Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 335: 199191, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37541588

RESUMO

The Ubiquitin-protein ligase E3A, UBE3A, also known as E6-associated protein (E6-AP), is known to play an essential role in regulating the degradation of various proteins by transferring Ub from E2 Ub conjugating enzymes to the substrate proteins. Several studies indicate that UBE3A regulates the stabilities of key viral proteins in the virus-infected cells and, thereby, the infected virus-mediated diseases, even if it were reported that UBE3A participates in non-viral-related human diseases. Furthermore, mutations such as deletions and duplications in the maternally inherited gene in the brain cause human neurodevelopmental disorders such as Angelman syndrome (AS) and autism. It is also known that UBE3A functions as a transcriptional coactivator for the expression of steroid hormone receptors. These reports establish that UBE3A is distinguished by its multitudinous functions that are paramount to viral pathology and human diseases. This review is focused on molecular mechanisms for such intensive participation of UBE3A in disease formation and virus regulation.


Assuntos
Síndrome de Angelman , Viroses , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Mutação , Encéfalo/patologia , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Síndrome de Angelman/patologia , Viroses/genética
2.
Mol Ther ; 31(4): 1088-1105, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36641623

RESUMO

Angelman syndrome (AS) is a neurogenetic disorder caused by the loss of ubiquitin ligase E3A (UBE3A) gene expression in the brain. The UBE3A gene is paternally imprinted in brain neurons. Clinical features of AS are primarily due to the loss of maternally expressed UBE3A in the brain. A healthy copy of paternal UBE3A is present in the brain but is silenced by a long non-coding antisense transcript (UBE3A-ATS). Here, we demonstrate that an artificial transcription factor (ATF-S1K) can silence Ube3a-ATS in an adult mouse model of Angelman syndrome (AS) and restore endogenous physiological expression of paternal Ube3a. A single injection of adeno-associated virus (AAV) expressing ATF-S1K (AAV-S1K) into the tail vein enabled whole-brain transduction and restored UBE3A protein in neurons to ∼25% of wild-type protein. The ATF-S1K treatment was highly specific to the target site with no detectable inflammatory response 5 weeks after AAV-S1K administration. AAV-S1K treatment of AS mice showed behavioral rescue in exploratory locomotion, a task involving gross and fine motor abilities, similar to low ambulation and velocity in AS patients. The specificity and tolerability of a single injection of AAV-S1K therapy for AS demonstrate the use of ATFs as a promising translational approach for AS.


Assuntos
Síndrome de Angelman , Animais , Camundongos , Síndrome de Angelman/genética , Síndrome de Angelman/terapia , Síndrome de Angelman/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Fenótipo , Ubiquitina-Proteína Ligases/genética
3.
Cell Rep Med ; 2(8): 100360, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467244

RESUMO

Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of maternal UBE3A, a ubiquitin protein ligase E3A. Here, we study neurons derived from patients with AS and neurotypical individuals, and reciprocally modulate UBE3A using antisense oligonucleotides. Unbiased proteomics reveal proteins that are regulated by UBE3A in a disease-specific manner, including PEG10, a retrotransposon-derived GAG protein. PEG10 protein increase, but not RNA, is dependent on UBE3A and proteasome function. PEG10 binds to both RNA and ataxia-associated proteins (ATXN2 and ATXN10), localizes to stress granules, and is secreted in extracellular vesicles, modulating vesicle content. Rescue of AS patient-derived neurons by UBE3A reinstatement or PEG10 reduction reveals similarity in transcriptome changes. Overexpression of PEG10 during mouse brain development alters neuronal migration, suggesting that it can affect brain development. These findings imply that PEG10 is a secreted human UBE3A target involved in AS pathophysiology.


Assuntos
Síndrome de Angelman/metabolismo , Síndrome de Angelman/fisiopatologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação a DNA/metabolismo , Produtos do Gene gag/química , Proteínas de Ligação a RNA/metabolismo , Retroviridae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Movimento Celular , Pré-Escolar , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Retroelementos/genética , Grânulos de Estresse/metabolismo , Grânulos de Estresse/ultraestrutura , Transcriptoma/genética
4.
Neurobiol Dis ; 148: 105180, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33212289

RESUMO

BACKGROUND: Angelman syndrome (AS) is a genetic neurodevelopmental disorder caused by the loss of function of the UBE3A protein in the brain. In a previous study, we showed that activity-dependent calcium dynamics in hippocampal CA1 pyramidal neurons of AS mice is compromised, and its normalization rescues the hippocampal-dependent deficits. Therefore, we expected that the expression profiles of calcium-related genes would be altered in AS mice hippocampi. METHODS: We analyzed mRNA sequencing data from AS model mice and WT controls in light of the newly published CaGeDB database of calcium-related genes. We validated our results in two independent RNA sequencing datasets from two additional different AS models: first one, a human neuroblastoma cell line where UBE3A expression was knocked down by siRNA, and the second, an iPSC-derived neurons from AS patient and healthy donor control. FINDINGS: We found signatures of dysregulated calcium-related genes in AS mouse model hippocampus. Additionally, we show that these calcium-related genes function as signatures for AS in other human cellular models of AS, thus strengthening our findings. INTERPRETATION: Our findings suggest the downstream implications and significance of the compromised calcium signaling in Angelman syndrome. Moreover, since AS share similar features with other autism spectrum disorders, we believe that these findings entail meaningful data and approach for other neurodevelopmental disorders, especially those with known alterations of calcium signaling. FUNDING: This work was supported by the Angelman Syndrome Foundation and by the Israel Science Foundation, Grant Number 248/20.


Assuntos
Síndrome de Angelman/genética , Sinalização do Cálcio/genética , Cálcio/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Síndrome de Angelman/metabolismo , Animais , Linhagem Celular Tumoral , Biologia Computacional , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Neuroblastoma/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Fatores Sexuais , Transcriptoma , Ubiquitina-Proteína Ligases/genética
5.
Neurobiol Dis ; 146: 105137, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049319

RESUMO

Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of function of the maternally inherited Ube3a neuronal protein, whose main features comprise severe intellectual disabilities and motor impairments. Previous studies with the Ube3am-/p+ mouse model of AS revealed deficits in synaptic plasticity and memory. Since adenosine A2A receptors (A2AR) are powerful modulators of aberrant synaptic plasticity and A2AR blockade prevents memory dysfunction in various brain diseases, we tested if A2AR could control deficits of memory and hippocampal synaptic plasticity in AS. We observed that Ube3am-/p+ mice were unable to resort to hippocampal-dependent search strategies when tested for learning and memory in the Morris water maze; this was associated with a decreased magnitude of long-term depression (LTD) in CA1 hippocampal circuits. There was an increased density of A2AR in the hippocampus of Ube3am-/p+ mice and their chronic treatment with the selective A2AR antagonist SCH58261 (0.1 mg/kg/day, ip) restored both hippocampal-dependent learning strategies, as well as LTD deficits. Altogether, this study provides the first evidence of a role of A2AR as a new prospective therapeutic target to manage learning deficits in AS.


Assuntos
Adenosina/metabolismo , Síndrome de Angelman/metabolismo , Hipocampo/fisiopatologia , Plasticidade Neuronal/fisiologia , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
6.
Sci Rep ; 10(1): 9824, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555345

RESUMO

The ubiquitin ligase, Ube3a, plays important roles in brain development and functions, since its deficiency results in Angelman Syndrome (AS) while its over-expression increases the risk for autism. We previously showed that the lack of Ube3a-mediated ubiquitination of the Ca2+-activated small conductance potassium channel, SK2, contributes to impairment of synaptic plasticity and learning in AS mice. Synaptic SK2 levels are also regulated by protein kinase A (PKA), which phosphorylates SK2 in its C-terminal domain, facilitating its endocytosis. Here, we report that PKA activation restores theta burst stimulation (TBS)-induced long-term potentiation (LTP) in hippocampal slices from AS mice by enhancing SK2 internalization. While TBS-induced SK2 endocytosis is facilitated by PKA activation, SK2 recycling to synaptic membranes after TBS is inhibited by Ube3a. Molecular and cellular studies confirmed that phosphorylation of SK2 in the C-terminal domain increases its ubiquitination and endocytosis. Finally, PKA activation increases SK2 phosphorylation and ubiquitination in Ube3a-overexpressing mice. Our results indicate that, although both Ube3a-mediated ubiquitination and PKA-induced phosphorylation reduce synaptic SK2 levels, phosphorylation is mainly involved in TBS-induced endocytosis, while ubiquitination predominantly inhibits SK2 recycling. Understanding the complex interactions between PKA and Ube3a in the regulation of SK2 synaptic levels might provide new platforms for developing treatments for AS and various forms of autism.


Assuntos
Síndrome de Angelman/fisiopatologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/patologia , Plasticidade Neuronal , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Sinapses/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Síndrome de Angelman/metabolismo , Síndrome de Angelman/patologia , Animais , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/fisiopatologia , Células COS , Chlorocebus aethiops , Endocitose , Hipocampo/fisiopatologia , Potenciação de Longa Duração , Camundongos , Modelos Moleculares , Mutação , Fosforilação , Domínios Proteicos , Transporte Proteico , Canais de Potássio Ativados por Cálcio de Condutância Baixa/química , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Ubiquitinação
7.
Prog Neurobiol ; 182: 101676, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31401139

RESUMO

Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of function of the maternal copy of the UBE3A gene. Previous studies reported an increase in α1-Na/K-ATPase (α1-NaKA) expression in the AS hippocampus at the age of 2 weeks as the initial and isolated molecular alteration. This increase was further implied upon actuating much of the hippocampal-related deficits in an AS mouse model, although the underlying mechanism was never investigated. Here, we showed that enhanced α1-NaKA expression resulted in increased pump activity that reduced activity-dependent dendritic Ca2+ dynamics in the AS hippocampus, as well as selective inhibition of α1-NaKA by marinobufagenin (MBG) to normalize these aberrant Ca2+ dynamics. In addition, we demonstrated that selective α1-NaKA inhibition corrected impaired hippocampal synaptic plasticity and hippocampal-dependent cognitive deficits. Furthermore, we showed that the isolated increase in hippocampal α1-NaKA expression in AS mice at 2 weeks of age was accompanied by an unexpected enhancement in excitability. Altogether, our study implicates the modification of Ca2+ dynamics as one of the major underlying mechanisms by which enhanced α1-NaKA expression induces deleterious effects in the hippocampus of AS model mice. Finally, we propose a therapeutic approach for AS and possibly other neurodevelopmental disorders that entail aberrant NaKA expression or abnormal Ca2+ dynamics.


Assuntos
Síndrome de Angelman/metabolismo , Cálcio/metabolismo , Dendritos/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/fisiopatologia , Adenosina Trifosfatases/efeitos dos fármacos , Síndrome de Angelman/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
8.
Psychiatry Clin Neurosci ; 73(9): 541-550, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31215705

RESUMO

Dendritic spines are tiny postsynaptic protrusions from a dendrite that receive most of the excitatory synaptic input in the brain. Functional and structural changes in dendritic spines are critical for synaptic plasticity, a cellular model of learning and memory. Conversely, altered spine morphology and plasticity are common hallmarks of human neurodevelopmental disorders, such as intellectual disability and autism. The advances in molecular and optical techniques have allowed for exploration of dynamic changes in structure and signal transduction at single-spine resolution, providing significant insights into the molecular regulation underlying spine structural plasticity. Here, I review recent findings on: how synaptic stimulation leads to diverse forms of spine structural plasticity; how the associated biochemical signals are initiated and transmitted into neuronal compartments; and how disruption of single genes associated with neurodevelopmental disorders can lead to abnormal spine structure in human and mouse brains. In particular, I discuss the functions of the Ras superfamily of small GTPases in spatiotemporal regulation of the actin cytoskeleton and protein synthesis in dendritic spines. Multiple lines of evidence implicate disrupted Ras signaling pathways in the spine structural abnormalities observed in neurodevelopmental disorders. Both deficient and excessive Ras activities lead to disrupted spine structure and deficits in learning and memory. Dysregulation of spine Ras signaling, therefore, may play a key role in the pathogenesis of multiple neurodevelopmental disorders with distinct etiologies.


Assuntos
Citoesqueleto de Actina/metabolismo , Espinhas Dendríticas/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo , Proteínas ras/metabolismo , Síndrome de Angelman/metabolismo , Síndrome de Angelman/patologia , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Espinhas Dendríticas/patologia , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Transtornos do Neurodesenvolvimento/patologia , Neurônios/metabolismo , Biossíntese de Proteínas , Transdução de Sinais , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia
9.
Mol Autism ; 9: 6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29423132

RESUMO

Background: The inability to analyze gene expression in living neurons from Angelman (AS) and Duplication 15q (Dup15q) syndrome subjects has limited our understanding of these disorders at the molecular level. Method: Here, we use dental pulp stem cells (DPSC) from AS deletion, 15q Duplication, and neurotypical control subjects for whole transcriptome analysis. We identified 20 genes unique to AS neurons, 120 genes unique to 15q duplication, and 3 shared transcripts that were differentially expressed in DPSC neurons vs controls. Results: Copy number correlated with gene expression for most genes across the 15q11.2-q13.1 critical region. Two thirds of the genes differentially expressed in 15q duplication neurons were downregulated compared to controls including several transcription factors, while in AS differential expression was restricted primarily to the 15q region. Here, we show significant downregulation of the transcription factors FOXO1 and HAND2 in neurons from 15q duplication, but not AS deletion subjects suggesting that disruptions in transcriptional regulation may be a driving factor in the autism phenotype in Dup15q syndrome. Downstream analysis revealed downregulation of the ASD associated genes EHPB2 and RORA, both genes with FOXO1 binding sites. Genes upregulated in either Dup15q cortex or idiopathic ASD cortex both overlapped significantly with the most upregulated genes in Dup15q DPSC-derived neurons. Conclusions: Finding a significant increase in both HERC2 and UBE3A in Dup15q neurons and significant decrease in these two genes in AS deletion neurons may explain differences between AS deletion class and UBE3A specific classes of AS mutation where HERC2 is expressed at normal levels. Also, we identified an enrichment for FOXO1-regulated transcripts in Dup15q neurons including ASD-associated genes EHPB2 and RORA indicating a possible connection between this syndromic form of ASD and idiopathic cases.


Assuntos
Síndrome de Angelman/genética , Deleção Cromossômica , Células-Tronco Neurais/metabolismo , Transcriptoma , Trissomia/genética , Síndrome de Angelman/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 15/metabolismo , Polpa Dentária/citologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Cell Mol Life Sci ; 73(22): 4303-4314, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27173058

RESUMO

Emerging evidence is implicating abnormal activation of the mechanistic target of rapamycin (mTOR) pathway in several monogenetic neuropsychiatric disorders, including Angelman syndrome (AS), which is caused by deficiency in maternally inherited UBE3A. Using an AS mouse model, we show that semi-chronic rapamycin treatment improves long-term potentiation (LTP) and actin polymerization in hippocampal slices, spine morphology, and fear-conditioning learning. Activity of mTORC1 and of its downstream substrate, S6K1, was increased in hippocampus of AS mice. However, mTORC2 activity, as reflected by PKCα levels, was decreased. Both increased mTORC1 and decreased mTORC2 activities were reversed by semi-chronic rapamycin treatment. Acute treatment of hippocampal slices from AS mice with rapamycin or an S6K1 inhibitor, PF4708671, improved LTP, restored actin polymerization, and normalized mTORC1 and mTORC2 activity. These treatments also reduced Arc levels in AS mice. Treatment with Torin 1, an inhibitor of both mTORC1 and mTORC2, partially rescued LTP and actin polymerization in hippocampal slices from AS mice, while partially impairing them in wild-type (WT) mice. Torin 1 decreased mTORC1 and increased mTORC2 activity in slices from AS mice but inhibited both mTORC1 and mTORC2 in WT mice. Finally, an mTORC2 activator, A-443654, increased hippocampal LTP in AS mice and actin polymerization in both WT and AS mice. Collectively, these results indicate that events set in motion by increased mTORC1 and decreased mTORC2 activities, including increased Arc translation and impaired actin remodeling, are crucial in AS pathogenesis. Therefore, selectively targeting these two master kinase complexes may provide new therapeutic approaches for AS treatment.


Assuntos
Síndrome de Angelman/fisiopatologia , Hipocampo/fisiopatologia , Aprendizagem , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Plasticidade Neuronal , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Actinas/metabolismo , Síndrome de Angelman/metabolismo , Animais , Proteínas Sanguíneas/farmacologia , Proteínas do Citoesqueleto/metabolismo , Hipocampo/efeitos dos fármacos , Imidazóis/farmacologia , Indazóis/farmacologia , Indóis/farmacologia , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Piperazinas/farmacologia , Polimerização/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
11.
Cell ; 162(4): 795-807, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26255772

RESUMO

Deletion of UBE3A causes the neurodevelopmental disorder Angelman syndrome (AS), while duplication or triplication of UBE3A is linked to autism. These genetic findings suggest that the ubiquitin ligase activity of UBE3A must be tightly maintained to promote normal brain development. Here, we found that protein kinase A (PKA) phosphorylates UBE3A in a region outside of the catalytic domain at residue T485 and inhibits UBE3A activity toward itself and other substrates. A de novo autism-linked missense mutation disrupts this phosphorylation site, causing enhanced UBE3A activity in vitro, enhanced substrate turnover in patient-derived cells, and excessive dendritic spine development in the brain. Our study identifies PKA as an upstream regulator of UBE3A activity and shows that an autism-linked mutation disrupts this phosphorylation control. Moreover, our findings implicate excessive UBE3A activity and the resulting synaptic dysfunction to autism pathogenesis.


Assuntos
Síndrome de Angelman/genética , Transtorno Autístico/genética , Mutação de Sentido Incorreto , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/metabolismo , Animais , Transtorno Autístico/metabolismo , Encéfalo/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espinhas Dendríticas/patologia , Embrião de Mamíferos/metabolismo , Estabilidade Enzimática , Feminino , Humanos , Camundongos Endogâmicos C57BL , Mutagênese , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo
12.
Mol Neurobiol ; 49(2): 827-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24091829

RESUMO

E6-Associated Protein (E6AP), the founding member of the HECT (Homologus to E6AP C terminus) family of ubiquitin ligases, has been gaining increased attention from the scientific community. In addition to its ubiquitin ligase function, our laboratory has also identified steroid hormone receptor transcriptional coactivation as yet another essential function of this protein. Furthermore, it has been established that E6AP has a role in numerous diseases including cancers and neurological syndromes. In this review, we delineate genetic and biochemical knowledge of E6AP and we focus on its role in the pathobiology of neuro-developmental and neuro-aging diseases; bringing to light important gaps of knowledge related to the involvement of its well-studied ligase function versus the much less studied nuclear receptor transcriptional coactivation function in the pathogenesis of these diseases. Tackling these gaps of knowledge could reveal novel possible neuro-pathobiological mechanisms and present crucial information for the design of effective treatment modalities for devastating CNS diseases.


Assuntos
Síndrome de Angelman/metabolismo , Encéfalo/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Síndrome de Angelman/genética , Síndrome de Angelman/patologia , Animais , Encéfalo/patologia , Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Transtornos Globais do Desenvolvimento Infantil/patologia , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Ligação Proteica/fisiologia , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia
13.
J Biol Chem ; 289(2): 1033-48, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24273172

RESUMO

Employing 125I-polyubiquitin chain formation as a functional readout of ligase activity, biochemical and biophysical evidence demonstrates that catalytically active E6-associated protein (E6AP)/UBE3A is an oligomer. Based on an extant structure previously discounted as an artifact of crystal packing forces, we propose that the fully active form of E6AP is a trimer, analysis of which reveals a buried surface of 7508Å2 and radially symmetric interacting residues that are conserved within the Hect (homologous to E6AP C terminus) ligase superfamily. An absolutely conserved interaction between Phe(727) and a hydrophobic pocket present on the adjacent subunit is critical for trimer stabilization because mutation disrupts the oligomer and decreases kcat 62-fold but fails to affect E2 ubiquitin binding or subsequent formation of the Hect domain Cys(820) ubiquitin thioester catalytic intermediate. Exogenous N-acetylphenylalanylamide reversibly antagonizes Phe(727)-dependent trimer formation and catalytic activity (Ki12 mM), as does a conserved-helical peptide corresponding to residues 474­490 of E6A Pisoform 1 (Ki22M) reported to bind the hydrophobic pocket of other Hect ligases, presumably blocking Phe(727) intercalation and trimer formation. Conversely, oncogenic human papillomavirus-16/18 E6 protein significantly enhances E6AP catalytic activity by promoting trimer formation (Kactivation 1.5 nM) through the ability of E6 to form homodimers. Recombinant E6 protein additionally rescues the kcat defect of the Phe(727) mutation and that of a specific loss-of-function Angelman syndrome mutation that promotes trimer destabilization. The present findings codify otherwise disparate observations regarding the mechanism of E6AP and related Hect ligases in addition to suggesting therapeutic approaches for modulating ligase activity.


Assuntos
Multimerização Proteica , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animais , Sítios de Ligação/genética , Biocatálise , Eletroforese em Gel de Poliacrilamida , Humanos , Ligação de Hidrogênio , Radioisótopos do Iodo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Filogenia , Poliubiquitina/metabolismo , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Células Sf9 , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
14.
Cell Rep ; 4(3): 405-12, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23911285

RESUMO

Angelman syndrome (AS) is associated with symptoms that include autism, intellectual disability, motor abnormalities, and epilepsy. We recently showed that AS model mice have increased expression of the alpha1 subunit of Na/K-ATPase (α1-NaKA) in the hippocampus, which was correlated with increased expression of axon initial segment (AIS) proteins. Our developmental analysis revealed that the increase in α1-NaKA expression preceded that of the AIS proteins. Therefore, we hypothesized that α1-NaKA overexpression drives AIS abnormalities and that by reducing its expression these and other phenotypes could be corrected in AS model mice. Herein, we report that the genetic normalization of α1-NaKA levels in AS model mice corrects multiple hippocampal phenotypes, including alterations in the AIS, aberrant intrinsic membrane properties, impaired synaptic plasticity, and memory deficits. These findings strongly suggest that increased expression of α1-NaKA plays an important role in a broad range of abnormalities in the hippocampus of AS model mice.


Assuntos
Síndrome de Angelman/genética , Síndrome de Angelman/patologia , Hipocampo/metabolismo , Hipocampo/patologia , ATPase Trocadora de Sódio-Potássio/genética , Síndrome de Angelman/enzimologia , Síndrome de Angelman/metabolismo , Animais , Anquirinas/biossíntese , Modelos Animais de Doenças , Feminino , Hipocampo/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.6/biossíntese , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/patologia , Subunidades Proteicas , ATPase Trocadora de Sódio-Potássio/metabolismo
15.
PLoS One ; 8(4): e61952, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626758

RESUMO

The molecular defects associated with Angelman syndrome (AS) and 15q duplication autism are directly correlated to expression levels of the E3 ubiquitin ligase protein UBE3A. Here we used Drosophila melanogaster to screen for the targets of this ubiquitin ligase under conditions of both decreased (as in AS) or increased (as in dup(15)) levels of the fly Dube3a or human UBE3A proteins. Using liquid phase isoelectric focusing of proteins from whole fly head extracts we identified a total of 50 proteins that show changes in protein, and in some cases transcriptional levels, when Dube3a fluctuates. We analyzed head extracts from cytoplasmic, nuclear and membrane fractions for Dube3a regulated proteins. Our results indicate that Dube3a is involved in the regulation of cellular functions related to ATP synthesis/metabolism, actin cytoskeletal integrity, both catabolism and carbohydrate metabolism as well as nervous system development and function. Sixty-two percent of the proteins were >50% identical to homologous human proteins and 8 have previously be shown to be ubiquitinated in the fly nervous system. Eight proteins may be regulated by Dube3a at the transcript level through the transcriptional co-activation function of Dube3a. We investigated one autism-associated protein, ATPα, and found that it can be ubiquitinated in a Dube3a dependent manner. We also found that Dube3a mutants have significantly less filamentous actin than wild type larvae consistent with the identification of actin targets regulated by Dube3a. The identification of UBE3A targets is the first step in unraveling the molecular etiology of AS and duplication 15q autism.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animais , Duplicação Cromossômica , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Homeostase/genética , Humanos , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/citologia , Mapas de Interação de Proteínas , Homologia de Sequência de Aminoácidos , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
PLoS One ; 8(2): e52390, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23390487

RESUMO

The Angelman/Prader-Willi syndrome (AS/PWS) domain contains at least 8 imprinted genes regulated by a bipartite imprinting center (IC) associated with the SNRPN gene. One component of the IC, the PWS-IC, governs the paternal epigenotype and expression of paternal genes. The mechanisms by which imprinting and expression of paternal genes within the AS/PWS domain - such as MKRN3 and NDN - are regulated by the PWS-IC are unclear. The syntenic region in the mouse is organized and imprinted similarly to the human domain with the murine PWS-IC defined by a 6 kb interval within the Snrpn locus that includes the promoter. To identify regulatory elements that may mediate PWS-IC function, we mapped the location and allele-specificity of DNase I hypersensitive (DH) sites within the PWS-IC in brain cells, then identified transcription factor binding sites within a subset of these DH sites. Six major paternal-specific DH sites were detected in the Snrpn gene, five of which map within the 6 kb PWS-IC. We postulate these five DH sites represent functional components of the murine PWS-IC. Analysis of transcription factor binding within multiple DH sites detected nuclear respiratory factors (NRF's) and YY1 specifically on the paternal allele. NRF's and YY1 were also detected in the paternal promoter region of the murine Mrkn3 and Ndn genes. These results suggest that NRF's and YY1 may facilitate PWS-IC function and coordinately regulate expression of paternal genes. The presence of NRF's also suggests a link between transcriptional regulation within the AS/PWS domain and regulation of respiration. 3C analyses indicated Mkrn3 lies in close proximity to the PWS-IC on the paternal chromosome, evidence that the PWS-IC functions by allele-specific interaction with its distal target genes. This could occur by allele-specific co-localization of the PWS-IC and its target genes to transcription factories containing NRF's and YY1.


Assuntos
Síndrome de Angelman/genética , Regulação da Expressão Gênica , Fatores Nucleares Respiratórios/genética , Síndrome de Prader-Willi/genética , Elementos Reguladores de Transcrição , Fator de Transcrição YY1/genética , Proteínas Centrais de snRNP/genética , Alelos , Síndrome de Angelman/metabolismo , Síndrome de Angelman/patologia , Animais , Sequência de Bases , Sítios de Ligação , Desoxirribonuclease I/metabolismo , Loci Gênicos , Impressão Genômica , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Fatores Nucleares Respiratórios/metabolismo , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patologia , Ligação Proteica , Sintenia , Transcrição Gênica , Fator de Transcrição YY1/metabolismo , Proteínas Centrais de snRNP/metabolismo
17.
J Biol Chem ; 287(11): 8531-40, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22247551

RESUMO

Retinoblastoma-binding protein 1 (RBBP1), also named AT-rich interaction domain containing 4A (ARID4A), is a tumor and leukemia suppressor involved in epigenetic regulation in leukemia and Prader-Willi/Angelman syndromes. Although the involvement in epigenetic regulation is proposed to involve its chromobarrel and/or Tudor domains because of their potential binding to methylated histone tails, the structures of these domains and their interactions with methylated histone tails are still uncharacterized. In this work, we first found that RBBP1 contains five domains by bioinformatics analysis. Three of the five domains, i.e. chromobarrel, Tudor, and PWWP domains, are Royal Family domains, which potentially bind to methylated histone tails. We further purified these domains and characterized their interaction with methylated histone tails by NMR titration experiments. Among the three Royal Family domains, only the chromobarrel domain could recognize trimethylated H4K20 (with an affinity of ∼3 mm), as well as recognizing trimethylated H3K9, H3K27, and H3K36 (with lower affinities). The affinity could be further enhanced up to 15-fold by the presence of DNA. The structure of the chromobarrel domain of RBBP1 determined by NMR spectroscopy has an aromatic cage. Mutagenesis analysis identified four aromatic residues of the cage as the key residues for methylated lysine recognition. Our studies indicate that the chromobarrel domain of RBBP1 is responsible for recognizing methylated histone tails in chromatin remodeling and epigenetic regulation, which presents a significant advance in our understanding of the mechanism and relationship between RBBP1-related gene suppression and epigenetic regulation.


Assuntos
Histonas/química , Proteína 1 de Ligação ao Retinoblastoma/química , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Epigênese Genética/fisiologia , Histonas/genética , Histonas/metabolismo , Humanos , Metilação , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Estrutura Terciária de Proteína , Proteína 1 de Ligação ao Retinoblastoma/genética , Proteína 1 de Ligação ao Retinoblastoma/metabolismo , Relação Estrutura-Atividade
18.
PLoS One ; 6(5): e20397, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21633703

RESUMO

Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.


Assuntos
Centrossomo/metabolismo , Segregação de Cromossomos , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Apoptose , Western Blotting , Linhagem Celular Tumoral , Citocinese , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Microscopia de Fluorescência , Mitose , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Interferência de RNA , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética
19.
Eur J Hum Genet ; 18(11): 1228-35, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20571502

RESUMO

Angelman syndrome (AS) is a human neurological disorder caused by lack of maternal UBE3A expression in the brain. UBE3A is known to function as both an ubiquitin-protein ligase (E3) and a coactivator for steroid receptors. Many ubiquitin targets, as well as interacting partners, of UBE3A have been identified. However, the pathogenesis of AS, and how deficiency of maternal UBE3A can upset cellular homeostasis, remains vague. In this study, we performed a genome-wide microarray analysis on the maternal Ube3a-deficient (Ube3a(m-/p+)) AS mouse to search for genes affected in the absence of Ube3a. We observed 64 differentially expressed transcripts (7 upregulated and 57 downregulated) showing more than 1.5-fold differences in expression (P<0.05). Pathway analysis shows that these genes are implicated in three major networks associated with cell signaling, nervous system development and cell death. Using quantitative reverse-transcription PCR, we validated the differential expression of genes (Fgf7, Glra1, Mc1r, Nr4a2, Slc5a7 and Epha6) that show functional relevance to AS phenotype. We also show that the protein level of melanocortin 1 receptor (Mc1r) and nuclear receptor subfamily 4, group A, member 2 (Nr4a2) in the AS mice cerebellum is decreased relative to that of the wild-type mice. Consistent with this finding, expression of small-interfering RNA that targets Ube3a in P19 cells caused downregulation of Mc1r and Nr4a2, whereas overexpression of Ube3a results in the upregulation of Mc1r and Nr4a2. These observation help in providing insights into the genesis of neurodevelopmental phenotype of AS and highlight specific area for future research.


Assuntos
Síndrome de Angelman/genética , Perfilação da Expressão Gênica , Mutação , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/metabolismo , Síndrome de Angelman/patologia , Animais , Western Blotting , Linhagem Celular Tumoral , Cerebelo/metabolismo , Feminino , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Camundongos Knockout , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina-Proteína Ligases/metabolismo
20.
J Biol Chem ; 284(16): 10537-45, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19233847

RESUMO

Cells are equipped with an efficient quality control system to selectively eliminate abnormally folded and damaged proteins. Initially the cell tries to refold the unfolded proteins with the help of molecular chaperones, and failure to refold leads to their degradation by the ubiquitin proteasome system. But how this proteolytic machinery recognizes the abnormally folded proteins is poorly understood. Here, we report that E6-AP, a HECT domain family ubiquitin ligase implicated in Angelman syndrome, interacts with the substrate binding domain of Hsp70/Hsc70 chaperones and promotes the degradation of chaperone bound substrates. The expression of E6-AP was dramatically induced under a variety of stresses, and overexpression of E6-AP was found to protect against endoplasmic reticulum stress-induced cell death. The inhibition of proteasome function not only increases the expression of E6-AP but also causes its redistribution around microtubule-organizing center, a subcellular structure for the degradation of the cytoplasmic misfolded proteins. E6-AP is also recruited to aggresomes containing the cystic fibrosis transmembrane conductance regulator or expanded polyglutamine proteins. Finally, we demonstrate that E6-AP ubiquitinates misfolded luciferase that is bound by Hsp70. Our results suggest that E6-AP functions as a cellular quality control ubiquitin ligase and, therefore, can be implicated not only in the pathogenesis of Angelman syndrome but also in the biology of neurodegenerative disorders involving protein aggregation.


Assuntos
Síndrome de Angelman/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Inibidores de Proteassoma , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Morte Celular/fisiologia , Linhagem Celular , Inibidores de Cisteína Proteinase/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Choque Térmico HSP70/genética , Temperatura Alta , Humanos , Leupeptinas/metabolismo , Luciferases/genética , Luciferases/metabolismo , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA