Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.127
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Eur Rev Med Pharmacol Sci ; 28(9): 3330-3346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766791

RESUMO

OBJECTIVE: Malvidin is a natural, biologically active polyphenol found in several fruits. It exhibits several therapeutic benefits; however, limited studies are available on its effects on neurodegenerative clinical conditions, including Parkinson's disease. The study aimed to investigate the therapeutic properties of malvidin on rotenone-triggered Parkinson's disease in an animal model. MATERIALS AND METHODS: To determine the effects of malvidin, rotenone (1.5 mg/kg) was injected subcutaneously into Wistar rats for 21 days, followed by a dose of malvidin (200 and 100 mg/kg). Behavioral tests were performed on the experimental animals before sacrifice. On the 22nd day of the experiment, biochemical tests were performed, including superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and catalase (CAT). The activity of neurotransmitters and their metabolites, including acetylcholine (ACh), acetylcholinesterase (AChE), dopamine (DA), norepinephrine (NE), serotonin (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) along with neuroinflammatory markers including interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor- α (TNF-α), and nuclear factor erythroid 2-related factor 2 (Nrf-2) were estimated. Moreover, the level of the apoptotic marker, caspase-3, was also estimated. In addition, molecular docking was performed. RESULTS: The administration of rotenone resulted in oxidative stress, cholinergic imbalances, dopaminergic alternations, and increased expression of inflammatory compounds. The docking analysis revealed that malvidin displayed a favorable binding affinity for AChE, showcasing a binding energy of -9.329 Kcal/mol. CONCLUSIONS: The investigation concludes that malvidin exhibits neuroprotective effects due to its curative effects against inflammation and oxidative stress. These findings suggest that malvidin possesses therapeutic potential against rotenone-triggered behavioral, oxidative, and inflammatory abnormalities in rodents.


Assuntos
Caspase 3 , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Ratos Wistar , Rotenona , Fator de Necrose Tumoral alfa , Animais , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Caspase 3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças
2.
J Toxicol Environ Health A ; 87(12): 497-515, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38619158

RESUMO

One prominent aspect of Parkinson's disease (PD) is the presence of elevated levels of free radicals, including reactive oxygen species (ROS). Syagrus coronata (S. coronata), a palm tree, exhibits antioxidant activity attributed to its phytochemical composition, containing fatty acids, polyphenols, and flavonoids. The aim of this investigation was to examine the potential neuroprotective effects of S. coronata fixed oil against rotenone-induced toxicity using Drosophila melanogaster. Young Drosophila specimens (3-4 d old) were exposed to a diet supplemented with rotenone (50 µM) for 7 d with and without the inclusion of S. coronata fixed oil (0.2 mg/g diet). Data demonstrated that rotenone exposure resulted in significant locomotor impairment and increased mortality rates in flies. Further, rotenone administration reduced total thiol levels but elevated lipid peroxidation, iron (Fe) levels, and nitric oxide (NO) levels while decreasing the reduced capacity of mitochondria. Concomitant administration of S. coronata exhibited a protective effect against rotenone, as evidenced by a return to control levels of Fe, NO, and total thiols, lowered lipid peroxidation levels, reversed locomotor impairment, and enhanced % cell viability. Molecular docking of the oil lipidic components with antioxidant enzymes showed strong binding affinity to superoxide dismutase (SOD) and glutathione peroxidase (GPX1) enzymes. Overall, treatment with S. coronata fixed oil was found to prevent rotenone-induced movement disorders and oxidative stress in Drosophila melanogaster.


Assuntos
Transtornos dos Movimentos , Rotenona , Animais , Drosophila melanogaster , Simulação de Acoplamento Molecular , Estresse Oxidativo , Antioxidantes/farmacologia , Óxido Nítrico/metabolismo
3.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675592

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, primarily associated with dopaminergic neuron depletion in the Substantia Nigra. Current treatment focuses on compensating for dopamine (DA) deficiency, but the blood-brain barrier (BBB) poses challenges for effective drug delivery. Using differentiated SH-SY5Y cells, we investigated the co-administration of DA and the antioxidant Grape Seed Extract (GSE) to study the cytobiocompability, the cytoprotection against the neurotoxin Rotenone, and their antioxidant effects. For this purpose, two solid lipid nanoparticle (SLN) formulations, DA-co-GSE-SLNs and GSE-ads-DA-SLNs, were synthesized. Such SLNs showed mean particle sizes in the range of 187-297 nm, zeta potential values in the range of -4.1--9.7 mV, and DA association efficiencies ranging from 35 to 82%, according to the formulation examined. The results showed that DA/GSE-SLNs did not alter cell viability and had a cytoprotective effect against Rotenone-induced toxicity and oxidative stress. In addition, this study also focused on the evaluation of Alpha-synuclein (aS) levels; SLNs showed the potential to modulate the Rotenone-mediated increase in aS levels. In conclusion, our study investigated the potential of SLNs as a delivery system for addressing PD, also representing a promising approach for enhanced delivery of pharmaceutical and antioxidant molecules across the BBB.


Assuntos
Sobrevivência Celular , Dopamina , Extrato de Sementes de Uva , Nanopartículas , Doença de Parkinson , Rotenona , alfa-Sinucleína , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/química , Dopamina/metabolismo , Nanopartículas/química , Extrato de Sementes de Uva/química , Extrato de Sementes de Uva/farmacologia , Rotenona/farmacologia , Linhagem Celular Tumoral , alfa-Sinucleína/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Estresse Oxidativo/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Tamanho da Partícula , Lipossomos/química , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
4.
Biomolecules ; 14(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38672457

RESUMO

Mitochondria, the energy hubs of the cell, are progressively becoming attractive targets in the search for potent therapeutics against neurodegenerative diseases. The pivotal role of mitochondrial dysfunction in the pathogenesis of various diseases, including Parkinson's disease (PD), underscores the urgency of discovering novel therapeutic strategies. Given the limitations associated with available treatments for mitochondrial dysfunction-associated diseases, the search for new potent alternatives has become imperative. In this report, we embarked on an extensive screening of 4224 fractions from 384 Australian marine organisms and plant samples to identify natural products with protective effects on mitochondria. Our initial screening using PD patient-sourced olfactory neurosphere-derived (hONS) cells with rotenone as a mitochondria stressor resulted in 108 promising fractions from 11 different biota. To further assess the potency and efficacy of these hits, the 11 biotas were subjected to a subsequent round of screening on human neuroblastoma (SH-SY5Y) cells, using 6-hydroxydopamine to induce mitochondrial stress, complemented by a mitochondrial membrane potential assay. This rigorous process yielded 35 active fractions from eight biotas. Advanced analysis using an orbit trap mass spectrophotometer facilitated the identification of the molecular constituents of the most active fraction from each of the eight biotas. This meticulous approach led to the discovery of 57 unique compounds, among which 12 were previously recognized for their mitoprotective effects. Our findings highlight the vast potential of natural products derived from Australian marine organisms and plants in the quest for innovative treatments targeting mitochondrial dysfunction in neurodegenerative diseases.


Assuntos
Produtos Biológicos , Ensaios de Triagem em Larga Escala , Mitocôndrias , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Linhagem Celular Tumoral , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Rotenona/farmacologia , Organismos Aquáticos/química
5.
PLoS One ; 19(4): e0292415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669260

RESUMO

One aspect of Caenorhabditis elegans that makes it a highly valuable model organism is the ease of use of in vivo genetic reporters, facilitated by its transparent cuticle and highly tractable genetics. Despite the rapid advancement of these technologies, worms must be paralyzed for most imaging applications, and few investigations have characterized the impacts of common chemical anesthetic methods on the parameters measured, in particular biochemical measurements such as cellular energetics and redox tone. Using two dynamic reporters, QUEEN-2m for relative ATP levels and reduction-oxidation sensitive GFP (roGFP) for redox tone, we assess the impact of commonly used chemical paralytics. We report that no chemical anesthetic is entirely effective at doses required for full paralysis without altering redox tone or ATP levels, and that anesthetic use alters the detected outcome of rotenone exposure on relative ATP levels and redox tone. We also assess the use of cold shock, commonly used in combination with physical restraint methods, and find that cold shock does not alter either ATP levels or redox tone. In addition to informing which paralytics are most appropriate for research in these topics, we highlight the need for tailoring the use of anesthetics to different endpoints and experimental questions. Further, we reinforce the need for developing less disruptive paralytic methods for optimal imaging of dynamic in vivo reporters.


Assuntos
Trifosfato de Adenosina , Caenorhabditis elegans , Oxirredução , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Imagem Óptica/métodos , Paralisia/induzido quimicamente , Paralisia/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Rotenona/farmacologia , Anestésicos/farmacologia
6.
J Ethnopharmacol ; 330: 118197, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636579

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alternanthera sessilis (L.) R. Br. ex DC., Eryngium foetidum L., and Stephania japonica (Thunb.) Miers plants are traditionally used to treat various central nervous system disorders like paralysis, epilepsy, seizure, convulsion, chronic pain, headache, sleep disturbances, sprain, and mental disorders. However, their possible neuroprotective effects have not been evaluated experimentally so far. AIM OF THE STUDY: The study aims to examine the neuroprotective potential of the three plants against cytotoxicity induced by rotenone in SH-SY5Y neuroblastoma cells and assess its plausible mechanisms of neuroprotection. MATERIALS AND METHODS: The antioxidant properties of the plant extracts were determined chemically by DPPH and ABTS assay methods. The cytotoxicity of rotenone and the cytoprotective activities of the extracts were evaluated using MTT assays. Microtubule-associated protein 2 (MAP2) expression studies in cells were performed to assess neuronal survival after rotenone and extract treatments. Mitochondrial membrane potential and intracellular levels of reactive oxygen species were evaluated using Rhodamine 123 and DCF-DA dye, respectively. Catalase, glutathione peroxidase, and superoxide dismutase activities were also measured. Apoptotic nuclei were examined using DAPI staining. Liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS) analysis of the plant extracts was also performed. RESULTS: The methanol extracts of A. sessilis, S. japonica, and E. foetidum showed excellent free radical scavenging activities. MAP2 expression studies show that A. sessilis and S. japonica have higher neuroprotective effects against rotenone-induced neurotoxicity in SH-SY5Y cells than E. foetidum. Pre-treating cells with the plant extracts reverses the rotenone-induced increase in intracellular ROS. The plant extracts could also restore the reduced mitochondrial membrane potential induced by rotenone treatment and reinstate rotenone-induced increases in catalase, glutathione peroxidase, and superoxide dismutase activities. All the extracts inhibited rotenone-induced changes in nuclear morphology and DNA condensation, an early event of cellular apoptosis. LC-QTOF-MS analysis of the plant extracts shows the presence of neuroprotective compounds. CONCLUSIONS: The plant extracts showed neuroprotective activities against rotenone-treated SH-SY5Y cells through antioxidant and anti-apoptotic mechanisms. These findings support the ethnopharmacological uses of these plants in treating neurological disorders. They probably are a good source of neuroprotective compounds that could be further explored to develop treatment strategies for neurodegenerative diseases like Parkinson's disease.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Extratos Vegetais , Plantas Medicinais , Rotenona , Rotenona/toxicidade , Humanos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Plantas Medicinais/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Medicina Tradicional/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Estresse Oxidativo/efeitos dos fármacos
7.
J Nat Prod ; 87(4): 1003-1012, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38579352

RESUMO

Three new (1-3) and six known rotenoids (5-10), along with three known isoflavones (11-13), were isolated from the leaves of Millettia oblata ssp. teitensis. A new glycosylated isoflavone (4), four known isoflavones (14-18), and one known chalcone (19) were isolated from the root wood extract of the same plant. The structures were elucidated by NMR and mass spectrometric analyses. The absolute configuration of the chiral compounds was established by a comparison of experimental ECD and VCD data with those calculated for the possible stereoisomers. This is the first report on the use of VCD to assign the absolute configuration of rotenoids. The crude leaves and root wood extracts displayed anti-RSV (human respiratory syncytial virus) activity with IC50 values of 0.7 and 3.4 µg/mL, respectively. Compounds 6, 8, 10, 11, and 14 showed anti-RSV activity with IC50 values of 0.4-10 µM, while compound 3 exhibited anti-HRV-2 (human rhinovirus 2) activity with an IC50 of 4.2 µM. Most of the compounds showed low cytotoxicity for laryngeal carcinoma (HEp-2) cells; however compounds 3, 11, and 14 exhibited low cytotoxicity also in primary lung fibroblasts. This is the first report on rotenoids showing antiviral activity against RSV and HRV viruses.


Assuntos
Antivirais , Isoflavonas , Millettia , Isoflavonas/farmacologia , Isoflavonas/química , Isoflavonas/isolamento & purificação , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Millettia/química , Estrutura Molecular , Humanos , Rotenona/farmacologia , Rotenona/química , Rotenona/análogos & derivados , Folhas de Planta/química , Raízes de Plantas/química , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos
8.
Acta Pharm ; 74(1): 101-115, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554386

RESUMO

Deguelin exhibits antiproliferative activity against various cancer cell types. Previous studies have reported that deguelin exhibits pro-apoptotic activity against human cancer cells. The current study aimed at further elaborating the anticancer effects of deguelin against multiple myeloma cells. Cell growth estimations were made through MTT assay. Phase contrast microscopy was used for the analysis of the viability of multiple myeloma cells. Colony formation from multiple myeloma cells was studied using a clonogenic assay. Antioxidative assays for determining levels of glutathione (GSH) and superoxide dismutase (SOD) were carried out after treating multiple myeloma cells with deguelin. The apoptosis of multiple myeloma cells was studied using AO/EB and Annexin V-FITC/PI staining methods. Multiple myeloma cell cycle analysis was performed through flow cytometry. mRNA expression levels were depicted using qRT-PCR. Migration and invasion of multiple myeloma cells were determined with the wound-healing and transwell assays, respectively. Deguelin specifically inhibited the multiple myeloma cell growth while the normal plasma cells were minimally affected. Multiple myeloma cells when treated with deguelin exhibited remarkably lower viability and colony-forming ability. Multiple myeloma cells treated with deguelin produced more SOD and had higher GSH levels. The multiple myeloma cell growth, migration, and invasion were significantly declined by in vitro administration of deguelin. In conclusion, deguelin treatment, when applied in vitro, induced apoptotic cell death and resulted in mitotic cessation at the G2/M phase through modulation of cell cycle regulatory mRNAs in multiple myeloma cells.


Assuntos
Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-akt , Rotenona/análogos & derivados , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Mieloma Múltiplo/tratamento farmacológico , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular , Apoptose , Proliferação de Células , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Eur J Pharmacol ; 970: 176482, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452835

RESUMO

Rotenone, a plant-based agricultural insecticide, has been shown to have anti-tumor activity through targeting mitochondrial complex I in cancer cells. However, off-target toxic side effect on nervous systems have greatly restricted the application of rotenone as anticancer drugs. Here, a folic acid-rotenol (FA-rotenol) conjugate was prepared by covalent coupling of the tumor-targeting ligand folic acid with rotenone derivative-rotenol to enhance its accumulation at tumor site. FA-rotenol conjugates present high in vitro cytotoxicties against several cell lines by inducing mitochondrial membrane potential depolarization and increasing the level of intracellular reactive oxygen species (ROS) to activate the mitochondrial pathway of apoptosis and enhance the G2/M cell cycle arrest. Because of the high affinity with over-expressed folate receptors, FA-rotenol conjugate demonstrated more effective in vivo therapeutic outcomes in 4T1 tumor-bearing mice than rotenone and rotenol. In addition, FA-rotenol conjugate can markedly inhibit the cell migration and invasion of HepG-2 cells. These studies confirm the feasibility of tumor-targeted ligand conjugated rotenone derivatives for targeted antitumor therapy; likewise, they lay the foundations for the development of other rotenol-conjugates with antitumor potential.


Assuntos
Antineoplásicos , Pró-Fármacos , Animais , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Ligantes , Rotenona/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
10.
Brain Res ; 1834: 148893, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554797

RESUMO

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The dopamine D3 receptor (D3R) plays a significant role in the pathogenesis and treatment of PD. Activation of receptor tyrosine kinases (RTKs) inhibits signaling mediated by G protein-coupled receptor (GPCR). Epidermal growth factor receptors (EGFRs) and dopamine D3 receptors in the brain are directly associated with PD, both in terms of its development and potential treatment. Therefore, we investigated the impact of modulating the EGFR, a member of the RTKs family, and the dopamine D3R, a member of the GPCR family. In the present study, 100 mg/kg of lapatinib (LAP) was administered to rotenone-intoxicated rats for three weeks. Our findings indicate that LAP effectively alleviated motor impairment, improved histopathological abnormalities, and restored dopaminergic neurons in the substantia nigra. This restoration was achieved through the upregulation of dopamine D3R and increase of tyrosine hydroxylase (TH) expression, as well as boosting dopamine levels. Furthermore, LAP inhibited the activity of p-EGFR, GRK2, and SCR. Additionally, LAP exhibited antioxidant properties by inhibiting the 4-hydroxynonenal (4-HNE) and PLCγ/PKCßII pathway, while enhancing the antioxidant defense mechanism by increasing GSH-GPX4 pathway. The current study offers insights into the potential repositioning of LAP as a disease-modifying drug for PD. This could be achieved by modulating the dopaminergic system and curbing oxidative stress.


Assuntos
Neurônios Dopaminérgicos , Receptores ErbB , Lapatinib , Transtornos Parkinsonianos , Receptores de Dopamina D3 , Rotenona , Animais , Masculino , Ratos , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Lapatinib/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474335

RESUMO

Hydrogen sulfide (H2S) has been recently recognized as an important gasotransmitter with cardioprotections, and iron is vital for various cellular activities. This study explored the regulatory role of H2S on iron metabolism and mitochondrial functions in cultured rat cardiac cells. Rotenone, a mitochondrial complex I inhibitor, was used for establishing an in vitro model of ischemic cell damage. It was first found that rotenone induced oxidative stress and lipid peroxidation and decreased mitochondrial membrane potential and ATP generation, eventually causing cell death. The supplement of H2S at a physiologically relevant concentration protected from rotenone-induced ferroptotic cell death by reducing oxidative stress and mitochondrial damage, maintaining GPx4 expression and intracellular iron level. Deferiprone, an iron chelator, would also protect from rotenone-induced ferroptosis. Further studies demonstrated that H2S inhibited ABCB8-mediated iron efflux from mitochondria to cytosol and promoted NFS1-mediated Fe-S cluster biogenesis. It is also found that rotenone stimulated iron-dependent H2S generation. These results indicate that H2S would protect cardiac cells from ischemic damage through preserving mitochondrial functions and intracellular Fe-S cluster homeostasis.


Assuntos
Ferroptose , Rotenona , Ratos , Animais , Rotenona/farmacologia , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Ferro/metabolismo
12.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474469

RESUMO

Diacetylcurcumin manganese complex (DiAc-Cp-Mn) is a diacetylcurcumin (DiAc-Cp) derivative synthesized with Mn (II) to mimic superoxide dismutase (SOD). It exhibited superior reactive oxygen species (ROS) scavenging efficacy, particularly for the superoxide radical. The present study investigated the ROS scavenging activity, neuroprotective effects, and underlying mechanism of action of DiAc-Cp-Mn in a cellular model of Parkinson's disease. This study utilized rotenone-induced neurotoxicity in SH-SY5Y cells to assess the activities of DiAc-Cp-Mn by measuring cell viability, intracellular ROS, mitochondrial membrane potential (MMP), SOD, and catalase (CAT) activities. The mRNA expression of the nuclear factor erythroid 2 p45-related factor (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), inducible nitric oxide synthase (iNOS), and Interleukin 1ß (IL-1ß), which are oxidative and inflammatory genes, were also evaluated to clarify the molecular mechanism. The results of the in vitro assays showed that DiAc-Cp-Mn exhibited greater scavenging activity against superoxide radicals, hydrogen peroxide, and hydroxyl radicals compared to DiAc-Cp. In cell-based assays, DiAc-Cp-Mn demonstrated greater neuroprotective effects against rotenone-induced neurotoxicity when compared to its parent compound, DiAc-Cp. DiAc-Cp-Mn maintained MMP levels, reduced intracellular ROS levels, and increased the activities of SOD and CAT by activating the Nrf2-Keap1 signaling pathway. In addition, DiAc-Cp-Mn exerted its anti-inflammatory impact by down-regulating the mRNA expression of iNOS and IL-1ß that provoked neuro-inflammation. The current study indicates that DiAc-Cp-Mn protects against rotenone-induced neuronal damage by reducing oxidative stress and inflammation.


Assuntos
Curcumina/análogos & derivados , Doenças Mitocondriais , Neuroblastoma , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Humanos , Manganês/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inflamação , Superóxido Dismutase/metabolismo , Antioxidantes/farmacologia , RNA Mensageiro/genética
13.
Brain Res ; 1830: 148824, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417654

RESUMO

BACKGROUND: A substantial body of evidence is drawing connections between Parkinson's disease (PD) and the phenomena of oxidative stress and mitochondrial dysfunction. Polyphyllin VI (PPVI), an active compound found in Rhizoma Paridis-commonly known as Chonglou (CL) in China, has been identified for its various pharmacological properties, including anti-tumor and anti-inflammatory effects. OBJECTIVE: In the present study, an in vitro model of PD was established by treating SH-SY5Y cells with rotenone (ROT), to evaluate the potential neuroprotective effects of polyphyllin VI and its underlying mechanism. METHODS: SH-SY5Y cells were treated with ROT to establish an in vitro model of PD. The effects of polyphyllin VI on cell viability were assessed using the resazurin assay. Cell morphology was examined using a microscope. The YO-PRO-1/PI was used to detect apoptosis. Mito-Tracker Red CMXRos, Mito-Tracker Green, and JC-1 were used to detect the effects of polyphyllin Ⅵ on mitochondrial viability, morphology, and function. Oxidative stress-related marker detection kits were used to identify the effects of polyphyllin VI on oxidative stress. Western blot analysis was employed to investigate the signaling pathways associated with neuroprotection. RESULTS: PPVI increased ROT-induced SH-SY5Y cell viability and improved ROT-induced cellular morphological changes. PPVI ameliorated ROT-induced oxidative stress status, and attenuated mitochondrial function and morphological changes. PPVI may exert neuroprotective effects through FOXO3α/CREB1/DJ-1-related signaling pathways. CONCLUSION: These preliminary findings suggested that PPVI possesses neuroprotective attributes in vitro, and it may be a potential candidate for PD treatment. However, extensive research is necessary to fully understand the mechanisms of PPVI and its effectiveness both in vitro and in vivo.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Rotenona/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Doença de Parkinson/tratamento farmacológico
14.
Mar Drugs ; 22(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38393033

RESUMO

The MTS cell viability test was used to screen a mini library of natural and synthetic 1,4-naphthoquinone derivatives (1,4-NQs) from marine sources. This screening identified two highly effective compounds, U-443 and U-573, which showed potential in protecting Neuro-2a neuroblastoma cells from the toxic effects of rotenone in an in vitro model of neurotoxicity. The selected 1,4-NQs demonstrated the capability to reduce oxidative stress by decreasing the levels of reactive oxygen species (ROS) and nitric oxide (NO) in Neuro-2a neuroblastoma cells and RAW 264.7 macrophage cells and displayed significant antioxidant properties in mouse brain homogenate. Normal mitochondrial function was restored and the mitochondrial membrane potential was also regained by 1,4-NQs after exposure to neurotoxins. Furthermore, at low concentrations, these compounds were found to significantly reduce levels of proinflammatory cytokines TNF and IL-1ß and notably inhibit the activity of cyclooxygenase-2 (COX-2) in RAW 264.7 macrophages. The results of docking studies showed that the 1,4-NQs were bound to the active site of COX-2, analogically to a known inhibitor of this enzyme, SC-558. Both substances significantly improved the behavioral changes in female CD1 mice with rotenone-induced early stage of Parkinson's disease (PD) in vivo. It is proposed that the 1,4-NQs, U-443 and U-573, can protect neurons and microglia through their potent anti-ROS and anti-inflammatory activities.


Assuntos
Naftoquinonas , Neuroblastoma , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Feminino , Camundongos , Animais , Rotenona/toxicidade , Ciclo-Oxigenase 2 , Naftoquinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/prevenção & controle , Fármacos Neuroprotetores/farmacologia
15.
Int J Biol Macromol ; 263(Pt 1): 130219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367785

RESUMO

Dysfunctional mitophagy contributes to Parkinson's disease (PD) by affecting dopamine-producing neurons. Mutations in parkin and pink1 genes, linked to familial PD, impede the removal of damaged mitochondria. Previous studies suggested Rab11's involvement in mitophagy alongside Parkin and Pink1. Additionally, mitochondria-endoplasmic reticulum contact sites (MERCS) regulate cellular functions, including mitochondrial quality control and calcium regulation. Our study explored whether activating mitophagy triggers the unfolded protein response and ER stress pathway in SH-SY5Y human cells. We induced a PD-like state by exposing undifferentiated SH-SY5Y cells to rotenone, an established PD-inducing agent. This led to reduced Rab11 and PERK- expression while increasing ATP5a, a mitochondrial marker, when Rab11 was overexpressed. Our findings suggest that enhancing endosomal trafficking can mitigate ER stress by regulating mitochondria, rescuing cells from apoptosis. Furthermore, we assessed the therapeutic potential of Rab11, both alone and in combination with L-Dopa, in a Drosophila PD model. In summary, our research underscores the role of mitophagy dysfunction in PD pathogenesis, highlighting Rab11's importance in alleviating ER stress and preserving mitochondrial function. It also provides insights into potential PD management strategies, including the synergistic use of Rab11 and L-Dopa.


Assuntos
Proteínas de Drosophila , Neuroblastoma , Doença de Parkinson , Animais , Humanos , Levodopa , Rotenona/farmacologia , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Drosophila/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/patologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
16.
Front Biosci (Landmark Ed) ; 29(2): 90, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38420791

RESUMO

BACKGROUND: Deguelin (DGL) is a natural flavonoid reported to exhibit antitumor effects in breast cancer (BC). PEG-PCL (Polyethylene Glycol- Polycaprolactone), as polymeric micelles, has biodegradability and biocompatibility. The aim of this study was to investigate whether the nanoparticular delivery system, PEG-PCL could improve the bioavailability of DGL for suppressing proliferation of BC cells. METHODS: PEG-PCL polymers were first prepared by ring-opening polymerization, and DGL and paclitaxel (PTX)-loaded PEG-PCL nano-micelles were formulated via the film dispersion method. The composition and molecular weight of PEG-PCL were analyzed by nuclear magnetic resonance and fourier Transform infrared spectroscopy (FTIR) spectra. Particle size, surface potential and hemolytic activity of micelles were assessed by dynamic light scattering, transmission electron microscopy and hemolysis assay, respectively. Then proliferation and apoptosis of MDA-MB-231 and MDA-MB-468 cells were tested with Edu staining, CCK-8, TUNEL staining, and Flow cytometer. Caspase 3 expression was also assessed by Western blot. RESULTS: Our results first indicated that PEG2000-PCL2000 was successfully synthesized. DGL and PTX-loaded PEG-PCL nano-micelles were rounded in shape with a particle size of 35.78 ± 0.35 nm and a surface potential of 2.84 ± 0.27 mV. The micelles had minimal hemolytic activity. Besides, we proved that DGL and PTX-loaded PEG-PCL nano-micelles could suppress proliferation and induce apoptosis in BC cells. The DGL and PTX-loaded PEG-PCL nano-micelles constructed in this study had a prominent inhibitory role on proliferation and a remarkable promotional role on apoptosis in BC cells. CONCLUSIONS: This study proposes that nano-micelles formed by PEG-PCL can enhance the cytotoxicity of Paclitaxel against breast cancer cells, and concurrently, the loading of Deguelin may further inhibit cell proliferation. This presents a potential for the development of a novel therapeutic strategy.


Assuntos
Neoplasias da Mama , Paclitaxel , Rotenona/análogos & derivados , Humanos , Feminino , Paclitaxel/farmacologia , Neoplasias da Mama/tratamento farmacológico , Micelas , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Polímeros , Apoptose , Linhagem Celular Tumoral
17.
Tissue Cell ; 87: 102328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387425

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative conditions. Alpha-synuclein deposition, Lewy bodies (LBs) formation, disruption of the autophagic machinery, apoptosis of substantia nigra dopaminergic neurons, oxidative stress, and neuroinflammation are all pathologic hallmarks of PD. The leaves of the stinging Nettle (Urtica dioica L.) have a long history as an herbal cure with antioxidant, anti-inflammatory, anti-cancer, immunomodulatory, and neuroprotective properties. The current study aims for the first time to investigate the role of Nettle supplementation on Rotenone-induced PD. Rats were divided into five groups; a Saline control, Nettle control (100 mg/kg/day), Rotenone control (2 mg/kg/day), Rotenone + Nettle (50 mg /kg/day), and Rotenone + Nettle (100 mg/kg). After four weeks, the rats were examined for behavioral tests. The midbrains were investigated for histopathological alteration and immunohistochemical reaction for Tyrosine hydroxylase in the dopaminergic neurons, α-synuclein for Lewy bodies, caspase 3 for apoptotic neurons, LC3 and P62 for autophagic activity. Midbrain homogenates were examined for oxidative stress markers. mRNA expression of TNFα and Il6; inflammatory markers, Bcl-2, BAX and Caspase 3; apoptosis markers, were detected in midbrains. The results showed that Nettle caused recovery of midbrain dopaminergic neurons, by inhibiting apoptosis, inflammation, and oxidative stress and by restoring the autophagic machinery with clearance of α-synuclein deposits. We can conclude that Nettle is a potentially effective adjuvant in the treatment of Parkinson's disease.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Urtica dioica , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Urtica dioica/química , Urtica dioica/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Rotenona/toxicidade , Caspase 3/metabolismo , Estresse Oxidativo , Fármacos Neuroprotetores/farmacologia
18.
Drug Res (Stuttg) ; 74(2): 67-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38346682

RESUMO

Parkinson's disease is the loss of dopaminergic neurons in the substantial nigra part of the brain leading to neurodegeneration. Whereas, reactive oxygen species and mitochondrial impairment are considered to be the major pathophysiology of neurodegeneration. The benzylidene-based 2-chloroquinolin derivatives were synthesized and characterized by FT-IR, NMR, and MS spectrometry which were screened using various in-silico approaches. The designed compounds were further assessed using in-vitro cytotoxicity assay by the MTT method, DPPH assay, and Glutathione measurements in the SHSY5Y neuroblastoma cell lines. The compounds JD-7 and JD-4 were found to have a binding affinity of - 7.941 and - 7.633 kcal/mol with an MMGBSA score of - 64.614 and - 62.817 kcal/mol. The compound JD-7 showed the highest % Cell viability of 87.64% at a minimal dose of 125 µg/mL by the MTT method. The neurotoxicity effects were observed at increasing concentrations from 0 to 125, 250, and 500 µg/mL. Further, free radical scavenging activity for the JD-7 was found to be 36.55 at lowest 125 µg/mL concentrations. At 125 µg/mL, GSH % and GSSG % were found to be increasing in rotenone treatment, whereas JD-7 and JD-4 were found in the downregulation of glutathione level in the pre-treated rotenone SHSY5Y neuroblastoma cell lines. The benzylidene-based chloroquinolin derivatives were synthesized, and among the compounds JD-1 to JD-13, the compounds JD-7, and JD-4 were found to have having highest % cell viability, free radical scavenging molecules, and glutathione levels in the SHSY5Y neuroblastoma cell lines and could be used as free radical scavengers in Parkinson's disease.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Rotenona , Espectroscopia de Infravermelho com Transformada de Fourier , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo
19.
PLoS One ; 19(2): e0296297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38349932

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative diseases worldwide. Currently applied therapeutic protocols are limited to improve the motor functions of patients. Therefore, seeking alternative regimes with better therapeutic impact is crucial. This study aims to validate the therapeutic impact of mesenchymal stem cell injection using two delivery methods, intracranial administration and intravenous administration, on rotenone (ROT)-induced PD model in rats. Our work included behavioral, biochemical, histological, and molecular investigations. Open field test (OFT) and rotarod tests were applied. Important oxidative stress, antioxidant and proinflammatory markers were monitored. Substantia Nigra and Striatum tissues were examined histologically and the molecular expression of DOPA decarboxylase, Tyrosine hydroxylase, and α-synuclein in neurons in these tissues were investigated. Our results showed that MSC grafting improved motor and memory impairments and oxidative stress status that were observed after ROT administration. Additionally, BM-MSCs application restored SOD and CAT activities and the levels of DA, L-Dopa, IL6, IL1ß, and TNFα. Moreover, MSC grafting overwhelmed the pathological changes induced by ROT and normalized the expression of Tyrosine hydroxylase, DOPA decarboxylase, and α-synuclein towards the control values in the Nigral and Striatal tissues of male rats. Conclusively, both administration routes improved motor function, protection of the nigrostriatal system, and improved striatal dopamine release. The observed beneficial effect of applying MSCs suggests potential benefits in clinical applications. No significant differences in the outcomes of the treatment would favor a certain way of MSC application over the other. However, the intravenous delivery method seems to be safer and more feasible compared to the intrastriatal method.


Assuntos
Células-Tronco Mesenquimais , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Ratos , Masculino , Animais , alfa-Sinucleína/metabolismo , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/tratamento farmacológico , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Rotenona/farmacologia , Dopa Descarboxilase/metabolismo , Células-Tronco Mesenquimais/metabolismo , Administração Intravenosa , Modelos Animais de Doenças
20.
Neurochem Res ; 49(6): 1577-1587, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38276990

RESUMO

Parkinson's disease (PD) is characterized by oxidative stress and neuroinflammation as key pathological features. Emerging evidence suggests that nuclear factor erythroid 2 related factor 2-antioxidant response element (Nrf2-ARE), phosphatidylinositol 3­kinase-protein kinase B (PI3K-Akt), c-Jun N-terminal kinase-extracellular signal-regulated kinase 1/2 (JNK-ERK1/2), and toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-kB) pathways play pivotal roles in PD pathogenesis. Orientin, a phenolic phytoconstituent, has demonstrated modulatory potential on these pathways in various experimental conditions other than PD. In this study, we aimed to evaluate the neuroprotective effects of Orientin against rotenone-induced neurodegeneration in SH-SY5Y cell lines and the Swiss albino mice model of PD. Orientin was administered at doses 10 and 20 µM in cell lines and 10 and 20 mg/kg in mice, and its effects on rotenone-induced neurodegeneration were investigated. Oxidative stress markers including mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as inflammatory markers including interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), were measured. The expression levels of genes related to Nrf2-ARE (Nrf2), PI3K/Akt (Akt), JNK-ERK1/2 (TNF-α), and TLR4/NF-kB (TNF-α) pathways were measured to understand the modulatory effect of Orientin on these pathways. Additionally, behavioral studies assessing locomotor activity, muscle coordination, and muscle rigidity were conducted with mice. Our results indicate that Orientin dose-dependently attenuated rotenone-induced changes in oxidative stress markers, inflammatory markers, gene expression levels, and behavioral parameters. Therefore, our study concludes that Orientin exhibits significant neuroprotective benefits against rotenone-induced PD by modulating Nrf2-ARE, PI3K-Akt, JNK-ERK1/2, and TLR4/NF-kB pathways.


Assuntos
Flavonoides , Glucosídeos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Fármacos Neuroprotetores , Proteínas Proto-Oncogênicas c-akt , Rotenona , Receptor 4 Toll-Like , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rotenona/toxicidade , Humanos , NF-kappa B/metabolismo , Masculino , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA