Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104812, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172724

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is one of the deadliest and most aggressive hematological malignancies, but its pathological mechanism in controlling cell survival is not fully understood. Oculocerebrorenal syndrome of Lowe is a rare X-linked recessive disorder characterized by cataracts, intellectual disability, and proteinuria. This disease has been shown to be caused by mutation of oculocerebrorenal syndrome of Lowe 1 (OCRL1; OCRL), encoding a phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] 5-phosphatase involved in regulating membrane trafficking; however, its function in cancer cells is unclear. Here, we uncovered that OCRL1 is overexpressed in T-ALL cells, and knockdown of OCRL1 results in cell death, indicating the essential role of OCRL in controlling T-ALL cell survival. We show OCRL is primarily localized in the Golgi and can translocate to plasma membrane (PM) upon ligand stimulation. We found OCRL interacts with oxysterol-binding protein-related protein 4L, which facilitates OCRL translocation from the Golgi to the PM upon cluster of differentiation 3 stimulation. Thus, OCRL represses the activity of oxysterol-binding protein-related protein 4L to prevent excessive PI(4,5)P2 hydrolysis by phosphoinositide phospholipase C ß3 and uncontrolled Ca2+ release from the endoplasmic reticulum. We propose OCRL1 deletion leads to accumulation of PI(4,5)P2 in the PM, disrupting the normal Ca2+ oscillation pattern in the cytosol and leading to mitochondrial Ca2+ overloading, ultimately causing T-ALL cell mitochondrial dysfunction and cell death. These results highlight a critical role for OCRL in maintaining moderate PI(4,5)P2 availability in T-ALL cells. Our findings also raise the possibility of targeting OCRL1 to treat T-ALL disease.


Assuntos
Membrana Celular , Fosfatidilinositol 4,5-Difosfato , Monoéster Fosfórico Hidrolases , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Linfócitos T , Humanos , Membrana Celular/metabolismo , Sobrevivência Celular , Hidrólise , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Linfócitos T/citologia , Linfócitos T/imunologia , Monoéster Fosfórico Hidrolases/biossíntese , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Complexo de Golgi/metabolismo , Ligantes , Transporte Proteico , Sinalização do Cálcio , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Citosol/metabolismo
2.
CEN Case Rep ; 9(2): 95-100, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31707643

RESUMO

The oculocerebrorenal disorder of Lowe syndrome is an X-linked mutation in the gene oculocerebrorenal syndrome of Lowe 1 (OCRL), characterized by the triad of congenital cataracts, severe intellectual impairment, and renal tubular dysfunction. Manifestations of phenotype in female carriers and patients are extremely rare. We present a female case with congenital cataracts, severe intellectual impairment, sensorineural hearing loss, and renal tubular dysfunction as Lowe syndrome. A 9-year-old Japanese girl visited our hospital due to prolonged proteinuria. Her renal biopsy revealed diffuse mesangium proliferation, sclerosis and dilatation of renal tubules, and mild IgA deposition in the mesangial region. Furthermore, she had congenital cataracts, severe intellectual impairment, and sensorineural hearing loss. Genetic screening did not identify mutations of the ORCL gene encoding inositol polyphosphate 5-phosphatase (IPP-5P) (46 XX, female). However, we found the reduction of enzyme activity of IPP-5P to 50% of the normal value. Furthermore, her renal function had deteriorated to renal failure within a decade. Finally, she received peritoneal dialysis and renal transplantation. We present the oculocerebrorenal phenotype of Lowe syndrome in a female patient with reduced activity of IPP-5P without OCRL gene mutation.


Assuntos
Inositol Polifosfato 5-Fosfatases/metabolismo , Síndrome Oculocerebrorrenal/diagnóstico , Síndrome Oculocerebrorrenal/genética , Insuficiência Renal/terapia , Povo Asiático/etnologia , Povo Asiático/genética , Catarata/congênito , Criança , Progressão da Doença , Feminino , Glomerulonefrite por IGA/complicações , Perda Auditiva Neurossensorial/congênito , Humanos , Deficiência Intelectual/diagnóstico , Transplante de Rim/métodos , Túbulos Renais Proximais/patologia , Mutação , Síndrome Oculocerebrorrenal/enzimologia , Diálise Peritoneal/métodos , Fenótipo , Proteinúria/diagnóstico , Proteinúria/etiologia , Índice de Gravidade de Doença
3.
Biochim Biophys Acta ; 1851(6): 698-710, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25264170

RESUMO

Phosphoinositides (PIs) are a group of key signaling and structural lipid molecules involved in a myriad of cellular processes. PI phosphatases, together with PI kinases, are responsible for the conversion of PIs between distinctive phosphorylation states. PI phosphatases are a large collection of enzymes that are evolved from at least two disparate ancestors. One group is distantly related to endonucleases, which apply divalent metal ions for phosphoryl transfer. The other group is related to protein tyrosine phosphatases, which contain a highly conserved active site motif Cys-X5-Arg (CX5R). In this review, we focus on structural insights to illustrate current understandings of the molecular mechanisms of each PI phosphatase family, with emphasis on their structural basis for substrate specificity determinants and catalytic mechanisms. This article is part of a Special Issue entitled Phosphoinositides.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , PTEN Fosfo-Hidrolase/química , Monoéster Fosfórico Hidrolases/química , Proteínas Tirosina Fosfatases não Receptoras/química , Bactérias/química , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Biocatálise , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Inositol Polifosfato 5-Fosfatases , Isoenzimas/química , Isoenzimas/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Nefrolitíase/enzimologia , Nefrolitíase/genética , Nefrolitíase/patologia , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/patologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Especificidade por Substrato
4.
Subcell Biochem ; 58: 215-79, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403078

RESUMO

Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.


Assuntos
Neoplasias da Mama/enzimologia , Leucemia/enzimologia , Síndrome Oculocerebrorrenal/enzimologia , PTEN Fosfo-Hidrolase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diglicerídeos/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Inositol Polifosfato 5-Fosfatases , Leucemia/genética , Leucemia/patologia , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/patologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/genética , Sistemas do Segundo Mensageiro
5.
Mol Biol Cell ; 22(5): 606-23, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21233288

RESUMO

Mutation of the inositol polyphosphate 5-phosphatase OCRL1 results in two disorders in humans, namely Lowe syndrome (characterized by ocular, nervous system, and renal defects) and type 2 Dent disease (in which only the renal symptoms are evident). The disease mechanisms of these syndromes are poorly understood. Here we identify two novel OCRL1-binding proteins, termed inositol polyphosphate phosphatase interacting protein of 27 kDa (IPIP27)A and B (also known as Ses1 and 2), that also bind the related 5-phosphatase Inpp5b. The IPIPs bind to the C-terminal region of these phosphatases via a conserved motif similar to that found in the signaling protein APPL1. IPIP27A and B, which form homo- and heterodimers, localize to early and recycling endosomes and the trans-Golgi network (TGN). The IPIPs are required for receptor recycling from endosomes, both to the TGN and to the plasma membrane. Our results identify IPIP27A and B as key players in endocytic trafficking and strongly suggest that defects in this process are responsible for the pathology of Lowe syndrome and Dent disease.


Assuntos
Endocitose , Monoéster Fosfórico Hidrolases/metabolismo , Receptores da Transferrina/metabolismo , Via Secretória , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Membrana Celular/metabolismo , Sequência Conservada/genética , Endossomos/metabolismo , Células HeLa , Humanos , Hidrolases/metabolismo , Lisossomos/enzimologia , Dados de Sequência Molecular , Mutação/genética , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Toxina Shiga/metabolismo , Proteínas de Transporte Vesicular/química , Rede trans-Golgi/metabolismo
6.
Mamm Genome ; 21(9-10): 458-66, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20872266

RESUMO

The oculocerebrorenal syndrome of Lowe (OCRL; MIM #309000) is an X-linked human disorder characterized by congenital cataracts, mental retardation, and renal proximal tubular dysfunction caused by loss-of-function mutations in the OCRL gene that encodes Ocrl, a type II phosphatidylinositol bisphosphate (PtdIns4,5P(2)) 5-phosphatase. In contrast, mice with complete loss-of-function of the highly homologous ortholog Ocrl have no detectable renal, ophthalmological, or central nervous system abnormalities. We inferred that the disparate phenotype between Ocrl-deficient humans and mice was likely due to differences in how the two species compensate for loss of the Ocrl enzyme. We therefore turned our attention to Inpp5b, another type II PtdIns4,5P(2) 5-phosphatase encoded by Inpp5b in mice and INPP5B in humans, as potential compensating genes in the two species, because Inpp5b/INPP5B are the most highly conserved paralogs to Ocrl/OCRL in the respective genomes of both species and Inpp5b demonstrates functional overlap with Ocrl in mice in vivo. We used in silico sequence analysis, reverse-transcription PCR, quantitative PCR, and transient transfection assays of promoter function to define splice-site usage and the function of an internal promoter in mouse Inpp5b versus human INPP5B. We found mouse Inpp5b and human INPP5B differ in their transcription, splicing, and primary amino acid sequence. These observations form the foundation for analyzing the functional basis for the difference in how Inpp5b and INPP5B compensate for loss of Ocrl function and, by providing insight into the cellular roles of Ocrl and Inpp5b, aid in the development of a model system in which to study Lowe syndrome.


Assuntos
Expressão Gênica , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética , Sítios de Splice de RNA/genética , Splicing de RNA , Sequência de Aminoácidos , Animais , Northern Blotting , Modelos Animais de Doenças , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Síndrome Oculocerebrorrenal/enzimologia , Monoéster Fosfórico Hidrolases/química , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Transcrição Gênica
7.
Biochem Soc Symp ; (74): 161-81, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17233589

RESUMO

Phosphoinositide signals regulate cell proliferation, differentiation, cytoskeletal rearrangement and intracellular trafficking. Hydrolysis of PtdIns(4,5)P2 and PtdIns(3,4,5)P3, by inositol polyphosphate 5-phosphatases regulates synaptic vesicle recycling (synaptojanin-1), hematopoietic cell function [SHIP1(SH2-containing inositol polyphosphate 5-phosphatase-1)], renal cell function [OCRL (oculocerebrorenal syndrome of Lowe)] and insulin signalling (SHIP2). We present here a detailed review of the characteristics of the ten mammalian 5-phosphatases. Knockout mouse phenotypes and underexpression studies are associated with significant phenotypic changes, indicating non-redundant roles, despite, in many cases, overlapping substrate specificity and tissue expression. The extraordinary complexity in the control of phosphoinositide signalling continues to be revealed.


Assuntos
Monoéster Fosfórico Hidrolases/fisiologia , Animais , Humanos , Inositol Polifosfato 5-Fosfatases , Insulina/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Modelos Biológicos , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Estrutura Terciária de Proteína , Vesículas Sinápticas/metabolismo
8.
IUBMB Life ; 58(8): 451-6, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16916781

RESUMO

Phosphoinositide signaling molecules control cellular growth, proliferation and differentiation, intracellular vesicle trafficking, and cytoskeletal rearrangement. The inositol polyphosphate 5-phosphatase family remove the D-5 position phosphate from PtdIns(3,4,5)P3, PtdIns(4,5)P2 and PtdIns(3,5)P2 forming PtdIns(3,4)P2, PtdIns(4)P and PtdIns(3)P respectively. This enzyme family, comprising ten mammalian members, exhibit seemingly non-redundant functions including the regulation of synaptic vesicle recycling, hematopoietic cell function and insulin signaling. Here we highlight recently established insights into the functions of two well characterized 5-phosphatases OCRL and SHIP2, which have been the subject of extensive functional studies, and the characterization of recently identified members, SKIP and PIPP, in order to highlight the diverse and complex functions of this enzyme family.


Assuntos
Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Animais , Humanos , Inositol Polifosfato 5-Fosfatases , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Biológicos , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Estrutura Terciária de Proteína
10.
Traffic ; 6(9): 711-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16101675

RESUMO

Oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked disorder with the hallmark features of congenital cataracts, mental retardation and Fanconi syndrome of the kidney proximal tubules. OCRL was first described in 1952, and exactly four decades later, the gene responsible was identified and found to encode a protein highly homologous to inositol polyphosphate 5-phosphatase. This suggested that Lowe syndrome may represent an inborn error of inositol phosphate metabolism, and subsequent studies confirmed that such metabolism is indeed perturbed in Lowe syndrome cells. However, the mechanism by which loss of function of the OCRL1 protein brings about Lowe syndrome remains ill defined. In this review, I will discuss our understanding of OCRL1, including where it is localized, what it interacts with and what its possible functions might be. I will then discuss possible mechanisms by which loss of OCRL1 may bring about cellular defects that manifest themselves in the pathology of Lowe syndrome.


Assuntos
Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolases/genética , Actinas/metabolismo , Processamento Alternativo , Endossomos/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/patologia , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Estrutura Terciária de Proteína , Proteínas rac de Ligação ao GTP/química
11.
IUBMB Life ; 53(1): 25-36, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12018404

RESUMO

Recent studies have identified the inositol polyphosphate 5-phosphatases as a large family of signal modifying enzymes comprising 10 mammalian and 4 yeast family members. A number of investigations including gene-targeted deletion of 5-phosphatases in mice have demonstrated that these enzymes regulate many important cellular events including hematopoietic cell proliferation and activation, insulin signaling, endocytosis, and actin polymerization.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Animais , Sinalização do Cálcio , Marcação de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatos de Inositol/metabolismo , Inositol Polifosfato 5-Fosfatases , Insulina/metabolismo , Modelos Biológicos , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transdução de Sinais , Vesículas Sinápticas/metabolismo
12.
Hum Mutat ; 16(2): 157-65, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10923037

RESUMO

The oculocerebrorenal syndrome of Lowe (OCRL) is a rare X-linked recessively inherited disease characterized by a severe pleiotropic phenotype including mental retardation, bilateral congenital cataract, and renal Fanconi syndrome. The gene responsible for OCRL encodes an inositol polyphosphate-5-phosphatase. We performed mutation analysis in 36 families and characterized 27 new mutations with two of them being recurrent mutations. The panel of mutations consisted of 27 truncating mutations (frameshift, nonsense, splice site mutations, and large genomic deletions), one in-frame deletion, and six missense mutations. The four large genomic deletions occurred in the first half of the gene, whereas all the remaining mutations took place in the second part of the gene and were concentrated in a few exons. This distribution may be of interest in terms of screening strategy when looking for unknown mutations. Haplotyping of the families was performed to analyze segregation of the mutated loci, and revealed a somatic mosaicism in one family. This is the second case of mosaicism we characterized in a total panel of 44 unrelated families affected by Lowe's syndrome. Considering the low number of families investigated, it appeared that somatic and germinal mosaicisms are quite common in this disease and must be taken into account for genetic counseling.


Assuntos
Aconselhamento Genético/métodos , Sondas Moleculares , Síndrome Oculocerebrorrenal/diagnóstico , Síndrome Oculocerebrorrenal/genética , Proteínas/genética , Processamento Alternativo , Deleção Cromossômica , Códon sem Sentido/genética , Análise Mutacional de DNA , Feminino , Mutação da Fase de Leitura/genética , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Mosaicismo/genética , Mutação de Sentido Incorreto/genética , Síndrome Oculocerebrorrenal/enzimologia , Monoéster Fosfórico Hidrolases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência
13.
Proc Natl Acad Sci U S A ; 96(23): 13342-4, 1999 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-10557322

RESUMO

Lowe syndrome is an X-linked disorder that has a complex phenotype that includes progressive renal failure and blindness. The disease is caused by mutations in an inositol polyphosphate 5-phosphatase designated OCRL. It has been shown that the OCRL protein is found on the surface of lysosomes and that a renal tubular cell line deficient in OCRL accumulated substrate phosphatidylinositol 4, 5-bisphosphate. Because this lipid is required for vesicle trafficking from lysosomes, we postulate that there is a defect in lysosomal enzyme trafficking in patients with Lowe syndrome that leads to increased extracellular lysosomal enzymes and might lead to tissue damage and contribute to the pathogenesis of the disease. We have measured seven lysosomal enzymes in the plasma of 15 patients with Lowe syndrome and 15 age-matched male controls. We find a 1.6- to 2.0-fold increase in all of the enzymes measured. When the data was analyzed by quintiles of activity for all of the enzymes, we found that 95% of values in the lowest quintile come from normal subjects whereas in the highest quintile 85% of the values are from patients with Lowe syndrome. The increased enzyme levels are not attributable to renal insufficiency because there was no difference in enzyme activity in the four patients with the highest creatinine levels compared with the six patients with the lowest creatinine values.


Assuntos
Enzimas/sangue , Lisossomos/enzimologia , Síndrome Oculocerebrorrenal/enzimologia , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Humanos , Masculino , Síndrome Oculocerebrorrenal/sangue
14.
Semin Cell Dev Biol ; 9(2): 153-60, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9599410

RESUMO

Phosphatidylinositols are important in intracellular signaling. In response to extracellular signals, these molecules undergo rapid turnover and generate second messengers including diacylglycerol, inositol 1,4,5-trisphosphate, phosphatidylinositol 3,4-bisphosphate (PtdIns 3,4P2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns 3,4,5-P3). The importance of phosphoinositide metabolism is underscored by its link to a human genetic disorder oculocerebrorenal syndrome of Lowe in that the gene product (OCRL) deficient in this syndrome is an inositol polyphosphate 5-phosphatase. A new pathway for formation of PtdIns 3,4-P2 and PtdIns 3,4,5-P3 has been found recently. PtdIns 4,5-P2-synthesizing enzymes phosphatidylinositol 4-phosphate 5-kinases (PIP5K) also have kinase activity towards PtdIns 3-P and PtdIns 3,4-P2 forming PtdIns 3,4-P2 and PtdIns 3,4,5-P3 respectively. Surprisingly, they can synthesize PtdIns 3,4,5-P3 directly from PtdIns 3-P in a concerted reaction. PIP5K isozymes may play pivotal roles in intracellular signaling.


Assuntos
Fosfatidilinositóis/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos , Inositol Polifosfato 5-Fosfatases , Isoenzimas/genética , Isoenzimas/metabolismo , Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
15.
J Biol Chem ; 273(3): 1574-82, 1998 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-9430698

RESUMO

The protein product of the gene that when mutated is responsible for Lowe syndrome, or oculocerebrorenal syndrome (OCRL), is an inositol polyphosphate 5-phosphatase. It has a marked preference for phosphatidylinositol 4,5-bisphosphate although it hydrolyzes all four of the known inositol polyphosphate 5-phosphatase substrates: inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, phosphatidylinositol 4,5-bisphosphate, and phosphatidylinositol 3,4,5-trisphosphate. The enzyme activity of this protein is determined by a region of 672 out of a total of 970 amino acids that is homologous to inositol polyphosphate 5-phosphatase II. Cell lines from kidney proximal tubules of a patient with Lowe syndrome and a normal individual were used to study the function of OCRL. The cells from the Lowe syndrome patient lack OCRL protein. OCRL is the major phosphatidylinositol 4,5-bisphosphate 5-phosphatase in these cells. As a result, these cells accumulate phosphatidylinositol 4,5-bisphosphate even though at least four other inositol polyphosphate 5-phosphatase isozymes are present in these cells. OCRL is associated with lysosomal membranes in control proximal tubule cell lines suggesting that OCRL may function in lysosomal membrane trafficking by regulating the specific pool of phosphatidylinositol 4,5-bisphosphate that is associated with lysosomes.


Assuntos
Túbulos Renais Proximais/enzimologia , Síndrome Oculocerebrorrenal/enzimologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/deficiência , Proteínas/análise , Sítios de Ligação , Western Blotting , Linhagem Celular , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Isoenzimas/química , Lisossomos/química
17.
Hum Mol Genet ; 4(12): 2245-50, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8634694

RESUMO

The oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked disorder characterized by congenital cataracts, renal tubular dysfunction and neurological deficits. The gene responsible for this disorder, OCRL-1, has been cloned and mutations identified in patients. The gene product (ocrl-1) has extensive sequence homology to a 75 kDa inositol polyphosphate 5-phosphatase. We report here that OCRL patients' fibroblasts show no abnormality in inositol polyphosphate 5-phosphatase activity, but are deficient in a phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] 5-phosphatase activity localized to the Golgi apparatus. Direct biochemical diagnosis of this human disease should now be possible. PtdIns(4,5)P2 has been implicated in Golgi vesicular transport through its role in the regulation of ADP-ribosylation factor, phospholipase D and actin assembly in the cytoskeleton. The regulation of PtdIns(4,5)P2 levels by PtdIns(4,5)P2 5-phosphatase may, therefore, be important in the modulation of Golgi vesicular transport. Given that the primary defect in OCRL is a deficiency of a Golgi PtdIns(4,5)P2 phosphatase, we hypothesize that the disorder results from dysregulation of Golgi function and in this way causes developmental defects in the lens and abnormal renal and neurological function.


Assuntos
Complexo de Golgi/enzimologia , Síndrome Oculocerebrorrenal/enzimologia , Monoéster Fosfórico Hidrolases/deficiência , Proteínas/genética , Linhagem Celular , Clonagem Molecular , Humanos , Dados de Sequência Molecular , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
18.
Proc Natl Acad Sci U S A ; 92(11): 4853-6, 1995 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-7761412

RESUMO

Lowe syndrome, also known as oculocerebrorenal syndrome, is caused by mutations in the X chromosome-encoded OCRL gene. The OCRL protein is 51% identical to inositol polyphosphate 5-phosphatase II (5-phosphatase II) from human platelets over a span of 744 aa, suggesting that OCRL may be a similar enzyme. We engineered a construct of the OCRL cDNA that encodes amino acids homologous to the platelet 5-phosphatase for expression in baculovirus-infected Sf9 insect cells. This cDNA encodes aa 264-968 of the OCRL protein. The recombinant protein was found to catalyze the reactions also carried out by platelet 5-phosphatase II. Thus OCRL converts inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate, and it converts inositol 1,3,4,5-tetrakisphosphate to inositol 1,3,4-trisphosphate. Most important, the enzyme converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate. The relative ability of OCRL to catalyze the three reactions is different from that of 5-phosphatase II and from that of another 5-phosphatase isoenzyme from platelets, 5-phosphatase I. The recombinant OCRL protein hydrolyzes the phospholipid substrate 10- to 30-fold better than 5-phosphatase II, and 5-phosphatase I does not cleave the lipid at all. We also show that OCRL functions as a phosphatidylinositol 4,5-bisphosphate 5-phosphatase in OCRL-expressing Sf9 cells. These results suggest that OCRL is mainly a lipid phosphatase that may control cellular levels of a critical metabolite, phosphatidylinositol 4,5-bisphosphate. Deficiency of this enzyme apparently causes the protean manifestations of Lowe syndrome.


Assuntos
Síndrome Oculocerebrorrenal/enzimologia , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Proteínas/genética , Cromossomo X , Sequência de Aminoácidos , Animais , Sequência de Bases , Plaquetas/enzimologia , Cromatografia Líquida de Alta Pressão , Primers do DNA , Humanos , Isoenzimas/metabolismo , Cinética , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Reação em Cadeia da Polimerase , Biossíntese de Proteínas , Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Spodoptera , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA