RESUMO
Mitochondrial DNA (mtDNA) mutations, including the m.3243A>G mutation that causes mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), are associated with secondary coenzyme Q10 (CoQ10) deficiency. We previously demonstrated that PPARGC1A knockdown repressed the expression of PDSS2 and several COQ genes. In the present study, we compared the mitochondrial function, CoQ10 status, and levels of PDSS and COQ proteins and genes between mutant cybrids harboring the m.3243A>G mutation and wild-type cybrids. Decreased mitochondrial energy production, defective respiratory function, and reduced CoQ10 levels were observed in the mutant cybrids. The ubiquinol-10:ubiquinone-10 ratio was lower in the mutant cybrids, indicating blockage of the electron transfer upstream of CoQ, as evident from the reduced ratio upon rotenone treatment and increased ratio upon antimycin A treatment in 143B cells. The mutant cybrids exhibited downregulation of PDSS2 and several COQ genes and upregulation of COQ8A. In these cybrids, the levels of PDSS2, COQ3-a isoform, COQ4, and COQ9 were reduced, whereas those of COQ3-b and COQ8A were elevated. The mutant cybrids had repressed PPARGC1A expression, elevated ATP5A levels, and reduced levels of mtDNA-encoded proteins, nuclear DNA-encoded subunits of respiratory enzyme complexes, MNRR1, cytochrome c, and DHODH, but no change in TFAM, TOM20, and VDAC1 levels. Alterations in the CoQ10 level in MELAS may be associated with mitochondrial energy deficiency and abnormal gene regulation. The finding of a reduction in the ubiquinol-10:ubiquinone-10 ratio in the MELAS mutant cybrids differs from our previous discovery that cybrids harboring the m.8344A>G mutation exhibit a high ubiquinol-10:ubiquinone-10 ratio.
Assuntos
DNA Mitocondrial , Metabolismo Energético , Mitocôndrias , Mutação , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/deficiência , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Metabolismo Energético/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Ataxia/genética , Ataxia/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Linhagem Celular Tumoral , Debilidade Muscular , Doenças MitocondriaisRESUMO
Objective: To summarize the clinical, imaging, and pathological characteristics of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS) to improve the diagnosis of this rare disease. Methods: A retrospective case series was conducted to collect the clinical data and results of genetic testing, muscle biopsy, and imaging studies including computed tomography (CT), magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS) of 35 patients with MELAS admitted to the Nanjing Drum Tower Hospital from 2012 to 2021. Descriptive statistical analysis including mean, standard deviation, and frequency percentage were carried out. Results: The average age of onset of the patients was 30.2±2.3 years; the prevalence of family history was 20%. The two main initial symptoms were limb weakness and convulsions. The clinical manifestations of the neuromuscular system were proximal muscle weakness and exercise intolerance. The endocrine system is the most affected outside the neuromuscular system, with diabetes being the most common condition. Among the five patients who underwent brain CT, four showed hypodense lesions and two had calcified lesions. Brain MRI in 26 patients showed that the lesions more often affected the parietal lobe, basal ganglia, temporal lobe, occipital lobe, and frontal lobe than the infratentorial areas. Twelve of these individuals exhibited different levels of brain atrophy. Among the 10 patients who underwent 1H-MRS, nine showed a decrease in N-acetylaspartate (NAA) levels, eight exhibited abnormal lactate elevation (Lac peaks), whereas six had both reduced NAA levels and the presence of Lac peaks. Thirty-one patients underwent genetic testing; among them, 25 were found to have the mt.3243A>G mutation, while the remaining six exhibited rare gene alterations. Muscle biopsies were performed in 21 patients, and 15 showed abnormal mitochondrial proliferation manifested by ragged red fibers and defective oxidative phosphorylation manifested by cytochrome C oxidase (COX) enzyme-deficient muscle fibers. Conclusion: The clinical manifestations of MELAS syndrome are variable and complex, and early atypical symptoms could be missed or misdiagnosed. A detailed clinical history, imaging MRS analysis, muscle biopsy, and genetic testing are necessary to confirm the accurate diagnosis of MELAS.
Assuntos
Síndrome MELAS , Imageamento por Ressonância Magnética , Humanos , Síndrome MELAS/diagnóstico , Estudos Retrospectivos , Adulto , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Masculino , Feminino , Espectroscopia de Ressonância MagnéticaRESUMO
BACKGROUND: Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a maternally inherited mitochondrial disease that affects various systems in the body, particularly the brain, nervous system, and muscles. Among these systems, sensorineural hearing loss is a common additional symptom. METHODS: A 42-year-old female patient with MELAS who experienced bilateral profound deafness and underwent bilateral sequential cochlear implantation (CIs). Speech recognition and subjective outcomes were evaluated. RESULTS: Following the first CI follow-up, the patient exhibited improved speech recognition ability and decided to undergo the implantation of the second ear just two months after the initial CI surgery. The second CI also demonstrated enhanced speech recognition ability. Subjective outcomes were satisfactory for bilateral CIs. CONCLUSIONS: MELAS patients receiving bilateral CIs can attain satisfactory post-CI speech recognition, spatial hearing, and sound qualities.
Assuntos
Implante Coclear , Implantes Cocleares , Síndrome MELAS , Humanos , Feminino , Adulto , Síndrome MELAS/complicações , Implante Coclear/métodos , Perda Auditiva Neurossensorial/cirurgia , Perda Auditiva Neurossensorial/etiologia , Percepção da FalaRESUMO
The MT-TL2 m.12315G>A pathogenic variant has previously been reported in five individuals with mild clinical phenotypes. Herein we report the case of a 5-year-old child with heteroplasmy for this variant who developed neurological regression and stroke-like episodes similar to those observed in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochemical evaluation revealed depletion of arginine on plasma amino acid analysis and low z-scores for citrulline on untargeted plasma metabolomics analysis. These findings suggested that decreased availability of nitric oxide may have contributed to the stroke-like episodes. The use of intravenous arginine during stroke-like episodes and daily enteral L-citrulline supplementation normalized her biochemical values of arginine and citrulline. Untargeted plasma metabolomics showed the absence of nicotinamide and 1-methylnicotinamide, and plasma total glutathione levels were low; thus, nicotinamide riboside and N-acetylcysteine therapies were initiated. This report expands the phenotype associated with the rare mitochondrial variant MT-TL2 m.12315G>A to include neurological regression and a MELAS-like phenotype. Individuals with this variant should undergo in-depth biochemical analysis to include untargeted plasma metabolomics, plasma amino acids, and glutathione levels to help guide a targeted approach to treatment.
Assuntos
Acidose Láctica , Síndrome MELAS , Encefalomiopatias Mitocondriais , Acidente Vascular Cerebral , Pré-Escolar , Feminino , Humanos , Arginina/genética , Citrulina , Glutationa/metabolismo , Síndrome MELAS/diagnóstico , Síndrome MELAS/genética , Síndrome MELAS/complicações , Doadores de Óxido Nítrico/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológicoRESUMO
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS) syndrome, caused by a single base substitution in mitochondrial DNA (m.3243A>G), is one of the most common maternally inherited mitochondrial diseases accompanied by neuronal damage due to defects in the oxidative phosphorylation system. There is no established treatment. Our previous study reported a superior restoration of mitochondrial function and bioenergetics in mitochondria-deficient cells using highly purified mesenchymal stem cells (RECs). However, whether such exogenous mitochondrial donation occurs in mitochondrial disease models and whether it plays a role in the recovery of pathological neuronal functions is unknown. Here, utilizing induced pluripotent stem cells (iPSC), we differentiated neurons with impaired mitochondrial function from patients with MELAS. MELAS neurons and RECs/mesenchymal stem cells (MSCs) were cultured under contact or non-contact conditions. Both RECs and MSCs can donate mitochondria to MELAS neurons, but RECs are more excellent than MSCs for mitochondrial transfer in both systems. In addition, REC-mediated mitochondrial transfer significantly restored mitochondrial function, including mitochondrial membrane potential, ATP/ROS production, intracellular calcium storage, and oxygen consumption rate. Moreover, mitochondrial function was maintained for at least three weeks. Thus, REC-donated exogenous mitochondria might offer a potential therapeutic strategy for treating neurological dysfunction in MELAS.
Assuntos
Acidose Láctica , Síndrome MELAS , Células-Tronco Mesenquimais , Doenças Mitocondriais , Humanos , Síndrome MELAS/genética , Síndrome MELAS/terapia , Mitocôndrias/genética , Acidose Láctica/metabolismo , Acidose Láctica/patologia , DNA Mitocondrial/metabolismo , Doenças Mitocondriais/metabolismo , Neurônios/patologia , Células-Tronco Mesenquimais/metabolismoRESUMO
Nuclease-mediated editing of heteroplasmic mitochondrial DNA (mtDNA) seeks to preferentially cleave and eliminate mutant mtDNA, leaving wild-type genomes to repopulate the cell and shift mtDNA heteroplasmy. Various technologies are available, but many suffer from limitations based on size and/or specificity. The use of ARCUS nucleases, derived from naturally occurring I-CreI, avoids these pitfalls due to their small size, single-component protein structure and high specificity resulting from a robust protein-engineering process. Here we describe the development of a mitochondrial-targeted ARCUS (mitoARCUS) nuclease designed to target one of the most common pathogenic mtDNA mutations, m.3243A>G. mitoARCUS robustly eliminated mutant mtDNA without cutting wild-type mtDNA, allowing for shifts in heteroplasmy and concomitant improvements in mitochondrial protein steady-state levels and respiration. In vivo efficacy was demonstrated using a m.3243A>G xenograft mouse model with mitoARCUS delivered systemically by adeno-associated virus. Together, these data support the development of mitoARCUS as an in vivo gene-editing therapeutic for m.3243A>G-associated diseases.
Assuntos
DNA Mitocondrial , Síndrome MELAS , Humanos , Animais , Camundongos , DNA Mitocondrial/genética , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , MutaçãoRESUMO
BACKGROUND: During corona virus pandemic, various neurological complications of COVID-19 have been reported. Recent studies demonstrated different pathophysiology for neurological manifestations of COVID-19 such as mitochondrial dysfunction and damage to cerebral vasculature. In addition, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a mitochondrial disorder with a variety of neurological symptoms. In this study, we aim to assess a potential predisposition in mitochondrial dysfunction of COVID-19, leading to MELAS presentation. METHODS: We studied three previously healthy patients with the first presentation of acute stroke-like symptoms, following COVID-19 infection. We analyzed the patients' clinical data and brain magnetic resonance imaging (MRI) lesions that presented to the neurological center of a university-affiliated hospital in Tehran, Iran, from September 2020 to August 2021. RESULTS: All cases are characterized by a temporoparietal abnormality in imaging studies and electroencephalogram (EEG). Based on electrodiagnostic tests, three patients were diagnosed with myopathy. In two brothers with relatively the same symptoms, one performed muscle biopsy finding myopathic process, and genetic testing confirmed a 3243A>G point mutation in a heteroplasmic state in one of our patients. CONCLUSION: Although MELAS is not a prevalent condition, the recent increase in the number of these patients in our center might indicate the potential role of COVID-19 in triggering the silent pre- existing mitochondrial dysfunction in these patients.
Assuntos
Acidose Láctica , COVID-19 , Síndrome MELAS , Doenças do Sistema Nervoso , Acidente Vascular Cerebral , Masculino , Humanos , Síndrome MELAS/complicações , Síndrome MELAS/genética , Síndrome MELAS/diagnóstico , COVID-19/complicações , COVID-19/patologia , Irã (Geográfico) , Acidose Láctica/complicações , Acidose Láctica/patologia , Acidente Vascular Cerebral/etiologia , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso/patologia , Mitocôndrias/patologiaRESUMO
BACKGROUND: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a systemic disorder in which multi-organ dysfunction may occur from mitochondrial metabolism failure. Maternally inherited mutations in the MT-TL1 gene are the most frequent causes for this disorder. Clinical manifestations may include stroke-like episodes, epilepsy, dementia, headache and myopathy. Among these, acute visual failure, usually in association with cortical blindness, can occur because of stroke-like episodes affecting the occipital cortex or the visual pathways. Vision loss due to optic neuropathy is otherwise considered a typical manifestation of other mitochondrial diseases such as Leber hereditary optic neuropathy (LHON). CASE PRESENTATION: Here we describe a 55-year-old woman, sister of a previously described patient with MELAS harbouring the m.3243A > G (p.0, MT-TL1) mutation, with otherwise unremarkable medical history, that presented with subacute, painful visual impairment of one eye, accompanied by proximal muscular pain and headache. Over the next weeks, she developed severe and progressive vision loss limited to one eye. Ocular examination confirmed unilateral swelling of the optic nerve head; fluorescein angiography showed segmental perfusion delay in the optic disc and papillary leakage. Neuroimaging, blood and CSF examination and temporal artery biopsy ruled out neuroinflammatory disorders and giant cell arteritis (GCA). Mitochondrial sequencing analysis confirmed the m.3243A > G transition, and excluded the three most common LHON mutations, as well as the m.3376G > A LHON/MELAS overlap syndrome mutation. Based on the constellation of clinical symptoms and signs presented in our patient, including the muscular involvement, and the results of the investigations, the diagnosis of optic neuropathy as a stroke-like event affecting the optic disc was performed. L-arginine and ubidecarenone therapies were started with the aim to improve stroke-like episode symptoms and prevention. The visual defect remained stable with no further progression or outbreak of new symptoms. CONCLUSIONS: Atypical clinical presentations must be always considered in mitochondrial disorders, even in well-described phenotypes and when mutational load in peripheral tissue is low. Mitotic segregation of mitochondrial DNA (mtDNA) does not allow to know the exact degree of heteroplasmy existent within different tissue, such as retina and optic nerve. Important therapeutic implications arise from a correct diagnosis of atypical presentation of mitochondrial disorders.
Assuntos
Acidose Láctica , Síndrome MELAS , Atrofia Óptica Hereditária de Leber , Doenças do Nervo Óptico , Neuropatia Óptica Isquêmica , Acidente Vascular Cerebral , Feminino , Humanos , Síndrome MELAS/genética , Neuropatia Óptica Isquêmica/complicações , Mutação , Acidente Vascular Cerebral/complicações , Doenças do Nervo Óptico/complicações , Atrofia Óptica Hereditária de Leber/genética , DNA Mitocondrial/genética , Transtornos da Visão/complicações , Cefaleia/complicaçõesRESUMO
Objective – Stroke-like lesions (SLLs) are pathognomonic for mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome but occur in other mitochondrial and non-mitochondrial disorders as well. This mini-review aims at summarising and discussing recent findings to open up future perspectives how to manage this fleeting phenomenon.
Results – Typically, SLLs are dynamic lesions, which increase in size and intensity to regress after a nadir. SLLs are incongruent with a vascular territory, originate frequently from the cortex to spread subcortically, can be monofocal or multifocal, run through an acute (attack) and chronic (remission) stage, and may either completely disappear or end up as laminar cortical necrosis, white matter lesion, subcortical atrophy, cyst, or the toenail sign. On cerebral CT, SLLs are hypodense. SLLs can be best visualized on multimodal MRI showing up as hyperintensity on T2, FLAIR, DWI, and PWI, and as hypointensity on OEF-MRI. On MR-spectroscopy, SLLs typically present with a decreased N-acetyl-aspartate peak and an increased lactate peak. DTI in acute SLLs reveals reduced connectivity, increased global efficiency, and reduced focal efficiency. Tc-HMPAO SPECT of SLLs indicates hyperperfusion and L-iomazenil SPECT reduced tracer uptake. FDG-PET typically shows hypometabolism within a SLL.
Conclusion – SLLs present with typical findings on various imaging modalities but the combination of cerebral CT, multimodal MRI, MRS, and PET clearly delineate a SLL from other acute or chronic cerebral lesions.
Assuntos
Síndrome MELAS , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Síndrome MELAS/diagnóstico por imagem , Síndrome MELAS/patologia , Imageamento por Ressonância Magnética , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Encéfalo/patologiaRESUMO
A biopsy of gastrocnemius muscle from a patient with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome was studied histologically in semithin sections stained by hematoxylin-and-eosin (H&E) and toluidine blue, and ultrathin sections by transmission electron microscopy (TEM). H&E stain demonstrated typical ragged-red fibers (RRFs) and affected fibers in fascicles. Toluidine-blue stain showed an irregular meshwork in the center of RRFs. TEM demonstrated damaged myofibrils and variations in mitochondrial structure in RRFs and affected fibers. Dense mitochondria were compacted with cristae and pleomorphic electron-dense inclusions. Lucent mitochondria included paracrystalline inclusions with a parking lot appearance. At high magnification, the paracrystalline inclusions were composed of plates that paralleled and connected with mitochondrial cristae. These observations indicated that electron-dense granular and paracrystalline inclusions resulted from cristal degeneration and overlapping in mitochondria in MELAS syndrome.
Assuntos
Acidose Láctica , Síndrome MELAS , Acidente Vascular Cerebral , Humanos , Acidose Láctica/patologia , Síndrome MELAS/patologia , Acidente Vascular Cerebral/patologia , Músculo Esquelético/patologia , Mitocôndrias/patologiaRESUMO
BACKGROUND: Pathogenic variants of ATP1A2 (OMIM ID: 182340) are usually associated with familial hemiplegic migraine type 2 (FHM-2), alternating hemiplegia of childhood (AHC), early infantile epileptic encephalopathy (EIEE), transient cytotoxic edema, and so on. Here, we present a novel heterozygous ATP1A2 variant in a girl with alternating hemiplegia, febrile seizures, developmental delay (which subsequently subsided), and MELAS-like syndrome (as indicated by brain MRI). The patient did not experience migraine with aura. METHODS: The patient was an 8-year-old girl with normal growth and development. Beginning from the age of 3 years and 8 months, the patient experienced several episodes of alternating limb paralysis. The episodes were accompanied by the appearance of MELAS-like findings on brain MRI, which corresponded to the hemiplegia. There were abnormal linear signals in the cerebral cortex on the opposite side of the hemiplegic limb. Each time the patient recovered from hemiplegia, and each time MRI showed no lesions remained after recovery. No obvious abnormality was found in other examinations. Finally, the patient underwent whole-exome sequencing (WES). RESULTS: WES revealed a novel and de novo heterozygous variant in the ATP1A2 (NM_000702.3) c.335C>A:p.Ala112Asp (not previously reported). We examined the variant position in the 3D protein structure and found that a missense mutation at this site is a nonconservative substitution. The variation is nonpolymorphic. It occurs at a very low frequency in the population, and its ACMG classification is likely pathogenic. CONCLUSION: At present, there are limited reports of mutations in the ATP1A2 gene causing AHC. This is the first case of brain MRI showing MELAS-like imaging in an AHC patient, and more cases are needed for verification. Early genetic testing and family screening can aid in the diagnosis and treatment of genetic diseases. The relationship between ATP1A2 gene mutation genotype and clinical phenotype needs to be further studied.
Assuntos
Hemiplegia , Síndrome MELAS , Humanos , População do Leste Asiático , Hemiplegia/genética , Síndrome MELAS/genética , ATPase Trocadora de Sódio-Potássio/genética , Feminino , CriançaRESUMO
BACKGROUND AND PURPOSE: This study aimed to characterize the clinical features of epilepsy in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) and analyze the clinical determinants for drug-resistant epilepsy in MELAS. METHODS: A single-center, retrospective study was conducted to investigate the clinical features of epilepsy in patients with MELAS. Collected variables included seizure semiology, electroencephalography (EEG), muscle biopsy, genetic testing, neuroimaging findings, resting serum lactic value and modified Rankin scale (mRS) of patients with MELAS. We also investigated the differences between the adult-onset group and the child-onset group and analyzed the risk factors for drug-resistant epilepsy in MELAS. RESULTS: We studied 97 patients (56 males: 41 females) with confirmed MELAS. Epileptic seizure occurred in 100.0% of patients and the initial symptom of 69.1% patients was epileptic seizure. The average age of disease onset was 21.0 years, ranging from 2 to 60 years. The seizure types of these patients with MELAS were variable, with generalized onset (51.5%) to be the most common type. The EEG changes in the patients with MELAS were mainly slow wave (90.9%) and epileptiform discharge (68.2%). The child-onset group with earlier seizure onset presented significantly higher resting serum lactic value (p = 0.0048) and lower incidence of stroke-like lesion in the brain (p = 0.003), especially in the temporal lobe (p < 0.001), compared with the adult-onset group. Importantly, drug-resistant epilepsy in MELAS was demonstrated to be closely related to the earlier age of seizure onset (p = 0.013), as well as the higher mRS score (p < 0.001) and higher resting serum lactic value (p = 0.009). CONCLUSION: Early identification of MELAS should be considered among individuals with recurrent epilepsy through clinical screening. Age of seizure onset and resting serum lactic value may predict the development of drug-resistant epilepsy in MELAS. Close observation and appropriate anti-epileptic treatment are indispensable for individuals with MELAS to improve the prognosis. Further studies with larger sample size are required to further evaluate the risk factors of drug-resistant epilepsy in MELAS and provide guidance on treatment of MELAS.
Assuntos
Epilepsia , Síndrome MELAS , Acidente Vascular Cerebral , Adulto , Masculino , Feminino , Humanos , Adulto Jovem , Síndrome MELAS/complicações , Estudos Retrospectivos , Convulsões/etiologiaRESUMO
We designed a method to examine the mutation frequencies of the A3243G mutation of mitochondrial DNA (mtDNA) in patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. We performed a qPCR assay using the FAM and VIC TaqMan probes, which detect the 3243G (mutated) and 3243A (wild-type) sequences of mtDNA, respectively. The results obtained by "degree" in a series of differential mutation frequencies were used to plot a standard curve of the mutation frequency. The standard curve was then applied for qPCR assays of the desired samples. The standard deviation (%) of the samples calculated using the standard curve for the TaqMan probe was 2.4 ± 1.5%. This method could be used to examine mutation frequencies in the context of diabetes, aging, cancer, and neurodegenerative diseases.
Assuntos
Síndrome MELAS , Acidente Vascular Cerebral , Humanos , Taxa de Mutação , Síndrome MELAS/genética , Mutação , DNA Mitocondrial/genéticaRESUMO
The anatomic complexity of the brain in combination with its high energy demands makes this organ specifically vulnerable to defects of mitochondrial oxidative phosphorylation. Therefore, neurodegeneration is a hallmark of mitochondrial diseases. The nervous system of affected individuals typically shows selective regional vulnerability leading to distinct patterns of tissue damage. A classic example is Leigh syndrome, which causes symmetric alterations of basal ganglia and brain stem. Leigh syndrome can be caused by different genetic defects (>75 known disease genes) with variable disease onset ranging from infancy to adulthood. Other mitochondrial diseases are characterized by focal brain lesions, which is a core feature of MELAS syndrome (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes). Apart from gray matter, also white matter can be affected by mitochondrial dysfunction. White matter lesions vary depending on the underlying genetic defect and may progress into cystic cavities. In view of the recognizable patterns of brain damage in mitochondrial diseases, neuroimaging techniques play a key role in diagnostic work-up. In the clinical setting, magnetic resonance imaging (MRI) and MR spectroscopy (MRS) are the mainstay of diagnostic work-up. Apart from visualization of brain anatomy, MRS allows the detection of metabolites such as lactate, which is of specific interest in the context of mitochondrial dysfunction. However, it is important to note that findings like symmetric basal ganglia lesions on MRI or a lactate peak on MRS are not specific, and that there is a broad range of disorders that can mimic mitochondrial diseases on neuroimaging. In this chapter, we will review the spectrum of neuroimaging findings in mitochondrial diseases and discuss important differential diagnoses. Moreover, we will give an outlook on novel biomedical imaging tools that may provide interesting insights into mitochondrial disease pathophysiology.
Assuntos
Doença de Leigh , Síndrome MELAS , Doenças Mitocondriais , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Encéfalo/patologia , Doenças Mitocondriais/genética , Síndrome MELAS/diagnóstico , Síndrome MELAS/patologia , Ácido LácticoRESUMO
BACKGROUND: The variant m.3571_3572insC/MT-ND1 thus far only reported in oncocytic tumors of different tissues. However, the role of m.3571_3572insC in inherited mitochondrial diseases has yet to be elucidated. METHODS: A patient diagnosed with MELAS syndrome was recruited, and detailed medical records were collected and reviewed. The muscle was biopsied for mitochondrial respiratory chain enzyme activity. Series of fibroblast clones bearing different m.3571_3572insC variant loads were generated from patient-derived fibroblasts and subjected to functional assays. RESULTS: Complex I deficiency was confirmed in the patient's muscle via mitochondrial respiratory chain enzyme activity assay. The m.3571_3572insC was filtered for the candidate variant of the patient according to the guidelines for mitochondrial mRNA variants interpretation. Three cell clones with different m.3571_3572insC variant loads were generated to evaluate mitochondrial function. Blue native PAGE analysis revealed that m.3571_3572insC caused a deficiency in the mitochondrial complex I. Oxygen consumption rate, ATP production, and lactate assays found an impairment of cellular bioenergetic capacity due to m.3571_3572insC. Mitochondrial membrane potential was decreased, and mitochondrial reactive oxygen species production was increased with the variant of m.3571_3572insC. According to the competitive cell growth assay, the mutant cells had impaired cell growth capacity compared to wild type. CONCLUSIONS: A novel variant m.3571_3572insC was identified in a patient diagnosed with MELAS syndrome, and the variant impaired mitochondrial respiration by decreasing the activity of complex I. In conclusion, the genetic spectrum of mitochondrial diseases was expanded by including m.3571_3572insC/MT-ND1.
Assuntos
Síndrome MELAS , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Síndrome MELAS/patologia , Doenças Mitocondriais/genética , Mutação , NADH Desidrogenase/genética , Mutação da Fase de LeituraRESUMO
INTRODUCTION: The mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a matrilineal hereditary multisystem disease caused by mutations in the mitochondrial DNA. Although the initial diagnostic criteria correlate with a range of clinical phenotypes, including clinical onset after the age of 40, there is still lack of a unified single diagnostic standard for MELAS. CASE REPORT: A 71-year-old female patient with recurrent stroke was reported. Magnetic resonance imaging showed a cerebral gyrus-like diffusion weighted imaging high signal lesion in the parietal-occipital lobe and the area of this lesion expanded with disease progression. The MRS result showed significantly inverted Lac/Lip peaks. The nucleic acid sequencing result displayed a MT-TWm.5541C>T mutation, and a 12.86% mutation rate in the blood sample. The patient had a 6-year history of type 2 diabetes. CONCLUSION: Patients with the MELAS syndrome may present with a variety of clinical manifestations. Our data demonstrated that, for patients with atypical cerebral infarction and suspected MELAS syndrome, gene sequencing and muscle biopsy should be performed in time. This case provides a reference for the diagnostic criteria of MELAS syndrome.