Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
BMC Med Genomics ; 17(1): 106, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671463

RESUMO

BACKGROUND: Syndromic ciliopathies are a group of congenital disorders characterized by broad clinical and genetic overlap, including obesity, visual problems, skeletal anomalies, mental retardation, and renal diseases. The hallmark of the pathophysiology among these disorders is defective ciliary functions or formation. Many different genes have been implicated in the pathogenesis of these diseases, but some patients still remain unclear about their genotypes. METHODS: The aim of this study was to identify the genetic causes in patients with syndromic ciliopathy. Patients suspected of or meeting clinical diagnostic criteria for any type of syndromic ciliopathy were recruited at a single diagnostic medical center in Southern Taiwan. Whole exome sequencing (WES) was employed to identify their genotypes and elucidate the mutation spectrum in Taiwanese patients with syndromic ciliopathy. Clinical information was collected at the time of patient enrollment. RESULTS: A total of 14 cases were molecularly diagnosed with syndromic ciliopathy. Among these cases, 10 had Bardet-Biedl syndrome (BBS), comprising eight BBS2 patients and two BBS7 patients. Additionally, two cases were diagnosed with Alström syndrome, one with Oral-facial-digital syndrome type 14, and another with Joubert syndrome type 10. A total of 4 novel variants were identified. A recurrent splice site mutation, BBS2: c.534 + 1G > T, was present in all eight BBS2 patients, suggesting a founder effect. One BBS2 patient with homozygous c.534 + 1G > T mutations carried a third ciliopathic allele, TTC21B: c.264_267dupTAGA, a nonsense mutation resulting in a premature stop codon and protein truncation. CONCLUSIONS: Whole exome sequencing (WES) assists in identifying molecular pathogenic variants in ciliopathic patients, as well as the genetic hotspot mutations in specific populations. It should be considered as the first-line genetic testing for heterogeneous disorders characterized by the involvement of multiple genes and diverse clinical manifestations.


Assuntos
Cerebelo/anormalidades , Ciliopatias , Doenças Renais Císticas , Proteínas , Retina/anormalidades , Humanos , Masculino , Feminino , Taiwan , Ciliopatias/genética , Criança , Pré-Escolar , Mutação , Sequenciamento do Exoma , Síndrome de Bardet-Biedl/genética , Adolescente , Lactente , Anormalidades Múltiplas/genética , Retina/patologia , Síndrome , Cílios/patologia , Cílios/genética , Anormalidades do Olho/genética
2.
Diabetes Obes Metab ; 26 Suppl 2: 13-24, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302651

RESUMO

Bardet-Biedl syndrome (BBS) is a rare, monogenic, multisystem disorder characterized by retinal dystrophy, renal abnormalities, polydactyly, learning disabilities, as well as metabolic dysfunction, including obesity and an increased risk of type 2 diabetes. It is a primary ciliopathy, and causative mutations in more than 25 different genes have been described. Multiple cellular mechanisms contribute to the development of the metabolic phenotype associated with BBS, including hyperphagia as a consequence of altered hypothalamic appetite signalling as well as alterations in adipocyte biology promoting adipocyte proliferation and adipogenesis. Within this review, we describe in detail the metabolic phenotype associated with BBS and discuss the mechanisms that drive its evolution. In addition, we review current approaches to the metabolic management of patients with BBS, including the use of weight loss medications and bariatric surgery. Finally, we evaluate the potential of targeting hypothalamic appetite signalling to limit hyperphagia and induce clinically significant weight loss.


Assuntos
Síndrome de Bardet-Biedl , Diabetes Mellitus Tipo 2 , Humanos , Síndrome de Bardet-Biedl/complicações , Síndrome de Bardet-Biedl/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Rim , Hiperfagia/complicações , Hiperfagia/genética , Redução de Peso
3.
Mol Biol Rep ; 50(12): 9963-9970, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897612

RESUMO

BACKGROUND: Bardet-Biedl Syndrome (BBS) is a rare (1:13,500-1-160,000) heterogeneous congenital disorder, characterized by postaxial polydactyly, obesity, hypogonadism, rod-cone dystrophy, cognitive impairment, and renal abnormalities (renal cystic dysplasia, anatomical malformation). To date about twenty-five genes have been identified to cause BBS, which accounts for about 80% of BBS diagnosis. METHODS: In the current study, we have performed mutational screening of four Pakistani consanguineous families (A-D) with clinical manifestation of BBS by microsatellite-based genotyping and whole exome sequencing. RESULTS: Analysis of the data revealed four variants, including a novel/unique inheritance pattern of compound heterozygous variants, p.(Ser40*) and p.(Thr259Leufs*21), in MKKS gene, novel homozygous variant, p.(Gly251Val)] in BBS7 gene and two previously reported p.(Thr259Leufs*21) in MKKS and p.(Met1Lys) in BBS5 gene. The variants were found segregated with the disorder within the families. CONCLUSION: The study not only expanded mutations spectrum in the BBS genes, but this will facilitate diagnosis and genetic counselling of families carrying BBS related phenotypes in Pakistani population.


Assuntos
Síndrome de Bardet-Biedl , Humanos , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/diagnóstico , Consanguinidade , Linhagem , Análise Mutacional de DNA , Mutação/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a Fosfato
4.
Hum Mol Genet ; 32(19): 2887-2900, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37427975

RESUMO

Owing to their crucial roles in development and homeostasis, defects in cilia cause ciliopathies with diverse clinical manifestations. The intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes, mediates not only the intraciliary bidirectional trafficking but also import and export of ciliary proteins together with the kinesin-2 and dynein-2 motor complexes. The BBSome, containing eight subunits encoded by causative genes of Bardet-Biedl syndrome (BBS), connects the IFT machinery to ciliary membrane proteins to mediate their export from cilia. Although mutations in subunits of the IFT-A and dynein-2 complexes cause skeletal ciliopathies, mutations in some IFT-B subunits are also known to cause skeletal ciliopathies. We here show that compound heterozygous variations of an IFT-B subunit, IFT81, found in a patient with skeletal ciliopathy cause defects in its interactions with other IFT-B subunits, and in ciliogenesis and ciliary protein trafficking when one of the two variants was expressed in IFT81-knockout (KO) cells. Notably, we found that IFT81-KO cells expressing IFT81(Δ490-519), which lacks the binding site for the IFT25-IFT27 dimer, causes ciliary defects reminiscent of those found in BBS cells and those in IFT74-KO cells expressing a BBS variant of IFT74, which forms a heterodimer with IFT81. In addition, IFT81-KO cells expressing IFT81(Δ490-519) in combination with the other variant, IFT81 (L645*), which mimics the cellular conditions of the above skeletal ciliopathy patient, demonstrated essentially the same phenotype as those expressing only IFT81(Δ490-519). Thus, our data indicate that BBS-like defects can be caused by skeletal ciliopathy variants of IFT81.


Assuntos
Síndrome de Bardet-Biedl , Ciliopatias , Humanos , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Cílios/genética , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Dineínas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteínas Musculares/metabolismo , Proteínas/metabolismo
5.
Eur J Med Genet ; 66(6): 104753, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003573

RESUMO

BACKGROUND: Bardet-Biedl syndrome (BBS) and autosomal dominant polycystic kidney disease (ADPKD) are renal ciliopathies. BBS has 22 pathogenic genes, and ADPKD is mainly caused by PKD1 and PKD2 variants. Cases with tri-allelic variants of BBS and PKD1 are rare. CASE PRESENTATION: The proband was an 11-year-old Chinese male with cysts in both kidneys, blurred vision, hyperopia, and short fingers and toes. The patient underwent a kidney transplant due to rapid deterioration of renal failure. During follow-up, a smaller field of vision, a slow increase in height, and a weight gain were observed. In addition, renal function and anemia were improved. High-throughput sequencing analysis showed two heterozygous variants in BBS2 (c.563delT (p.I188Tfs*13) inherited from the father and c.534+1G > t (splicing) from the mother) and one heterozygous variant in PKD1 (c.6223C > T (p.R2075C)) inherited from the mother. CONCLUSION: This paper reported a ciliopathy patient with multi-allelic variants (two BBS2 variants and one PKD1 variant) that may lead to early symptoms and more rapid progression. An early genetic diagnosis may contribute to predicting disease progression and guiding management and follow-up.


Assuntos
Síndrome de Bardet-Biedl , Rim Policístico Autossômico Dominante , Criança , Humanos , Masculino , Síndrome de Bardet-Biedl/genética , Heterozigoto , Rim/fisiologia , Mutação , Rim Policístico Autossômico Dominante/genética , Proteínas/genética , Canais de Cátion TRPP/genética
6.
Front Endocrinol (Lausanne) ; 13: 1057056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506055

RESUMO

Background: Patients with the rare syndromic forms of monogenic diabetes: Alström syndrome (ALMS) and Bardet-Biedl syndrome (BBS) have multiple metabolic abnormalities, including early-onset obesity, insulin resistance, lipid disorders and type 2 diabetes mellitus. The aim of this study was to determine if the expression of circulating miRNAs in patients with ALMS and BBS differs from that in healthy and obese individuals and determine if miRNA levels correlate with metabolic tests, BMI-SDS and patient age. Methods: We quantified miRNA expression (Qiagen, Germany) in four groups of patients: with ALMS (n=13), with BBS (n=7), patients with obesity (n=19) and controls (n=23). Clinical parameters including lipids profile, serum creatinine, cystatin C, fasting glucose, insulin and C-peptide levels, HbA1c values and insulin resistance (HOMA-IR) were assessed in patients with ALMS and BBS. Results: We observed multiple up- or downregulated miRNAs in both ALMS and BBS patients compared to obese patients and controls, but only 1 miRNA (miR-301a-3p) differed significantly and in the same direction in ALMS and BBS relative to the other groups. Similarly, 1 miRNA (miR-92b-3p) was dysregulated in the opposite directions in ALMS and BBS patients, but diverged from 2 other groups. We found eight miRNAs (miR-30a-5p, miR-92b-3p, miR-99a-5p, miR-122-5p, miR-192-5p, miR-193a-5p, miR-199a-3p and miR-205-5p) that significantly correlated with at least of the analyzed clinical variables representing an association with the course of the diseases. Conclusions: Our results show for the first time that serum miRNAs can be used as available indicators of disease course in patients with ALMS and BBS syndromes.


Assuntos
Síndrome de Bardet-Biedl , MicroRNA Circulante , Diabetes Mellitus Tipo 2 , Resistência à Insulina , MicroRNAs , Humanos , Síndrome de Bardet-Biedl/genética , Resistência à Insulina/genética , MicroRNA Circulante/genética , MicroRNAs/genética , Obesidade , Progressão da Doença
7.
Arch. argent. pediatr ; 120(6): e283-e286, dic. 2022. tab
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1399816

RESUMO

El síndrome de Bardet Biedl es un síndrome genético de herencia autosómica recesiva con compromiso multisistémico y gran variabilidad en su presentación clínica; son características la obesidad, la polidactilia, el hipogonadismo y las alteraciones renales, visuales y cognitivas. Pertenece a las llamadas ciliopatías. El diagnóstico es clínico y puede ser confirmado por estudios genéticos. No existe un tratamiento específico de la patología; se requiere un abordaje multidisciplinario. Se presenta el caso de una paciente de 13 años con obesidad e hiperfagia, diabetes tipo 2, hipotiroidismo, polidactilia, alteraciones del aprendizaje y alteraciones visuales. Se le realizó un panel genético para obesidad en el que se detectaron dos variantes heterocigotas patológicas en el gen BBS2.


Bardet Biedl syndrome is an autosomal recessive ciliopathie. It is a pleiotropic disorder characterised by retinal dystrophy, renal dysfunction, polydactyly, obesity, cognitive deficitand hypogenitalism. Diagnosis is based on clinical features. Molecular genetic testing is available. There is no specific treatment, a multidisciplinary approach is required. We report the case of a 13-year-old female patient with obesity and hyperphagia, type 2 diabetes, hypothyroidism, polydactyly,cognitive deficit and visual impairment. A multigenic panel allowed the identification of two heterozygous pathogenic variants in the BBS2 gene.


Assuntos
Humanos , Feminino , Adolescente , Polidactilia/diagnóstico , Síndrome de Bardet-Biedl/complicações , Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , Diabetes Mellitus Tipo 2 , Obesidade/diagnóstico
8.
Yi Chuan ; 44(10): 975-982, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384733

RESUMO

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy, which is caused by mutations mainly in genes encoding BBSome complex and IFT complex. Here, we reported a 21-year-old female with BBS characterized by three primary features including obesity, retinitis pigmentosa sine pigmento and bilateral renal cysts. She also had some secondary features such as diabetes mellitus, nonalcoholic fatty liver disease, subclinical hypothyroidism and mild conductive hearing damage. Whole exome sequencing revealed two compound heterozygous mutations in exon 2 of the BBS12 gene (c.188delC, p.T63fs and c.1993_1995del, p.665_665del) in this patient. Sanger sequencing showed that her father and mother carried c.188delC (p.T63fs) and c.1993_1995del (p.665_665del) variants, respectively, while her parents were free of BBS-related symptoms. In conclusion, this case reported two novel mutations (c.188delC, p.T63fs and c.1993_1995del, p.665_665del) of the BBS12 gene in a girl presented with BBS, which provides novel genetic resources for studies of the disease. Meanwhile, the BBS case shows the entire development progress from her birth to adulthood, which helps facilitate clinicians' understanding of BBS.


Assuntos
Síndrome de Bardet-Biedl , Humanos , Feminino , Adulto , Adulto Jovem , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/diagnóstico , Testes Genéticos , Mutação , Éxons
9.
Nephrology (Carlton) ; 27(11): 897-900, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35951741

RESUMO

Bardet-Biedl syndrome type 5 (BBS5) has never been reported in Chinese populations. The aim of this study is to report the first BBS5 case in China, explore the phenotype and genotype correlation. The case was male, Han nationality, born with polydactyly and gained weight after birth, accompanied by polydipsia, polyuria and nocturia. He was found to have low vision at the age of 7 years, and having insufficient renal function at the age of 20 years. After hospitalization, he was found to have suffered from atrophy of the whole layer of macular retina, and end stage of kidney disease, presenting with shrinking and cyst-like changes of bilateral kidneys. Whole-exome sequencing was performed among the proband and his parents (Trios), further validated using Sanger sequencing and quantitative polymerase chain reaction. Two novel compound heterozygous variants of BBS5 gene [a missense variant NC_000002.12, NM_152384.3:c.1A>G(p.Met1?) & a large deletion c.(?_-60)_(386 + 1_387-1)del] were detected. BBS is rare, whereas BBS5 is rarer. Herein, we reported a Chinese BBS5 patient with severe renal phenotype and identified two novel BBS5 variants.


Assuntos
Síndrome de Bardet-Biedl , Nefropatias , Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , Criança , Proteínas do Citoesqueleto/genética , Genótipo , Humanos , Rim/fisiologia , Masculino , Mutação , Fenótipo , Proteínas de Ligação a Fosfato/genética , Adulto Jovem
10.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35771640

RESUMO

Ciliopathies are a class of genetic diseases resulting in cilia dysfunction in multiple organ systems, including the olfactory system. Currently, there are no available curative treatments for olfactory dysfunction and other symptoms in ciliopathies. The loss or shortening of olfactory cilia, as seen in multiple mouse models of the ciliopathy Bardet-Biedl syndrome (BBS), results in olfactory dysfunction. However, the underlying mechanism of the olfactory cilia reduction is unknown, thus limiting the development of therapeutic approaches for BBS and other ciliopathies. Here, we demonstrated that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a phosphoinositide typically excluded from olfactory cilia, aberrantly redistributed into the residual cilia of BBS mouse models, which caused F-actin ciliary infiltration. Importantly, PI(4,5)P2 and F-actin were necessary for olfactory cilia shortening. Using a gene therapeutic approach, the hydrolyzation of PI(4,5)P2 by overexpression of inositol polyphosphate-5-phosphatase E (INPP5E) restored cilia length and rescued odor detection and odor perception in BBS. Together, our data indicate that PI(4,5)P2/F-actin-dependent cilia disassembly is a common mechanism contributing to the loss of olfactory cilia in BBS and provide valuable pan-therapeutic intervention targets for the treatment of ciliopathies.


Assuntos
Síndrome de Bardet-Biedl , Ciliopatias , Transtornos do Olfato , Actinas , Animais , Síndrome de Bardet-Biedl/genética , Ciliopatias/genética , Modelos Animais de Doenças , Camundongos , Transtornos do Olfato/terapia , Fosfatidilinositóis , Monoéster Fosfórico Hidrolases/genética
11.
J Med Genet ; 59(12): 1151-1164, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35764379

RESUMO

BACKGROUND: The 100 000 Genomes Project (100K) recruited National Health Service patients with eligible rare diseases and cancer between 2016 and 2018. PanelApp virtual gene panels were applied to whole genome sequencing data according to Human Phenotyping Ontology (HPO) terms entered by recruiting clinicians to guide focused analysis. METHODS: We developed a reverse phenotyping strategy to identify 100K participants with pathogenic variants in nine prioritised disease genes (BBS1, BBS10, ALMS1, OFD1, DYNC2H1, WDR34, NPHP1, TMEM67, CEP290), representative of the full phenotypic spectrum of multisystemic primary ciliopathies. We mapped genotype data 'backwards' onto available clinical data to assess potential matches against phenotypes. Participants with novel molecular diagnoses and key clinical features compatible with the identified disease gene were reported to recruiting clinicians. RESULTS: We identified 62 reportable molecular diagnoses with variants in these nine ciliopathy genes. Forty-four have been reported by 100K, 5 were previously unreported and 13 are new diagnoses. We identified 11 participants with unreportable, novel molecular diagnoses, who lacked key clinical features to justify reporting to recruiting clinicians. Two participants had likely pathogenic structural variants and one a deep intronic predicted splice variant. These variants would not be prioritised for review by standard 100K diagnostic pipelines. CONCLUSION: Reverse phenotyping improves the rate of successful molecular diagnosis for unsolved 100K participants with primary ciliopathies. Previous analyses likely missed these diagnoses because incomplete HPO term entry led to incorrect gene panel choice, meaning that pathogenic variants were not prioritised. Better phenotyping data are therefore essential for accurate variant interpretation and improved patient benefit.


Assuntos
Síndrome de Bardet-Biedl , Ciliopatias , Humanos , Antígenos de Neoplasias , Síndrome de Bardet-Biedl/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Ciliopatias/diagnóstico , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Genótipo , Proteínas Associadas aos Microtúbulos/genética , Fenótipo , Medicina Estatal , Genoma Humano
12.
Zool Res ; 43(3): 442-456, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35503560

RESUMO

Mutations in serologically defined colon cancer autoantigen protein 8 ( SDCCAG8) were first identified in retinal ciliopathy families a decade ago with unknown function. To investigate the pathogenesis of SDCCAG8-associated retinal ciliopathies in vivo, we employed CRISPR/Cas9-mediated homology-directed recombination (HDR) to generate two knock-in mouse models, Sdccag8Y236X/Y236X and Sdccag8E451GfsX467/E451GfsX467 , which carry truncating mutations of the mouse Sdccag8, corresponding to mutations that cause Bardet-Biedl syndrome (BBS) and Senior-Løken syndrome (SLS) (c.696T>G p.Y232X and c.1339-1340insG p.E447GfsX463) in humans, respectively. The two mutant Sdccag8 knock-in mice faithfully recapitulated human SDCCAG8-associated BBS phenotypes such as rod-cone dystrophy, cystic renal disorder, polydactyly, infertility, and growth retardation, with varied age of onset and severity depending on the hypomorphic strength of the Sdccag8 mutations. To the best of our knowledge, these knock-in mouse lines are the first BBS mouse models to present with the polydactyly phenotype. Major phototransduction protein mislocalization was also observed outside the outer segment after initiation of photoreceptor degeneration. Impaired cilia were observed in the mutant photoreceptors, renal epithelial cells, and mouse embryonic fibroblasts derived from the knock-in mouse embryos, suggesting that SDCCAG8 plays an essential role in ciliogenesis, and cilium defects are a primary driving force of SDCCAG8-associated retinal ciliopathies.


Assuntos
Síndrome de Bardet-Biedl , Ciliopatias , Polidactilia , Doenças dos Roedores , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/veterinária , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/veterinária , Fibroblastos , Camundongos , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Polidactilia/veterinária
13.
Genes (Basel) ; 14(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36672825

RESUMO

Objective: To investigate dental anomalies and the molecular etiology of a patient with Ellis−van Creveld syndrome and two patients with Bardet−Biedl syndrome, two examples of ciliopathies. Patients and Methods: Clinical examination, radiographic evaluation, whole exome sequencing, and Sanger direct sequencing were performed. Results: Patient 1 had Ellis−van Creveld syndrome with delayed dental development or tooth agenesis, and multiple frenula, the feature found only in patients with mutations in ciliary genes. A novel homozygous mutation in EVC2 (c.703G>C; p.Ala235Pro) was identified. Patient 2 had Bardet−Biedl syndrome with a homozygous frameshift mutation (c.389_390delAC; p.Asn130ThrfsTer4) in BBS7. Patient 3 had Bardet−Biedl syndrome and carried a heterozygous mutation (c.389_390delAC; p.Asn130ThrfsTer4) in BBS7 and a homozygous mutation in BBS2 (c.209G>A; p.Ser70Asn). Her clinical findings included global developmental delay, disproportionate short stature, myopia, retinitis pigmentosa, obesity, pyometra with vaginal atresia, bilateral hydronephrosis with ureteropelvic junction obstruction, bilateral genu valgus, post-axial polydactyly feet, and small and thin fingernails and toenails, tooth agenesis, microdontia, taurodontism, and impaired dentin formation. Conclusions: EVC2, BBS2, and BBS7 mutations found in our patients were implicated in malformation syndromes with dental anomalies including tooth agenesis, microdontia, taurodontism, and impaired dentin formation.


Assuntos
Síndrome de Bardet-Biedl , Síndrome de Ellis-Van Creveld , Anormalidades Dentárias , Feminino , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/diagnóstico , Proteínas do Citoesqueleto/genética , Síndrome de Ellis-Van Creveld/diagnóstico , Síndrome de Ellis-Van Creveld/genética , Mutação , Proteínas/genética , Anormalidades Dentárias/genética
14.
Stem Cell Res ; 55: 102480, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34364070

RESUMO

Bardet-Biedl syndrome is a autosomal recessive hereditary disorder characterized by polydactyly, multiple renal cysts, retinal cone-rod dystrophy, obesity, and variable neural development or cognitive impairment. We reported the generation and characterization of an iPS cell line, IBMS-iPSC-063-06, from a patient carrying the BBS2 homologous c534 + 1G > T mutation. The generated iPS cell line retains the mutation and exhibits pluripotency and differentiation ability both in vivo and in vitro condition.


Assuntos
Síndrome de Bardet-Biedl , Células-Tronco Pluripotentes Induzidas , Síndrome de Bardet-Biedl/genética , Humanos , Mutação
15.
FASEB J ; 35(9): e21766, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34383976

RESUMO

Bardet-Biedl syndrome (BBS) is a hereditary genetic disorder that results in numerous clinical manifestations including olfactory dysfunction. Of at least 21 BBS-related genes that can carry multiple mutations, a pathogenic mutation, BBS1M390R, is the single most common mutation of clinically diagnosed BBS outcomes. While the deletion of BBS-related genes in mice can cause variable penetrance in different organ systems, the impact of the Bbs1M390R mutation in the olfactory system remains unclear. Using a clinically relevant knock-in mouse model homozygous for Bbs1M390R, we investigated the impact of the mutation on the olfactory system and tested the potential of viral-mediated, wildtype gene replacement therapy to rescue smell loss. The cilia of olfactory sensory neurons (OSNs) in Bbs1M390R/M390R mice were significantly shorter and fewer than those of wild-type mice. Also, both peripheral cellular odor detection and synaptic-dependent activity in the olfactory bulb were significantly decreased in the mutant mice. Furthermore, to gain insight into the degree to which perceptual features are impaired in the mutant mice, we used whole-body plethysmography to quantitatively measure odor-evoked sniffing. The Bbs1M390R/M390R mice showed significantly higher odor detection thresholds (reduced odor sensitivity) compared to wild-type mice; however, their odor discrimination acuity was still well maintained. Importantly, adenoviral expression of Bbs1 in OSNs restored cilia length and re-established both peripheral odorant detection and odor perception. Together, our findings further expand our understanding for the development of gene therapeutic treatment for congenital ciliopathies in the olfactory system.


Assuntos
Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/terapia , Ciliopatias/genética , Ciliopatias/terapia , Percepção Olfatória/genética , Animais , Cílios/genética , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Bulbo Olfatório/patologia , Células Receptoras Sensoriais/patologia , Olfato/genética
16.
EBioMedicine ; 70: 103515, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34365092

RESUMO

BACKGROUND: Ciliary dysfunction underlies a range of genetic disorders collectively termed ciliopathies, for which there are no treatments available. Bardet-Biedl syndrome (BBS) is characterised by multisystemic involvement, including rod-cone dystrophy and renal abnormalities. Together with Alström syndrome (AS), they are known as the 'obesity ciliopathies' due to their common phenotype. Nonsense mutations are responsible for approximately 11% and 40% of BBS and AS cases, respectively. Translational readthrough inducing drugs (TRIDs) can restore full-length protein bypassing in-frame premature termination codons, and are a potential therapeutic approach for nonsense-mediated ciliopathies. METHODS: Patient fibroblasts harbouring nonsense mutations from two different ciliopathies (Bardet-Biedl Syndrome and Alström Syndrome) were treated with PTC124 (ataluren) or amlexanox. Following treatment, gene expression, protein levels and ciliogenesis were evaluated. The expression of intraflagellar transport protein IFT88 and G-protein coupled receptor SSTR3 was investigated as a readout of ciliary function. FINDINGS: mRNA expression was significantly increased in amlexanox-treated patient fibroblasts, and full-length BBS2 or ALMS1 protein expression was restored in PTC124- and amlexanox-treated fibroblasts. Treatment with TRIDs significantly improved ciliogenesis defects in BBS2Y24*/R275* fibroblasts. Treatment recovered IFT88 expression and corrected SSTR3 mislocalisation in BBS2Y24*/R275* and ALMS1S1645*/S1645* fibroblasts, suggesting rescue of ciliary function. INTERPRETATION: The recovery of full-length BBS2 and ALMS1 expression and correction of anatomical and functional ciliary defects in BBS2Y24*/R275* and ALMS1S1645*/S1645* fibroblasts suggest TRIDs are a potential therapeutic option for the treatment of nonsense-mediated ciliopathies. FUNDING: Wellcome Trust 205174/Z/16/Z, National Centre for the Replacement, Refinement & Reduction of Animals in Research. Deutsche Forschungsgemeinschaft SPP2127 (DFG Grant MA 6139/3-1).


Assuntos
Síndrome de Alstrom/genética , Aminopiridinas/farmacologia , Síndrome de Bardet-Biedl/genética , Proteínas de Ciclo Celular/genética , Oxidiazóis/farmacologia , Proteínas/genética , Adolescente , Adulto , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Códon sem Sentido , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
17.
Exp Eye Res ; 207: 108533, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741323

RESUMO

BACKGROUND: Bardet-Biedl syndrome is an autosomal recessive disease characterized by rod-cone dystrophy, postaxial polydactyly, kidney defects, obesity, mental retardation and hypogonadism. Here, we report different genotypes in two Bardet-Biedl syndrome affected sisters with a different clinical phenotype regarding severity. MATERIALS AND METHODS: The proband of the family was examined by Next Generation Sequencing (NGS) using clinical exome and filtering by syndromic and non-syndromic genes associated with retinal dystrophies. RESULTS: Targeted NGS revealed two novel variants in the MKKS and CEP290 genes in homozygosis state in the proband. Segregation analysis revealed the presence of the same MKKS homozygous variant in her younger affected sister but not the CEP290 variant. Both sisters presented different clinical manifestation, at different ages, with a more severe renal and retinal defect in the case of the sister carrying mutations in both genes. Another unaffected sister showed only homozygosity for the CEP290 variant, thus supporting the non-pathogenic role of this mutation in BBS phenotype. CONCLUSIONS: In this study, NGS proved to be a powerful and efficient sequencing method to identify causal variants in different genes. However, it remarks the importance of the segregation analysis and clinical information to establish the pathogenicity of new variants. The two affected sisters present different genotypes and clinical manifestation, suggesting that the novel CEP290 variant could be acting as a modifier, making the phenotype more severe in the sister homozygote for MKKS and CEP290 genes. On the other hand, the difference in the age of both sisters highlight the important role of monitoring disease progression also to confirm the modifier role of genetic variants.


Assuntos
Antígenos de Neoplasias/genética , Povo Asiático/genética , Proteínas de Ciclo Celular/genética , Consanguinidade , Proteínas do Citoesqueleto/genética , Chaperoninas do Grupo II/genética , Retinose Pigmentar/genética , Síndrome de Bardet-Biedl/genética , Pré-Escolar , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Irã (Geográfico)/epidemiologia , Mutação de Sentido Incorreto , Linhagem , Retina/fisiopatologia , Retinose Pigmentar/diagnóstico por imagem , Retinose Pigmentar/fisiopatologia , Síndrome , Tomografia de Coerência Óptica , Adulto Jovem
18.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33630762

RESUMO

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and is characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell-derived (iPSC-derived) hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuronal differentiation efficiency but caused morphological defects, including impaired neurite outgrowth and longer primary cilia. Single-cell RNA sequencing of BBS1M390R hypothalamic neurons identified several downregulated pathways, including insulin and cAMP signaling and axon guidance. Additional studies demonstrated that BBS1M390R and BBS10C91fsX95 mutations impaired insulin signaling in both human fibroblasts and iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin signaling by restoring insulin receptor tyrosine phosphorylation in BBS10C91fsX95 neurons. Moreover, mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression and neuropeptide production were decreased in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBSome in CNS primary cilia mediate effects on energy homeostasis.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Chaperoninas/metabolismo , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação de Sentido Incorreto , Neurônios/metabolismo , Sistemas do Segundo Mensageiro , Substituição de Aminoácidos , Animais , Síndrome de Bardet-Biedl/genética , Chaperoninas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética
19.
EMBO Rep ; 22(2): e50785, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33426789

RESUMO

Bardet-Biedl Syndrome (BBS) is a pleiotropic genetic disease caused by the dysfunction of primary cilia. The immune system of patients with ciliopathies has not been investigated. However, there are multiple indications that the impairment of the processes typically associated with cilia may have influence on the hematopoietic compartment and immunity. In this study, we analyze clinical data of BBS patients and corresponding mouse models carrying mutations in Bbs4 or Bbs18. We find that BBS patients have a higher prevalence of certain autoimmune diseases. Both BBS patients and animal models have altered red blood cell and platelet compartments, as well as elevated white blood cell levels. Some of the hematopoietic system alterations are associated with BBS-induced obesity. Moreover, we observe that the development and homeostasis of B cells in mice is regulated by the transport complex BBSome, whose dysfunction is a common cause of BBS. The BBSome limits canonical WNT signaling and increases CXCL12 levels in bone marrow stromal cells. Taken together, our study reveals a connection between a ciliopathy and dysregulated immune and hematopoietic systems.


Assuntos
Doenças Autoimunes , Síndrome de Bardet-Biedl , Hematopoese , Animais , Síndrome de Bardet-Biedl/complicações , Síndrome de Bardet-Biedl/genética , Cílios , Modelos Animais de Doenças , Hematopoese/genética , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Mutação
20.
BMJ Case Rep ; 14(1)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509858

RESUMO

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy characterised by rod-cone dystrophy, obesity, postaxial polydactyly, cognitive impairment, hypogonadism, renal abnormalities, and rarely, laryngeal webs or bifid epiglottis. Most patients present with obesity. Multiple genes are involved in causation of BBS and there is also evidence of triallelic inheritance. We herein report an Asian boy who had weak cry and stridor since birth, and on evaluation was found to have both laryngeal web and bifid epiglottis. Mutation analysis revealed a homozygous variant in BBS10 gene.


Assuntos
Síndrome de Bardet-Biedl/diagnóstico , Epiglote/anormalidades , Hipotireoidismo/diagnóstico , Laringe/anormalidades , Síndrome de Bardet-Biedl/complicações , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/fisiopatologia , Broncoscopia , Chaperoninas/genética , Dedos/anormalidades , Dedos/fisiopatologia , Mutação da Fase de Leitura , Humanos , Hipotireoidismo/complicações , Hipotireoidismo/tratamento farmacológico , Lactente , Laringe/cirurgia , Masculino , Obesidade Infantil/fisiopatologia , Polidactilia/fisiopatologia , Tiroxina/uso terapêutico , Dedos do Pé/anormalidades , Dedos do Pé/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA