein, we reported a novel method to display the in situ spatial distribution of label-free monodispersed type III rotaxane dendrimers (RDs) G1 (first generation, size ∼1.5 nm) and G2 (second generation, size ∼5 nm) that were explored as potential drug vehicles in spleen tissue by using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-MSI). Experimental results indicated that the trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) matrix exhibited the best performance for monodispersed type III RDs G1 and G2. The optimized method was successfully applied to map the in vivo spatial distribution of type III RDs G1 and G2 in the spleen from intraperitoneally injected mice. The MALDI-MSI images revealed that RDs G1 and G2 were relatively stable in the spleen within 24 h after administration. It was found that the identified type III RDs G1 and G2 penetrated through the tunica serosa and were predominantly localized in red pulp regions of spleens. They were also mapped in a marginal zone of spleens simultaneously. There was almost no toxicity of type III RDs G1 and G2 to mice spleens from the H&E results. Furthermore, the type III RDs did not induce the expression of inflammatory cytokines from peripheral blood mononuclear cells (PBMCs) or THP-1 monocytes. The MSI analysis not only demonstrated its ability to image select rotaxane dendrimers in a rapid and efficient manner but also provided tremendous assistance on the applications of the further treatment of cancerous tissue as safe drug carriers. Furthermore, the new strategy demonstrated in this study could be applied on other label-free mechanically interlocked molecules, molecular machines, and macromolecules, which opened a new path to evaluate the toxicological and pharmacokinetic characteristics of these novel materials at the suborgan level.


Assuntos
Dendrímeros/análise , Portadores de Fármacos/análise , Rotaxanos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Dendrímeros/farmacocinética , Portadores de Fármacos/farmacocinética , Camundongos , Rotaxanos/farmacocinética , Baço/metabolismo , Distribuição Tecidual
2.
Anal Chem ; 83(22): 8460-7, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21958205

RESUMO

Polyrotaxanes (PR) are among the most studied interlocked molecules in the field of supramolecular chemistry. Cyclodextrin based polyrotaxanes (CD based PRs) are well-known to be difficult to analyze by mass spectrometry (MS). Nanoelectrospray (nanoESI) employed during mass spectrometry (MS) and tandem mass spectrometry (MS/MS) experiments turns out to be particularly useful to analyze these noncovalent assemblies. While ESI/nanoESI based spectra usually contain multicharged species which greatly complicate the interpretation, particularly for such complex mixtures analysis, the hyphenation with a high resolution analyzer such as Orbitrap could overcome this limitation. This Article reports efforts to achieve a detailed structural deciphering by nanoESI-MS and nanoESI-MS/MS of CD based PRs constituted of αCDs, unmodified or surrounded by 1 or 2 sulfation(s), which were threaded along polydisperse poly(ethylene oxide) α,ω-dipyrenyl chains. The described method is more sensitive and less sample consuming than a typical NMR experiment and in good agreement with size-exclusion chromatography (SEC) results. Moreover, as compared to MALDI-TOF MS analysis, all populations were presumably elucidated without discrimination effect. Therefore, this MS development allowed us to estimate the PR sample content with 16 to 35 ethylene oxide units, 1 to 5 αCDs threaded, and 0 to 10 sulfo groups grafted on the overall CDs. Finally, the method afforded the possibility to unambiguously attribute supramolecular architectures from 2276.0278 to 7767.8342 g·mol(-1) corresponding to poly[2]- to poly[6]rotaxanes.


Assuntos
Ciclodextrinas/análise , Nanotecnologia/métodos , Poloxâmero/análise , Polietilenoglicóis/química , Rotaxanos/análise , alfa-Ciclodextrinas/química , Ciclodextrinas/síntese química , Espectrometria de Massas , Poloxâmero/síntese química , Rotaxanos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA