Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Radiat Res ; 196(2): 156-174, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34019667

RESUMO

Coagulopathies are well documented after acute radiation exposure at hematopoietic doses, and radiation-induced bleeding is notably one of the two main causes of mortality in the hematopoietic acute radiation syndrome. Despite this, understanding of the mechanisms by which radiation alters hemostasis and induces bleeding is still lacking. Here, male Göttingen minipigs received hematopoietic doses of 60Co gamma irradiation (total body) and coagulopathies were characterized by assessing bleeding, blood cytopenia, fibrin deposition, changes in hemostatic properties, coagulant/anticoagulant enzyme levels, and markers of inflammation, endothelial dysfunction, and barrier integrity to understand if a relationship exists between bleeding, hemostatic defects, bone marrow aplasia, inflammation, endothelial dysfunction and loss of barrier integrity. Acute radiation exposure induced coagulopathies in the Göttingen minipig model of hematopoietic acute radiation syndrome; instances of bleeding were not dependent upon thrombocytopenia. Neutropenia, alterations in hemostatic parameters and damage to the glycocalyx occurred in all animals irrespective of occurrence of bleeding. Radiation-induced bleeding was concurrent with simultaneous thrombocytopenia, anemia, neutropenia, inflammation, increased heart rate, decreased nitric oxide bioavailability and endothelial dysfunction; bleeding was not observed with the sole occurrence of a single aforementioned parameter in the absence of the others. Alteration of barrier function or clotting proteins was not observed in all cases of bleeding. Additionally, fibrin deposition was observed in the heart and lungs of decedent animals but no evidence of DIC was noted, suggesting a unique pathophysiology of radiation-induced coagulopathies. These findings suggest radiation-induced coagulopathies are the result of simultaneous damage to several key organs and biological functions, including the immune system, the inflammatory response, the bone marrow and the cardiovasculature.


Assuntos
Síndrome Aguda da Radiação/patologia , Hematopoese/genética , Hemorragia/patologia , Inflamação/patologia , Anormalidades Induzidas por Radiação , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Animais , Transtornos de Proteínas de Coagulação/sangue , Transtornos de Proteínas de Coagulação/etiologia , Transtornos de Proteínas de Coagulação/patologia , Modelos Animais de Doenças , Hematopoese/efeitos da radiação , Hemorragia/sangue , Hemorragia/etiologia , Humanos , Inflamação/sangue , Inflamação/etiologia , Suínos , Porco Miniatura
2.
Health Phys ; 119(5): 594-603, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32947487

RESUMO

Exposure to total- and partial-body irradiation following a nuclear or radiological incident result in the potentially lethal acute radiation syndromes of the gastrointestinal and hematopoietic systems in a dose- and time-dependent manner. Radiation-induced damage to the gastrointestinal tract is observed within days to weeks post-irradiation. Our objective in this study was to evaluate plasma biomarker utility for the gastrointestinal acute radiation syndrome in non-human primates after partial body irradiation with minimal bone marrow sparing through correlation with tissue and histological analyses. Plasma and jejunum samples from non-human primates exposed to partial body irradiation of 12 Gy with bone marrow sparing of 2.5% were evaluated at various time points from day 0 to day 21 as part of a natural history study. Additionally, longitudinal plasma samples from non-human primates exposed to 10 Gy partial body irradiation with 2.5% bone marrow sparing were evaluated at timepoints out to 180 d post-irradiation. Plasma and jejunum metabolites were quantified via liquid chromatography-tandem mass spectrometry and histological analysis consisted of corrected crypt number, an established metric to assess radiation-induced gastrointestinal damage. A positive correlation of metabolite levels in jejunum and plasma was observed for citrulline, serotonin, acylcarnitine, and multiple species of phosphatidylcholines. Citrulline levels also correlated with injury and regeneration of crypts in the small intestine. These results expand the characterization of the natural history of gastrointestinal acute radiation syndrome in non-human primates exposed to partial body irradiation with minimal bone marrow sparing and also provide additional data toward the correlation of citrulline with histological endpoints.


Assuntos
Síndrome Aguda da Radiação/diagnóstico , Biomarcadores/sangue , Medula Óssea/efeitos da radiação , Trato Gastrointestinal/metabolismo , Tratamentos com Preservação do Órgão/métodos , Exposição à Radiação/efeitos adversos , Lesões Experimentais por Radiação/diagnóstico , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Animais , Citrulina/sangue , Trato Gastrointestinal/efeitos da radiação , Macaca mulatta , Masculino , Doses de Radiação , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/etiologia
3.
Health Phys ; 119(5): 621-632, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32947488

RESUMO

High-dose radiation exposure results in organ-specific sequelae that occurs in a time- and dose-dependent manner. The partial body irradiation with minimal bone marrow sparing model was developed to mimic intentional or accidental radiation exposures in humans where bone marrow sparing is likely and permits the concurrent analysis of coincident short- and long-term damage to organ systems. To help inform on the natural history of the radiation-induced injury of the partial body irradiation model, we quantitatively profiled the plasma proteome of non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing with 6 MV LINAC-derived photons at 0.80 Gy min over a time period of 3 wk. The plasma proteome was analyzed by liquid chromatography-tandem mass spectrometry. A number of trends were identified in the proteomic data including pronounced protein changes as well as protein changes that were consistently upregulated or downregulated at all time points and dose levels interrogated. Pathway and gene ontology analysis were performed; bioinformatic analysis revealed significant pathway and biological process perturbations post high-dose irradiation and shed light on underlying mechanisms of radiation damage. Additionally, proteins were identified that had the greatest potential to serve as biomarkers for radiation exposure.


Assuntos
Síndrome Aguda da Radiação/diagnóstico , Biomarcadores/sangue , Medula Óssea/efeitos da radiação , Tratamentos com Preservação do Órgão/métodos , Proteoma/análise , Exposição à Radiação/efeitos adversos , Lesões Experimentais por Radiação/diagnóstico , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Animais , Macaca mulatta , Masculino , Doses de Radiação , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/etiologia
4.
Int J Radiat Biol ; 96(1): 112-128, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30475652

RESUMO

Purpose: Göttingen minipig (G-MP) displays classic gastrointestinal acute radiation syndrome (GI-ARS) following total body irradiation (TBI) at GI doses which are lethal by 10-14 days. In collaboration with BARDA, we are developing a hemi-body/partial body irradiation (PBI) model by exposing only the abdomen and lower extremities to study GI structure/function impairment, natural history of injury and recovery, as well as correlative biomarkers out to 30 days.Materials and methods: Twenty-four G-MP were exposed to either 12 or 16 Gy (LINAC Elekta); head, forelimbs, and thorax were outside the irradiation field, sparing ∼50% of the bone marrow. Animals were followed for 30 days with euthanasia scheduled at pre-set intervals to study the time course of GI injury and recovery. Hematological profiles, clinical symptoms, gross- and histo-pathology including markers of proliferation and apoptosis in the small intestines, gut function parameters (food tolerance, digestion, absorption, citrulline production), and levels of two biomarkers, CRP and IGF-1, were evaluated.Results: PBI at 16 Gy yielded higher lethality than 12 Gy. Unlike TBI, PBI did not cause severe pancytopenia or external hemorrhage, as expected, and allowed to focus the injury on GI organs while sparing the radiation sensitive heart and lung. Compromised animals showed inactivity, anorexia, vomiting, diarrhea, and weight loss. Histology revealed that in 12 Gy irradiated animals, lesions recovered overtime. In 16 Gy irradiated animals, lesions were more pronounced and persistent. BrdU and Ki67 labelling demonstrated dose-dependent loss of crypts and subsequent mucosal ulceration which recovered over time. Minimal apoptosis was observed at both doses. Reductions in food tolerance, digestion, absorption, and citrulline production were time and dose-dependent. Loss of citrulline reached a nadir between 6-12 days and then recovered partially. CRP and IGF-1 were upregulated following PBI at GI doses.Conclusions: This lower hemi-body irradiation model allowed for extended survival at GI-specific ARS doses and development of a well-controlled GI syndrome with minimal hematopoietic injury or confounding mortality from cardiopulmonary damage. A dose-dependent impairment in the intestinal structure resulted in overall decreased gut functionality followed by a partial recovery. However, while the structure appeared to be recovered, not all functionality was attained. PBI induced systemic inflammation and altered the IGF-1 hormone indicating that these can be used as biomarkers in the minipig even under partial body conditions. This PBI model aligns with other minipig models under BARDA's large animal consortium to test medical countermeasure efficacy against a less complex GI-specific ARS injury.


Assuntos
Síndrome Aguda da Radiação/patologia , Síndrome Aguda da Radiação/fisiopatologia , Trato Gastrointestinal/fisiopatologia , Trato Gastrointestinal/efeitos da radiação , Síndrome Aguda da Radiação/sangue , Animais , Contagem de Células Sanguíneas , Proteína C-Reativa/metabolismo , Citrulina/sangue , Digestão/efeitos da radiação , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Trato Gastrointestinal/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Suínos , Porco Miniatura , Fatores de Tempo
5.
Int J Radiat Biol ; 96(1): 100-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-29447591

RESUMO

Purpose: Characterization of a novel partial-body irradiation (PBI) shielding strategy in nonhuman primates (NHP; rhesus macaques), aimed at protecting the oral cavity, with respect to various gastrointestinal acute radiation syndrome (GI-ARS) syndrome parameters as well as buccal ulceration development.Materials and methods: NHPs were irradiated using a Cobalt-60 gamma source, in a single uniform dose, ranging from 9-13 Gy and delivered at 0.60-0.80 Gy min-1. Animals were either partially shielded via oral cavity shielding (PBIOS) or underwent total-body irradiation (TBI).Results: Clinical manifestations of GI-ARS, and also radiation-induced hematology and clinical chemistry changes, following PBIOS were comparable to the PBI NHP GI-ARS model utilizing shielding of the distal pelvic limbs and were significantly milder than TBI at similar radiation doses. Nadir citrulline levels were comparable between PBIOS and TBI but signs of recovery appeared earlier in PBIOS-treated animals. The PBIOS model prevented oral mucositis, whereas the TBI model presented buccal ulcerations at all tested radiation dose levels.Conclusions: Taken together, these results suggest that the PBIOS model is a suitable alternative to traditional PBI. For GI-ARS investigations requiring orally administered medical countermeasures, PBIOS confers added value due to the prevention of oral mucositis over traditional PBI.


Assuntos
Boca/efeitos da radiação , Proteção Radiológica/métodos , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/patologia , Animais , Citrulina/sangue , Radioisótopos de Cobalto/efeitos adversos , Raios gama/efeitos adversos , Macaca mulatta , Masculino , Análise de Sobrevida , Úlcera/sangue , Úlcera/etiologia , Úlcera/patologia
6.
Molecules ; 24(22)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698831

RESUMO

Prostaglandins and inhibitors of their synthesis (cyclooxygenase (COX) inhibitors, non-steroidal anti-inflammatory drugs) were shown to play a significant role in the regulation of hematopoiesis. Partly due to their hematopoiesis-modulating effects, both prostaglandins and COX inhibitors were reported to act positively in radiation-exposed mammalian organisms at various pre- and post-irradiation therapeutical settings. Experimental efforts were targeted at finding pharmacological procedures leading to optimization of therapeutical outcomes by minimizing undesirable side effects of the treatments. Progress in these efforts was obtained after discovery of selective inhibitors of inducible selective cyclooxygenase-2 (COX-2) inhibitors. Recent studies have been able to suggest the possibility to find combined therapeutical approaches utilizing joint administration of prostaglandins and inhibitors of their synthesis at optimized timing and dosing of the drugs which could be incorporated into the therapy of patients with acute radiation syndrome.


Assuntos
Síndrome Aguda da Radiação/metabolismo , Hematopoese/efeitos dos fármacos , Prostaglandinas/biossíntese , Prostaglandinas/farmacologia , Protetores contra Radiação/farmacologia , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/etiologia , Animais , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Modelos Animais de Doenças , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Protetores contra Radiação/uso terapêutico
7.
Radiat Res ; 192(6): 602-611, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31556847

RESUMO

Acute radiation syndrome (ARS) occurs as a result of partial- or whole-body, high-dose exposure to radiation in a very short period of time. Survival is dependent on the severity of the hematopoietic sub-syndrome of ARS. In this study, we investigated the mitigating effects of a lipid molecule, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG), on the kinetics of hematopoietic cells, including absolute neutrophil count (ANC), red blood cells (RBCs) and platelet counts, in mice after gamma-ray total-body irradiation (TBI). Male and female BALB/c mice (11 weeks old) received a LD70/30 dose of TBI. PLAG significantly and dose-dependently attenuated radiation-induced mortality (P = 0.0041 for PLAG 50 mg/kg; P < 0.0001 for PLAG 250 mg/kg) and body weight loss (P < 0.0001 for PLAG 50 and 250 mg/kg) in mice. Single-fraction TBI sharply reduced ANC within 3 days postirradiation and maintained the neutropenic state (ANC < 500 cells/µl) by approximately 26.8 ± 0.8 days. However, administration of PLAG attenuated radiation-induced severe neutropenia (ANC < 100 cells/µl) by effectively delaying the mean day of its onset and decreasing its duration. PLAG also significantly mitigated radiation-induced thrombocytopenia (P < 0.0001 for PLAG 250 mg/kg) and anemia (P = 0.0023 for PLAG 250 mg/kg) by increasing mean platelet and RBC counts, as well as hemoglobin levels, in peripheral blood. Moreover, delayed administration of PLAG, even at 48 and 72 h after gamma-ray irradiation, significantly attenuated radiation-induced mortality in a time-dependent manner. When compared to olive oil and palmitic linoleic hydroxyl (PLH), only PLAG effectively attenuated radiation-induced mortality, indicating that it has a distinctive mechanism of action. Based on these preclinical observations, we concluded that PLAG has high potential as a radiation countermeasure for the improvement of survivability and the treatment of hematopoietic injury in gamma-ray-induced ARS.


Assuntos
Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/tratamento farmacológico , Diglicerídeos/uso terapêutico , Radiação Ionizante , Irradiação Corporal Total/efeitos adversos , Animais , Plaquetas/efeitos da radiação , Peso Corporal , Eritrócitos/efeitos da radiação , Feminino , Raios gama , Cinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/efeitos da radiação , Contagem de Plaquetas , Trombocitopenia/etiologia
8.
Radiat Prot Dosimetry ; 186(1): 15-23, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31330012

RESUMO

Results from archived (1986 and 1996) experiments were used to establish a baboon radiation-quality dose-response database with haematology biomarker time-course data following exposure to mixed-fields (i.e. neutron to gamma ratio: 5.5; dose: 0-8 Gy) and 60Co gamma-ray exposures (0-15 Gy). Time-course (i.e. 0-40 d) haematology changes for relevant blood-cell types for both mixed-field (neutron to gamma ratio = 5.5) and gamma ray alone were compared and models developed that showed significant differences using the maximum likehood ratio test. A consensus METREPOL-like haematology ARS (H-ARS) severity scoring system for baboons was established using these results. The data for mixed-field and the gamma only cohorts appeared similar, and so the cohorts were pooled into a single consensus H-ARS severity scoring system. These findings provide proof-of-concept for the use of a METREPOL H-ARS severity scoring system following mixed-field and gamma exposures.


Assuntos
Síndrome Aguda da Radiação/diagnóstico , Biomarcadores/análise , Raios gama/efeitos adversos , Hematologia/métodos , Modelos Biológicos , Nêutrons/efeitos adversos , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Animais , Masculino , Papio , Doses de Radiação
9.
Radiat Res ; 192(2): 208-218, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31211643

RESUMO

Radiological exposure scenarios involving large numbers of people require a rapid and high-throughput method to identify the unexposed, and those exposed to low- and high-dose radiation. Those with high-dose exposure, e.g., >2 Gy and depending on host characteristics, may develop severe hematological acute radiation syndrome (HARS), requiring hospitalization and treatment. Previously, we identified a set of genes that discriminated these clinically relevant groups. In the current work, we examined the utility of gene expression changes to classify 1,000 split blood samples into HARS severity scores of H0, H1 and H2-4, with the latter indicating likely hospitalization. In several previous radiation dose experiments, we determined that these HARS categories corresponded, respectively, to doses of 0 Gy (unexposed), 0.5 Gy and 5 Gy. The main purpose of this work was to assess the rapidity of blood sample processing using targeted next-generation sequencing (NGS). Peripheral blood samples from two healthy donors were X-ray irradiated in vitro and incubated at 37°C for 24 h. A total of 1,000 samples were evaluated by laboratory personnel blinded to the radiation dose. Changes in gene expression of FDXR, DDB2, POU2AF1 and WNT3 were examined with qRT-PCR as positive controls. Targeted NGS (TREX) was used on all samples for the same four genes. Agreement using both methods was almost 78%. Using NGS, all 1,000 samples were processed within 30 h. Classification of the HARS severity categories corresponding to radiation dose had an overall agreement ranging between 90-97%. Depending on the end point, either a combination of all genes or FDXR alone (H0 HARS or unexposed) provided the best classification. Using this optimized automated methodology, we assessed 100× more samples approximately three times faster compared to standard cytogenetic studies. We showed that a small set of genes, rather than a complex constellation of genes, provided robust positive (97%) and negative (97%) predictive values for HARS categories and radiation doses of 0, 0.5 and 5 Gy. The findings of this study support the potential utility of early radiation-induced gene expression changes for high-throughput biodosimetry and rapid identification of irradiated persons in need of hospitalization.


Assuntos
Síndrome Aguda da Radiação/diagnóstico , Síndrome Aguda da Radiação/genética , Perfilação da Expressão Gênica , Exposição à Radiação/efeitos adversos , Triagem/métodos , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Adulto , Reações Falso-Positivas , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
10.
Radiat Res ; 191(5): 428-438, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870098

RESUMO

Detonation of a radiological or nuclear device in a major urban area will result in heterogenous radiation exposure, given to the significant shielding of the exposed population due to surrounding structures. Development of biodosimetry assays for triage and treatment requires knowledge of the radiation dose-volume effect for the bone marrow (BM). This proof-of-concept study was designed to quantify BM damage in the non-human primate (NHP) after exposure to one of four radiation patterns likely to occur in a radiological/nuclear attack with varying levels of BM sparing. Rhesus macaques (11 males, 12 females; 5.30-8.50 kg) were randomized by weight to one of four arms: 1. bilateral total-body irradiation (TBI); 2. unilateral TBI; 3. bilateral upper half-body irradiation (UHBI); and 4. bilateral lower half-body irradiation (LHBI). The match-point for UHBI vs. LHBI was set at 1 cm above the iliac crest. Animals were exposed to 4 Gy of 6 MV X rays. Peripheral blood samples were drawn 14 days preirradiation and at days 1, 3, 5, 7 and 14 postirradiation. Dosimetric measurements after irradiation indicated that dose to the mid-depth xiphoid was within 6% of the prescribed dose. No high-grade fever, weight loss >10%, dehydration or respiratory distress was observed. Animals in the bilateral- and unilateral TBI arms presented with hematologic changes [e.g., absolute neutrophil count (ANC) <500/ll; platelets <50,000/ll] and clinical signs/symptoms (e.g., petechiae, ecchymosis) characteristic of the acute radiation syndrome. Animals in the bilateral UHBI arm presented with myelosuppression; however, none of the animals developed severe neutropenia or thrombocytopenia (ANC remained >500/µl; platelets >50,000/µl during 14-day follow-up). In contrast, animals in the LHBI arm (1 cm above the ilieac crest to the toes) were protected against BM toxicity with no marked changes in hematological parameters and only minor gross pathology [petechiae (1/5), splenomegaly (1/5) and mild pulmonary hemorrhage (1/5)]. The model performed as expected with respect to the dose-volume effect of total versus partial-BM irradiation, e.g., increased shielding resulted in reduced BM toxicity. Shielding of the major blood-forming organs (e.g., skull, ribs, sternum, thoracic and lumbar spine) spared animals from bone marrow toxicity. These data suggest that the biological consequences of the absorbed dose are dependent on the total volume and pattern of radiation exposure.


Assuntos
Síndrome Aguda da Radiação/sangue , Testes Hematológicos , Síndrome Aguda da Radiação/patologia , Animais , Peso Corporal/efeitos da radiação , Modelos Animais de Doenças , Feminino , Macaca mulatta , Radiometria
11.
J Proteome Res ; 18(5): 2260-2269, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30843397

RESUMO

Rapid assessment of radiation signatures in noninvasive biofluids may aid in assigning proper medical treatments for acute radiation syndrome (ARS) and delegating limited resources after a nuclear disaster. Metabolomic platforms allow for rapid screening of biofluid signatures and show promise in differentiating radiation quality and time postexposure. Here, we use global metabolomics to differentiate temporal effects (1-60 d) found in nonhuman primate (NHP) urine and serum small molecule signatures after a 4 Gy total body irradiation. Random Forests analysis differentially classifies biofluid signatures according to days post 4 Gy exposure. Eight compounds involved in protein metabolism, fatty acid ß oxidation, DNA base deamination, and general energy metabolism were identified in each urine and serum sample and validated through tandem MS. The greatest perturbations were seen at 1 d in urine and 1-21 d in serum. Furthermore, we developed a targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM) method to quantify a six compound panel (hypoxanthine, carnitine, acetylcarnitine, proline, taurine, and citrulline) identified in a previous training cohort at 7 d after a 4 Gy exposure. The highest sensitivity and specificity for classifying exposure at 7 d after a 4 Gy exposure included carnitine and acetylcarnitine in urine and taurine, carnitine, and hypoxanthine in serum. Receiver operator characteristic (ROC) curve analysis using combined compounds show excellent sensitivity and specificity in urine (area under the curve [AUC] = 0.99) and serum (AUC = 0.95). These results highlight the utility of MS platforms to differentiate time postexposure and acquire reliable quantitative biomarker panels for classifying exposed individuals.


Assuntos
Acetilcarnitina/urina , Síndrome Aguda da Radiação/diagnóstico , Carnitina/urina , Hipoxantina/sangue , Metabolômica/métodos , Taurina/sangue , Irradiação Corporal Total/métodos , Acetilcarnitina/sangue , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/patologia , Síndrome Aguda da Radiação/urina , Animais , Biomarcadores/sangue , Biomarcadores/urina , Carnitina/sangue , Cromatografia Líquida , Citrulina/sangue , Citrulina/urina , Metabolismo Energético/genética , Metabolismo Energético/efeitos da radiação , Ácidos Graxos/sangue , Ácidos Graxos/urina , Feminino , Hipoxantina/urina , Macaca mulatta , Masculino , Espectrometria de Massas , Metaboloma/genética , Metaboloma/efeitos da radiação , Prolina/sangue , Prolina/urina , Biossíntese de Proteínas/efeitos da radiação , Curva ROC , Taurina/urina
12.
Sci Rep ; 9(1): 2198, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778109

RESUMO

The increasing potential for accidental radiation exposure from either nuclear accidents or terrorist activities has escalated the need for radiation countermeasure development. We previously showed that a 30-day course of high-dose captopril, an ACE inhibitor, initiated 1-4 h after total body irradiation (TBI), improved Hematopoietic Acute Radiation Syndrome (H-ARS) and increased survival in mice. However, because of the time likely required for the deployment of a stockpiled radiation countermeasure to a radiation mass casualty site, there is a need for therapies that can be administered 24-48 hours after initial exposure. Using C57BL/6 mice exposed to an LD50-80/30 of 60Co TBI (7.75-7.9 Gy, 0.615 Gy/min), we show that low-dose captopril administration, initiated as late as 48 h post-TBI and continued for 14 days, significantly enhanced overall survival similarly to high-dose, rapid administration. Captopril treatment did not affect radiation-induced cell cycle arrest genes or the immediate loss of hematopoietic precursors. Reduced mortality was associated with the recovery of bone marrow cellularity and mature blood cell recovery at 21-30 days post-irradiation. Captopril reduced radiation-induced cytokines EPO, G-CSF, and SAA in the plasma. Finally, delayed captopril administration mitigated brain micro-hemorrhage at 21 days post-irradiation. These data indicate that low dose captopril administered as late as 48 h post-TBI for only two weeks improves survival that is associated with hematopoietic recovery and reduced inflammatory response. These data suggest that captopril may be an ideal countermeasure to mitigate H-ARS following accidental radiation exposure.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Captopril/administração & dosagem , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Protetores contra Radiação/administração & dosagem , Irradiação Corporal Total , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/mortalidade , Síndrome Aguda da Radiação/prevenção & controle , Animais , Contagem de Células Sanguíneas , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos da radiação , Mediadores da Inflamação/metabolismo , Camundongos , Doses de Radiação , Exposição à Radiação , Tempo para o Tratamento , Irradiação Corporal Total/efeitos adversos
13.
Health Phys ; 116(4): 484-502, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30681425

RESUMO

Sex is an important confounding variable in biomarker development that must be incorporated into biomarker discovery and validation. Additionally, understanding of sex as a biological variable is essential for effective translation of biomarkers in animal models to human populations. Toward these ends, we conducted high-throughput targeted metabolomics using liquid chromatography tandem mass spectrometry and multiplexed immunoassay analyses using a Luminex-based system in both male and female mice in a model of total-body irradiation at a radiation dose consistent with the hematopoietic acute radiation syndrome. Metabolomic and immunoassay analyses identified metabolites and cytokines that were significantly different in plasma from naive and irradiated C57BL/6 mice consisting of equal numbers of female and male mice at 3 d after 8.0 or 8.72 Gy, an approximate LD60-70/30 dose of total-body irradiation. An additional number of metabolites and cytokines had sex-specific responses after radiation. Analyses of sham-irradiated mice illustrate the presence of stress-related changes in several cytokines due simply to undergoing the irradiation procedure, absent actual radiation exposure. Basal differences in metabolite levels between female and male were also identified as well as time-dependent changes in cytokines up to 9 d postexposure. These studies provide data toward defining the influence of sex on plasma-based biomarker candidates in a well-defined mouse model of acute radiation syndrome.


Assuntos
Síndrome Aguda da Radiação/metabolismo , Hematopoese/efeitos da radiação , Lesões Experimentais por Radiação/metabolismo , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Animais , Biomarcadores/sangue , Cromatografia Líquida , Citocinas/sangue , Feminino , Ensaios de Triagem em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/etiologia , Fatores Sexuais , Espectrometria de Massas em Tandem , Fatores de Tempo , Irradiação Corporal Total
14.
Radiat Res ; 190(6): 576-583, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30183511

RESUMO

Threats of nuclear terrorism coupled with potential unintentional ionizing radiation exposures have necessitated the need for large-scale response efforts of such events, including high-throughput biodosimetry for medical triage. Global metabolomics utilizing mass spectrometry (MS) platforms has proven an ideal tool for generating large compound databases with relative quantification and structural information in a short amount of time. Determining metabolite panels for biodosimetry requires experimentation to evaluate the many factors associated with compound concentrations in biofluids after radiation exposures, including temporal changes, pre-existing conditions, dietary intake, partial- vs. total-body irradiation (TBI), among others. Here, we utilize a nonhuman primate (NHP) model and identify metabolites perturbed in serum after 7.2 Gy TBI without supportive care [LD70/60, hematologic (hematopoietic) acute radiation syndrome (HARS) level H3] at 24, 36, 48 and 96 h compared to preirradiation samples with an ultra-performance liquid chromatography quadrupole time-of-flight (UPLC-QTOF) MS platform. Additionally, we document changes in cytokine levels. Temporal changes observed in serum carnitine, acylcarnitines, amino acids, lipids, deaminated purines and increases in pro-inflammatory cytokines indicate clear metabolic dysfunction after radiation exposure. Multivariate data analysis shows distinct separation from preirradiation groups and receiver operator characteristic curve analysis indicates high specificity and sensitivity based on area under the curve at all time points after 7.2 Gy irradiation. Finally, a comparison to a 6.5 Gy (LD50/60, HARS level H2) cohort after 24 h postirradiation revealed distinctly increased separations from the 7.2 Gy cohort based on multivariate data models and higher compound fold changes. These results highlight the utility of MS platforms to differentiate time and absorbed dose after a potential radiation exposure that may aid in assigning specific medical interventions and contribute as additional biodosimetry tools.


Assuntos
Síndrome Aguda da Radiação/sangue , Metaboloma/efeitos da radiação , Metabolômica , Primatas/sangue , Síndrome Aguda da Radiação/genética , Síndrome Aguda da Radiação/fisiopatologia , Aminoácidos/sangue , Animais , Carnitina/análogos & derivados , Carnitina/sangue , Citocinas/sangue , Humanos , Lipídeos/sangue , Macaca mulatta/sangue , Espectrometria de Massas , Metaboloma/genética , Purinas/sangue , Radiação Ionizante , Irradiação Corporal Total
15.
Biomed Environ Sci ; 31(6): 467-472, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30025561

RESUMO

There is still a need for better protection against or mitigation of the effects of ionizing radiation following conventional radiotherapy or accidental exposure. The objective of our current study was to investigate the possible roles of matrix metalloproteinase inhibitor, ilomastat, in the protection of mice from total body radiation (TBI), and the underlying protective mechanisms. Ilomastat treatment increased the survival of mice after TBI. Ilomastat pretreatment promoted recovery of hematological and immunological cells in mice after 6 Gy γ-ray TBI. Our findings suggest the potential of ilomastat to protect against or mitigate the effects of radiation.


Assuntos
Síndrome Aguda da Radiação/prevenção & controle , Raios gama/efeitos adversos , Ácidos Hidroxâmicos/uso terapêutico , Indóis/uso terapêutico , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/uso terapêutico , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/imunologia , Animais , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/efeitos da radiação , Relação Dose-Resposta a Droga , Camundongos , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/imunologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/efeitos da radiação , Análise de Sobrevida , Irradiação Corporal Total
16.
Georgian Med News ; (278): 177-183, 2018 May.
Artigo em Russo | MEDLINE | ID: mdl-29905567

RESUMO

In presented article, by means of a comparative analysis of the relationship between the dose-dependent alterations in the organism's redox status, measured by the innovative method developed by us and the standard methods used for assessing catalase and superoxide dismutase activity, and an end radiobiological effect, was attempted the preliminary assessment of the possibility to apply the parameter of blood plasma total antioxidant activity (TAA) as marker of dose and effect of radiation exposure. The experiments were carried out on white mice randomly divided into groups of irradiated and sham irradiated animals. The mice were exposed to a whole body gamma irradiation by source Cesium-137 (137Cs) at doses of 5 and 7 Gr, a dose rate of 1.1 Gr / min. After 5 days of beginning of observation in animals' blood measurements of the activity of antioxidant enzymes (superoxide dismutase - SOD and catalase - CAT) and total antioxidant activity by spectrophotometric method were evaluated. Parallel monitoring of animal survival was conducted. At the given stage of the study, applicability of OAA as a marker of dose-dependent alterations in antioxidant status was assessed by the criteria of sensitivity and linearity, and as a marker of the effect the strength of the relation between the antioxidant status indicators and the final radiobiological effect, measured by animal life span in post- radiation period (time-effect) For comparative analysis of the effects of radiation on the levels of antioxidant status indicators (SOD, catalase, OAA), ANOVA methods were used, the nature of the causal relationship between levels of antioxidant status and the life span of laboratory animals was analyzed on the basis of the Cox proportional intensity model with time covariates, preliminary processing of data, basic calculations and visualization of the results were carried out using a mathematical package that " STATISTIC 12". The received results testify to the significantly high sensitivity of the total redox-status indicator (OAA) to the dose of irradiation, which makes it possible with full justification to consider it as a promising candidate of the biological exposure dose marker. In addition, the indicator of the total antioxidant status (OAA) of the body allows predicting the dose dependence of the survival of laboratory mice more accurately than the indices of the activity of individual antioxidant enzymes (catalase and SOD), which makes it possible to consider it as a promising candidate for the biomarker of the dose and the effect of radiation exposure.


Assuntos
Síndrome Aguda da Radiação/diagnóstico , Catalase/sangue , Raios gama , Exposição à Radiação/análise , Superóxido Dismutase/sangue , Síndrome Aguda da Radiação/sangue , Animais , Radioisótopos de Césio , Relação Dose-Resposta à Radiação , Camundongos , Modelos de Riscos Proporcionais , Irradiação Corporal Total
17.
Health Phys ; 115(1): 3-11, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29787425

RESUMO

The search for and development of radiation countermeasures to treat acute lethal radiation injury has been underway for the past six decades, resulting in the identification of multiple classes of radiation countermeasures. However, to date only granulocyte colony-stimulating factor (Neupogen) and PEGylated granulocyte colony-stimulating factor (Neulasta) have been approved by the U.S. Food and Drug Administration for the treatment of hematopoietic acute radiation syndrome. Gamma-tocotrienol has demonstrated radioprotective efficacy in murine and nonhuman primate models. Currently, this agent is under advanced development as a radioprotector, and the authors are trying to identify its efficacy biomarkers. In this study, global metabolomic changes were analyzed using ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry. The pilot study using 16 nonhuman primates (8 nonhuman primates each in gamma-tocotrienol- and vehicle-treated groups), with samples obtained from gamma-tocotrienol-treated and irradiated nonhuman primates, demonstrates several metabolites that are altered after irradiation, including compounds involved in fatty acid beta-oxidation, purine catabolism, and amino acid metabolism. The machine-learning algorithm, Random Forest, separated control, irradiated gamma-tocotrienol-treated, and irradiated vehicle-treated nonhuman primates at 12 h and 24 h as evident in a multidimensional scaling plot. Primary metabolites validated included carnitine/acylcarnitines, amino acids, creatine, and xanthine. Overall, gamma-tocotrienol administration reduced high fluctuations in serum metabolite levels, suggesting an overall beneficial effect on animals exposed to radiation. This initial assessment also highlights the utility of metabolomics in determining underlying physiological mechanisms responsible for the radioprotective efficacy of gamma-tocotrienol.


Assuntos
Síndrome Aguda da Radiação/prevenção & controle , Biomarcadores/sangue , Cromanos/farmacologia , Metaboloma/efeitos da radiação , Exposição à Radiação/efeitos adversos , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Vitamina E/análogos & derivados , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Animais , Relação Dose-Resposta à Radiação , Feminino , Macaca mulatta , Masculino , Metabolômica , Projetos Piloto , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/etiologia , Radiação Ionizante , Vitamina E/farmacologia
18.
Health Phys ; 115(1): 29-36, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29787428

RESUMO

Use of plasma proteomic and hematological biomarkers represents a promising approach to provide useful diagnostic information for assessment of the severity of hematopoietic acute radiation syndrome. Eighteen baboons were evaluated in a radiation model that underwent total-body and partial-body irradiations at doses of Co gamma rays from 2.5 to 15 Gy at dose rates of 6.25 cGy min and 32 cGy min. Hematopoietic acute radiation syndrome severity levels determined by an analysis of blood count changes measured up to 60 d after irradiation were used to gauge overall hematopoietic acute radiation syndrome severity classifications. A panel of protein biomarkers was measured on plasma samples collected at 0 to 28 d after exposure using electrochemiluminescence-detection technology. The database was split into two distinct groups (i.e., "calibration," n = 11; "validation," n = 7). The calibration database was used in an initial stepwise regression multivariate model-fitting approach followed by down selection of biomarkers for identification of subpanels of hematopoietic acute radiation syndrome-responsive biomarkers for three time windows (i.e., 0-2 d, 2-7 d, 7-28 d). Model 1 (0-2 d) includes log C-reactive protein (p < 0.0001), log interleukin-13 (p < 0.0054), and procalcitonin (p < 0.0316) biomarkers; model 2 (2-7 d) includes log CD27 (p < 0.0001), log FMS-related tyrosine kinase 3 ligand (p < 0.0001), log serum amyloid A (p < 0.0007), and log interleukin-6 (p < 0.0002); and model 3 (7-28 d) includes log CD27 (p < 0.0012), log serum amyloid A (p < 0.0002), log erythropoietin (p < 0.0001), and log CD177 (p < 0.0001). The predicted risk of radiation injury categorization values, representing the hematopoietic acute radiation syndrome severity outcome for the three models, produced least squares multiple regression fit confidences of R = 0.73, 0.82, and 0.75, respectively. The resultant algorithms support the proof of concept that plasma proteomic biomarkers can supplement clinical signs and symptoms to assess hematopoietic acute radiation syndrome risk severity.


Assuntos
Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/diagnóstico , Biomarcadores/sangue , Raios gama/efeitos adversos , Hematologia , Proteoma/efeitos da radiação , Índice de Gravidade de Doença , Síndrome Aguda da Radiação/etiologia , Algoritmos , Animais , Relação Dose-Resposta à Radiação , Masculino , Papio , Proteômica/métodos , Irradiação Corporal Total
19.
Sci Rep ; 8(1): 1302, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358747

RESUMO

Exposure to high-doses of ionizing radiation (IR) leads to development of a strong acute radiation syndrome (ARS) in mammals. ARS manifests after a latency period and it is important to develop fast prognostic biomarkers for its early detection and assessment. Analysis of chromosomal aberrations in peripheral blood lymphocytes is the gold standard of biological dosimetry, but it fails after high doses of IR. Therefore, it is important to establish novel biomarkers of exposure that are fast and reliable also in the high dose range. Here, we investigated the applicability of miRNA levels in mouse serum. We found significantly increased levels of miR-375-3p following whole body exposure to 7 Gy of X-rays. In addition, we analyzed their levels in various organs of control mice and found them to be especially abundant in the pancreas and the intestine. Following a dose of 7 Gy, extensive cell death occurred in these tissues and this correlated negatively with the levels of miR-375-3p in the organs. We conclude that high expressing tissues of miR-375-3p may secrete this miRNA in serum following exposure to 7 Gy. Therefore, elevated miR-375-3p in serum may be a predictor of tissue damage induced by exposure to a high radiation dose.


Assuntos
Síndrome Aguda da Radiação/diagnóstico , Aberrações Cromossômicas/efeitos da radiação , MicroRNAs/genética , Raios X/efeitos adversos , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/mortalidade , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Linfócitos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/sangue , Análise de Sobrevida , Irradiação Corporal Total
20.
Int J Mol Sci ; 19(1)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29283379

RESUMO

The development of radiation countermeasures for acute radiation syndrome (ARS) has been underway for the past six decades, leading to the identification of multiple classes of radiation countermeasures. However, to date, only two growth factors (Neupogen and Neulasta) have been approved by the United States Food and Drug Administration (US FDA) for the mitigation of hematopoietic acute radiation syndrome (H-ARS). No radioprotector for ARS has been approved by the FDA yet. Gamma-tocotrienol (GT3) has been demonstrated to have radioprotective efficacy in murine as well as nonhuman primate (NHP) models. Currently, GT3 is under advanced development as a radioprotector that can be administered prior to radiation exposure. We are studying this agent for its safety profile and efficacy using the NHP model. In this study, we analyzed global metabolomic and lipidomic changes using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) in serum samples of NHPs administered GT3. Our study, using 12 NHPs, demonstrates that alterations in metabolites manifest only 24 h after GT3 administration. Furthermore, metabolic changes are associated with transient increase in the bioavailability of antioxidants, including lactic acid and cholic acid and anti-inflammatory metabolites 3 deoxyvitamin D3, and docosahexaenoic acid. Taken together, our results show that the administration of GT3 to NHPs causes metabolic shifts that would provide an overall advantage to combat radiation injury. This initial assessment also highlights the utility of metabolomics and lipidomics to determine the underlying physiological mechanisms involved in the radioprotective efficacy of GT3.


Assuntos
Cromanos/farmacocinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Protetores contra Radiação/farmacocinética , Vitamina E/análogos & derivados , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/prevenção & controle , Animais , Antioxidantes/metabolismo , Disponibilidade Biológica , Colecalciferol/análogos & derivados , Colecalciferol/sangue , Ácido Cólico/sangue , Cromanos/sangue , Ácidos Docosa-Hexaenoicos/sangue , Feminino , Humanos , Ácido Láctico/sangue , Macaca mulatta , Masculino , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vitamina E/sangue , Vitamina E/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA