Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Prion ; 18(1): 68-71, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38651736

RESUMO

The history of human prion diseases began with the original description, by Hans Gerhard Creutzfeldt and by Alfons Maria Jakob, of patients with a severe brain disease that included speech abnormalities, confusion, and myoclonus, in a disease that was then named Creutzfeldt Jakob disease (CJD). Later, in Papua New Guinea, a disease characterized by trembling was identified, and given the name "Kuru". Neuropathological examination of the brains from CJD and Kuru patients, and of brains of sheep with scrapie disease revealed significant similarities and suggested a possible common mode of infection that, at the time, was thought to derive from an unknown virus that caused slow infections. John Stanley Griffith hypothesized that the agent causing these diseases was "probably a protein without nucleic acid" and, in 1982, Stanley Prusiner reported the identification of a proteinaceous infectious particle (coining the term prion) that was resistant to inactivation methods that were at the time standard for nucleic acids, and identified PrP as the major protein component of the infectious agent in scrapie and in Creutzfeldt-Jakob disease, classifying this also as a prion disease. Interestingly, the prion concept had been previously expanded to yeast proteins capable of replicating their conformation, seeding their own aggregation and transmitting phenotypic information. The prion concept has been more recently expanded to refer to misfolded proteins that are capable of converting a normal form of a protein into an abnormal form. The quest to understand and treat prion diseases has united a specific research community around the topic, and regular meetings (Prion Meetings) have taken place over the years to enable discussions, train junior researchers, and inspire research in the field.


Assuntos
Doenças Priônicas , Príons , Humanos , Doenças Priônicas/patologia , Doenças Priônicas/metabolismo , Animais , Príons/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Kuru/patologia
2.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834279

RESUMO

Sporadic Creutzfeldt-Jakob disease (CJD) is a major human prion disease worldwide. CJD is a fatal neurodegenerative disease caused by an abnormal prion protein (PrPSc). To date, the exact etiology of sporadic CJD has not been fully elucidated. We investigated the E200K and V203I somatic mutations of the prion protein gene (PRNP) in sporadic CJD patients and matched healthy controls using pyrosequencing. In addition, we estimated the impact of somatic mutations on the human prion protein (PrP) using PolyPhen-2, PANTHER and PROVEAN. Furthermore, we evaluated the 3D structure and electrostatic potential of the human PrP according to somatic mutations using DeepView. The rates of PRNP K200 somatic mutation were significantly increased in the frontal cortex and hippocampus of sporadic CJD patients compared to the matched controls. In addition, the electrostatic potential of the human PrP was significantly changed by the K200 somatic mutation of the PRNP gene. To the best of our knowledge, this is the first report on an association of the PRNP K200 somatic mutation with sporadic CJD.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Neurodegenerativas , Príons , Humanos , Príons/genética , Príons/metabolismo , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Encéfalo/metabolismo , Mutação
3.
Acta Biochim Pol ; 69(1): 257-261, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35143147

RESUMO

In prion diseases, the prion protein (PrP) becomes misfolded and forms fibrillar aggregates that are responsible for prion infectivity and pathology. So far, no drug or treatment procedures have been approved for prion disease treatment. We have previously shown that engineered cell-penetrating peptide constructs can reduce the amount of prion aggregates in infected cells. However, the molecular mechanism underlying this effect is unknown. Here, we use atomic force microscopy (AFM) imaging to show that the amyloid aggregation and fibrillization of the human PrP protein can be inhibited by equimolar amounts of the 25 residues long engineered peptide construct NCAM1-Aß.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Antígeno CD56/metabolismo , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Antígeno CD56/química , Síndrome de Creutzfeldt-Jakob/metabolismo , Humanos , Microscopia de Força Atômica/métodos , Peptídeos/química , Peptídeos/metabolismo , Príons/química , Príons/metabolismo , Agregação Patológica de Proteínas/metabolismo , Ligação Proteica
4.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830321

RESUMO

Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is an underlying pathogenic mechanism in prion diseases. The diseases manifest as sporadic, hereditary, and acquired disorders. Etiological mechanisms driving the conversion of PrPC into PrPSc are unknown in sporadic prion diseases, while prion infection and specific mutations in the PrP gene are known to cause the conversion of PrPC into PrPSc in acquired and hereditary prion diseases, respectively. We recently reported that a neurotropic strain of influenza A virus (IAV) induced the conversion of PrPC into PrPSc as well as formation of infectious prions in mouse neuroblastoma cells after infection, suggesting the causative role of the neuronal infection of IAV in sporadic prion diseases. Here, we discuss the conversion mechanism of PrPC into PrPSc in different types of prion diseases, by presenting our findings of the IAV infection-induced conversion of PrPC into PrPSc and by reviewing the so far reported transgenic animal models of hereditary prion diseases and the reverse genetic studies, which have revealed the structure-function relationship for PrPC to convert into PrPSc after prion infection.


Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Doença de Gerstmann-Straussler-Scheinker/genética , Influenza Humana/genética , Insônia Familiar Fatal/genética , Proteínas PrPC/genética , Proteínas PrPSc/genética , Proteínas Priônicas/genética , Animais , Linhagem Celular Tumoral , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/virologia , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Doença de Gerstmann-Straussler-Scheinker/virologia , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/patogenicidade , Influenza Humana/metabolismo , Influenza Humana/patologia , Influenza Humana/virologia , Insônia Familiar Fatal/metabolismo , Insônia Familiar Fatal/patologia , Insônia Familiar Fatal/virologia , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Conformação Proteica , Genética Reversa/métodos
5.
Dement Geriatr Cogn Disord ; 50(1): 36-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34023835

RESUMO

INTRODUCTION: Sporadic Creutzfeldt-Jakob disease (sCJD) is a transmissible disorder of the central nervous system caused by the transformation of normal prion protein into an abnormal misfolded form. The process begins spontaneously and runs a vicious cycle to cause spongiform encephalopathy, rapidly resulting in death. Amply described in the western literature, CJD is scarcely reported in Asia due to certain limitations including missed diagnosis, under-reporting, and rarity of the disease. Brain MRI, electroencephalogram, cerebrospinal fluid testing, and biopsy of the infected brain tissue support the diagnosis in cases of clinical suspicion. However, the diagnosis can still be made with limited available resources in developing countries. METHOD: A review of CJD cases evaluated in the neurology department of a tertiary care hospital in Pakistan was done from 2002 to 2018. RESULTS: Eleven cases labeled as sCJD are identified based on the European MRI-CJD consortium criteria. This is the first study on CJD from Pakistan, which includes both the typical and atypical presentations. CONCLUSION: Even with limited testing available, the diagnosis of CJD can be made with confidence in the developing countries, provided the suspicion is kept high in cases of rapid onset dementia and acute behavioral changes.


Assuntos
Síndrome de Creutzfeldt-Jakob/diagnóstico , Idoso , Encéfalo/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Priônicas
6.
Biofactors ; 47(4): 570-586, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33893674

RESUMO

Amyloidosis is a concept that implicates disorders and complications that are due to abnormal protein accumulation in different cells and tissues. Protein aggregation-associated diseases are classified according to the type of aggregates and deposition sites, such as neurodegenerative disorders and type 2 diabetes mellitus. Polyphenolic phytochemicals such as curcumin and its derivatives have anti-amyloid effects both in vitro and in animal models; however, the underlying mechanisms are not understood. In this review, we summarized possible mechanisms by which curcumin could interfere with self-assembly processes and reduce amyloid aggregation in amyloidosis. Furthermore, we discuss clinical trials in which curcumin is used as a therapeutic agent for the treatment of diseases linking to protein aggregates.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amiloidose/prevenção & controle , Síndrome de Creutzfeldt-Jakob/tratamento farmacológico , Curcumina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Amiloidose/genética , Amiloidose/metabolismo , Amiloidose/patologia , Ensaios Clínicos como Assunto , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Hipoglicemiantes/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas tau/antagonistas & inibidores , Proteínas tau/genética , Proteínas tau/metabolismo
7.
Cell Stress Chaperones ; 26(2): 443-452, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547632

RESUMO

Prion protein (PrP) adopts either a helical conformation (PrPC) or an alternative, beta sheet-rich, misfolded conformation (PrPSc). The PrPSc form has the ability to "infect" PrPC and force it into the misfolded state. Accumulation of PrPSc is associated with a number of lethal neurodegenerative disorders, including Creutzfeldt-Jacob disease (CJD). Knockout of PrPC protects cells and animals from PrPSc infection; thus, there is interest in identifying factors that regulate PrPC stability, with the therapeutic goal of reducing PrPC levels and limiting infection by PrPSc. Here, we assembled a short-hairpin RNA (shRNA) library composed of 25+ shRNA sequences for each of 133 protein homeostasis (aka proteostasis) factors, such as molecular chaperones and co-chaperones. This Proteostasis shRNA Library was used to identify regulators of PrPC stability in HEK293 Hu129M cells. Strikingly, the screen identified a number of Hsp70 family members and their co-chaperones as putative targets. Indeed, a chemical pan-inhibitor of Hsp70s reduced PrPC levels and limited conversion to PrPSc in N2a cells. These results implicate specific proteostasis sub-networks, especially the Hsp70 system, as potential new targets for the treatment of CJD. More broadly, the Proteostasis shRNA Library might be a useful tool for asking which proteostasis factors are important for a given protein.


Assuntos
Síndrome de Creutzfeldt-Jakob/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Priônicas/metabolismo , Proteostase , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Estabilidade Proteica
8.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374972

RESUMO

Neurodegenerative diseases are characterized by the deposition of specific protein aggregates, both intracellularly and/or extracellularly, depending on the type of disease. The extracellular occurrence of tridimensional structures formed by amyloidogenic proteins defines Alzheimer's disease, in which plaques are composed of amyloid ß-protein, while in prionoses, the same term "amyloid" refers to the amyloid prion protein. In this review, we focused on providing a detailed didactic description and differentiation of diffuse, neuritic, and burnt-out plaques found in Alzheimer's disease and kuru-like, florid, multicentric, and neuritic plaques in human transmissible spongiform encephalopathies, followed by a systematic classification of the morphological similarities and differences between the extracellular amyloid deposits in these disorders. Both conditions are accompanied by the extracellular deposits that share certain signs, including neuritic degeneration, suggesting a particular role for amyloid protein toxicity.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Placa Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Neuritos/metabolismo , Neuritos/patologia
9.
Viruses ; 12(12)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302561

RESUMO

Creutzfeldt-Jakob disease (CJD) is a rapidly progressive neurodegenerative disease that can arise spontaneously, genetically, or be acquired through iatrogenic exposure. Most patients die within a year of symptom onset. It is rare, affecting 1-2 per million per year, and the majority of cases are sporadic. Primary angiitis of the central nervous system (PACNS) is also rare, affecting 2.4 per million per year. We present a case of an unusually long clinical course of CJD, almost five years, which began with symptoms of apraxia. The patient had biopsy-proven PACNS 16 years prior to clinical presentation, and the site of biopsy was the left parietal lobe. Autopsy revealed multicentric prion plaques in the cerebellum, in the setting of normal genetic testing. The presence of plaques in the cerebellum, and prior neurosurgery, raises the possibility of iatrogenic exposure. We present the details of this case, including pathology from the original biopsy and final autopsy, as well as a review of relevant cases in the literature.


Assuntos
Cerebelo/metabolismo , Cerebelo/patologia , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/etiologia , Príons/metabolismo , Vasculite do Sistema Nervoso Central/diagnóstico , Vasculite do Sistema Nervoso Central/etiologia , Cerebelo/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Humanos , Doença Iatrogênica , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade
10.
Acta Neuropathol ; 140(3): 317-339, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32577828

RESUMO

Dysfunctional RNA-binding proteins (RBPs) have been implicated in several neurodegenerative disorders. Recently, this paradigm of RBPs has been extended to pathophysiology of Alzheimer's disease (AD). Here, we identified disease subtype specific variations in the RNA-binding proteome (RBPome) of sporadic AD (spAD), rapidly progressive AD (rpAD), and sporadic Creutzfeldt Jakob disease (sCJD), as well as control cases using RNA pull-down assay in combination with proteomics. We show that one of these identified proteins, splicing factor proline and glutamine rich (SFPQ), is downregulated in the post-mortem brains of rapidly progressive AD patients, sCJD patients and 3xTg mice brain at terminal stage of the disease. In contrast, the expression of SFPQ was elevated at early stage of the disease in the 3xTg mice, and in vitro after oxidative stress stimuli. Strikingly, in rpAD patients' brains SFPQ showed a significant dislocation from the nucleus and cytoplasmic colocalization with TIA-1. Furthermore, in rpAD brain lesions, SFPQ and p-tau showed extranuclear colocalization. Of note, association between SFPQ and tau-oligomers in rpAD brains suggests a possible role of SFPQ in oligomerization and subsequent misfolding of tau protein. In line with the findings from the human brain, our in vitro study showed that SFPQ is recruited into TIA-1-positive stress granules (SGs) after oxidative stress induction, and colocalizes with tau/p-tau in these granules, providing a possible mechanism of SFPQ dislocation through pathological SGs. Furthermore, the expression of human tau in vitro induced significant downregulation of SFPQ, suggesting a causal role of tau in the downregulation of SFPQ. The findings from the current study indicate that the dysregulation and dislocation of SFPQ, the subsequent DNA-related anomalies and aberrant dynamics of SGs in association with pathological tau represents a critical pathway which contributes to rapid progression of AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/patologia , Fator de Processamento Associado a PTB/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Citoplasma/metabolismo , Regulação para Baixo/fisiologia , Humanos , Camundongos Transgênicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Cell Mol Neurobiol ; 40(3): 313-345, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31584139

RESUMO

Neurodegeneration entails progressive loss of neuronal structure as well as function leading to cognitive failure, apathy, anxiety, irregular body movements, mood swing and ageing. Proteomic dysregulation is considered the key factor for neurodegeneration. Mechanisms involving deregulated processing of proteins such as amyloid beta (Aß) oligomerization; tau hyperphosphorylation, prion misfolding; α-synuclein accumulation/lewy body formation, chaperone deregulation, acetylcholine depletion, adenosine 2A (A2A) receptor hyperactivation, secretase deregulation, leucine-rich repeat kinase 2 (LRRK2) mutation and mitochondrial proteinopathies have deeper implications in neurodegenerative disorders. Better understanding of such pathological mechanisms is pivotal for exploring crucial drug targets. Herein, we provide a comprehensive outlook about the diverse proteomic irregularities in Alzheimer's, Parkinson's and Creutzfeldt Jakob disease (CJD). We explicate the role of key neuroproteomic drug targets notably Aß, tau, alpha synuclein, prions, secretases, acetylcholinesterase (AchE), LRRK2, molecular chaperones, A2A receptors, muscarinic acetylcholine receptors (mAchR), N-methyl-D-aspartate receptor (NMDAR), glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) and mitochondrial/oxidative stress-related proteins for combating neurodegeneration and associated cognitive and motor impairment. Cross talk between amyloidopathy, synucleinopathy, tauopathy and several other proteinopathies pinpoints the need to develop safe therapeutics with ability to strike multiple targets in the aetiology of the neurodegenerative disorders. Therapeutics like microtubule stabilisers, chaperones, kinase inhibitors, anti-aggregation agents and antibodies could serve promising regimens for treating neurodegeneration. However, drugs should be target specific, safe and able to penetrate blood-brain barrier.


Assuntos
Terapia de Alvo Molecular , Degeneração Neural/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteoma/análise , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/fisiopatologia , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Degeneração Neural/genética , Degeneração Neural/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/fisiopatologia , Agregação Patológica de Proteínas/terapia , Proteoma/metabolismo , Proteômica , Transdução de Sinais/fisiologia
12.
ACS Chem Neurosci ; 10(3): 1273-1283, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30399321

RESUMO

Activation of microglia and increased expression of TNF-α are frequently observed in the brains of human and animal prion diseases. As an important cytokine, TNF-α participates in not only pro-inflammatory responses but also in cellular communication, cell differentiation, and cell death. However, the role of TNF-α in the pathogenesis of prion disease remains ambiguous. In this study, the activities of a scrapie-infected cell line SMB-S15 and its normal partner SMB-PS exposed to the supernatant of a LPS-activated microglia cell line BV2 were evaluated. After it was exposed to the LPS-stimulated supernatant of BV2 cells, the cell viability of SMB-S15 cells was markedly decreased, whereas that of the SMB-PS cells remained unchanged. The level of TNF-α was significantly increased in the LPS-stimulated supernatant of BV2 cells. Further, we found that the recombinant TNF-α alone induced the decreased cell viability of SMB-S15 and the neutralizing antibody for TNF-α completely antagonized the decreased cell viability caused by the LPS-stimulated supernatant of BV2 cells. Stimulation with TNF-α induced the remarkable increases of apoptosis-associated proteins in SMB-PS cells, such as cleaved caspase-3 and RIP1, whereas an obvious increase of necroptosis-associated protein in SMB-S15 cells, such as p-MLKL. Meanwhile, the upregulation of caspase-8 activity in SMB-PS cells was more significant than that of SMB-S15 cells. The decreased cell viability of SMB-S15 and the increased expression of p-MLKL induced by TNF-α were completely rescued by Necrostatin-1. Moreover, we verified that removal of PrPSc propagation in SMB-S15 cells by resveratrol partially rescues the cell tolerance to the stimulation of TNF-α. These data indicate that the prion-infected cell line SMB-S15 is more vulnerable to the stimulations of activated microglia and TNF-α, which is likely due to the outcome of necroptosis rather than apoptosis. Furthermore, significant upregulation of p-MLKL, MLKL, and RIP3 was detected in the post-mortem cortical brains of the patients of various types of human prion diseases, including sporadic Creutzfeldt-Jakob disease (sCJD), G114 V-genetic CJD (gCJD), and fatal familial insomnia (FFI).


Assuntos
Encéfalo/metabolismo , Sobrevivência Celular/fisiologia , Microglia/metabolismo , Necroptose/fisiologia , Scrapie/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular , Síndrome de Creutzfeldt-Jakob/metabolismo , Meios de Cultura , Humanos , Insônia Familiar Fatal/metabolismo , Camundongos , Proteínas PrPSc/metabolismo , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
13.
J Neurol Neurosurg Psychiatry ; 90(4): 424-427, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30355606

RESUMO

OBJECTIVE: To assess whether the involvement of the peripheral nervous system (PNS) belongs to the phenotypic spectrum of sporadic Creutzfeldt-Jakob disease (sCJD). METHODS: We examined medical records of 117 sCJDVV2 (ataxic type), 65 sCJDMV2K (kuru-plaque type) and 121 sCJDMM(V)1 (myoclonic type) subjects for clinical symptoms, objective signs and neurophysiological data. We reviewed two diagnostic nerve biopsies and looked for abnormal prion protein (PrPSc) by western blotting and real-time quaking-induced conversion (RT-QuIC) in postmortem PNS samples from 14 subjects. RESULTS: Seventy-five (41.2%) VV2-MV2K patients, but only 11 (9.1%) MM(V)1, had symptoms or signs suggestive of PNS involvement occurring at onset in 18 cases (17 VV2-MV2K, 9.3%; and 1 MM(V)1, 0.8%) and isolated in 6. Nerve biopsy showed a mixed predominantly axonal and demyelinating neuropathy in two sCJDMV2K. Electromyography showed signs of neuropathy in half of the examined VV2-MV2K patients. Prion RT-QuIC was positive in all CJD PNS samples, whereas western blotting detected PrPSc in the sciatic nerve in one VV2 and one MV2K. CONCLUSIONS: Peripheral neuropathy, likely related to PrPSc deposition, belongs to the phenotypic spectrum of sCJDMV2K and VV2 and may mark the clinical onset. The significantly lower prevalence of PNS involvement in typical sCJDMM(V)1 suggests that the PNS tropism of sCJD prions is strain dependent.


Assuntos
Síndrome de Creutzfeldt-Jakob/epidemiologia , Encefalopatia Espongiforme Bovina/epidemiologia , Doenças do Sistema Nervoso Periférico/epidemiologia , Nervo Isquiático/patologia , Nervo Sural/patologia , Ataxia , Síndrome de Creutzfeldt-Jakob/complicações , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/fisiopatologia , Doenças Desmielinizantes , Eletromiografia , Encefalopatia Espongiforme Bovina/complicações , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/fisiopatologia , Humanos , Mioclonia , Nervos Periféricos/patologia , Nervos Periféricos/fisiopatologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Proteínas Priônicas/metabolismo
14.
Sci Rep ; 8(1): 14178, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242186

RESUMO

The prion protein (PrP) is a cell surface protein that in disease misfolds and becomes infectious causing Creutzfeldt-Jakob disease in humans, scrapie in sheep, and chronic wasting disease in deer and elk. Little is known regarding the dimerization of PrP and its role in disease. We developed a bioluminescent prion assay (BPA) to quantify PrP dimerization by bimolecular complementation of split Gaussia luciferase (GLuc) halves that are each fused to PrP. Fusion constructs between PrP and N- and C-terminal GLuc halves were expressed on the surface of RK13 cells (RK13-DC cells) and dimerized to yield a bioluminescent signal that was decreased in the presence of eight different antibodies to PrP. Dimerization of PrP was independent of divalent cations and was induced under stress. Challenge of RK13-DC cells with seven different prion strains did not lead to detectable infection but was measurable by bioluminescence. Finally, we used BPA to screen a compound library for compounds inhibiting PrP dimerization. One of the most potent compounds to inhibit PrP dimerization was JTC-801, which also inhibited prion replication in RML-infected ScN2a and SMB cells with an EC50 of 370 nM and 220 nM, respectively. We show here that BPA is a versatile tool to study prion biology and to identify anti-prion compounds.


Assuntos
Bioensaio/métodos , Proteínas Priônicas/metabolismo , Animais , Cátions Bivalentes/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Síndrome de Creutzfeldt-Jakob/metabolismo , Cervos , Dimerização , Humanos , Medições Luminescentes/métodos , Camundongos , Dobramento de Proteína , Coelhos , Scrapie/metabolismo , Ovinos , Doença de Emaciação Crônica/metabolismo
15.
J Neurol Neurosurg Psychiatry ; 89(3): 239-247, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29142138

RESUMO

OBJECTIVES: Neurochemical markers of amyotrophic lateral sclerosis (ALS) that reflect underlying disease mechanisms might help in diagnosis, staging and prediction of outcome. We aimed at determining the origin and differential diagnostic and prognostic potential of the putative marker of microglial activation chitotriosidase (CHIT1). METHODS: Altogether 316 patients were included, comprising patients with sporadic ALS, ALS mimics (disease controls (DCo)), frontotemporal lobar degeneration (FTLD), Creutzfeldt-Jakob disease (CJD), Alzheimer's disease (AD), Parkinson's disease (PD) and healthy controls (Con). CHIT1 and neurofilament levels were determined in cerebrospinal fluid (CSF) and blood and analysed with regard to diagnostic sensitivity and specificity and prognostic performance. Additionally, postmortem tissue was analysed for CHIT1 expression. RESULTS: In ALS, CHIT1 CSF levels were higher compared with Con (p<0.0001), DCo (p<0.05) and neurodegenerative diseases (AD p<0.05, PD p<0.01, FTLD p<0.0001) except CJD. CHIT1 concentrations were correlated with ALS disease progression and severity but not with the survival time, as did neurofilaments. Serum CHIT1 levels were not different in ALS compared with any other study group. In the spinal cord of patients with ALS, but not Con, AD or CJD cases, CHIT1 was expressed in the corticospinal tract and CHIT1 staining colocalised with markers of microglia (IBA1) and macrophages (CD68). CONCLUSIONS: CHIT1 concentrations in the CSF of patients with ALS may reflect the extent of microglia/macrophage activation in the white matter of the spinal cord. CHIT1 could be a potentially useful marker for differential diagnosis and prediction of disease progression in ALS and, therefore, seems suitable as a supplemental marker for patient stratification in therapeutic trials.


Assuntos
Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Hexosaminidases/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Tratos Piramidais/metabolismo , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Estudos de Casos e Controles , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano , Síndrome de Creutzfeldt-Jakob/metabolismo , Progressão da Doença , Feminino , Degeneração Lobar Frontotemporal/líquido cefalorraquidiano , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/metabolismo , Tratos Piramidais/citologia , Índice de Gravidade de Doença , Medula Espinal/citologia , Medula Espinal/metabolismo , Taxa de Sobrevida , Substância Branca/metabolismo
16.
J Clin Pathol ; 71(5): 446-450, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29097599

RESUMO

AIMS: To investigate the expression of major proteins related to primary neurodegenerative diseases and their prognostic significance in brains with Creutzfeldt-Jakob disease (CJD). MATERIALS AND METHODS: Thirty consecutive cases of confirmed CJD during the period 2010-2015 at Basque Brain bank were retrospectively reviewed. Moreover, major neurodegenerative-associated proteins (phosphorylated Tau, 4R tau, 3R tau, alpha-synuclein, TDP43, amyloid beta) were tested. Clinical data were reviewed. Cases were divided according to the presence or absence of copathology. Survival curves were also determined. RESULTS: Copathology was significantly associated with survival in brains with CJD (4.2±1.2 vs 9.2±1.9; P=0.019) and in brains with MM1/MV1 CJD (2.1±1.0 vs 6.7±2.8; P=0.012). Besides, the presence of more than one major neurodegenerative-associated protein was significantly associated with survival (4.2±1.2 vs 10.7±2.6; P=0.017). Thus, univariate analyses further pointed out variables significantly associated with better survival: copathology in CJD (HR=0.430; P=0.033); more than one neurodegenerative-associated protein in CJD (HR=0.369; P=0.036) and copathology in MM1/MV1 CJD (HR=0.525; P=0.032). CONCLUSION: The existence of copathology significantly prolongs survival in patients with rapidly progressive dementia due to CJD. The study of major neurodegenerative-associated proteins in brains with CJD could allow us to further understand the molecular mechanisms behind prion diseases.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Demência/metabolismo , Demência/patologia , Proteínas do Tecido Nervoso/análise , Idoso , Peptídeos beta-Amiloides/análise , Autopsia , Bancos de Espécimes Biológicos , Biópsia , Síndrome de Creutzfeldt-Jakob/mortalidade , Proteínas de Ligação a DNA/análise , Demência/mortalidade , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Fosforilação , Estudos Retrospectivos , Espanha , alfa-Sinucleína/análise , Proteínas tau/análise
17.
Prion ; 11(6): 454-464, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28967811

RESUMO

We report the case of a 76-year-old woman presenting with 47-month history of progressive dementia and cortical blindness with no family history. Antibodies against thyroid glands and the N-terminus of α-enolase (NAE) were detected in her serum. Neurological examination revealed progressive dementia, frontal signs, visual disturbance, and exaggerated bilateral tendon reflexes in both legs. Diffusion MRI showed cortical hyper-intensities in the bilateral occipital and parietal, and the left frontal and temporal cortices. 99mTc-ethyl cysteinate dimer-single photon emission computed tomography indicated decreased regional cerebral blood flow throughout the bilateral parietal lobes and partially in the left frontal and temporal lobes. PRNP gene analysis showed no mutations with methionine homozygosity at codon 129 in peripheral blood. Cerebrospinal fluid examination, including 14-3-3 and total tau protein detection, revealed normal levels; however, prion proteins were amplified by the real-time quaking-induced conversion method. Hashimoto's encephalopathy was excluded on the basis of unresponsiveness to corticosteroids. The symptoms progressed slowly. Periodic sharp-wave complexes were observed on electroencephalogram 36 months after the onset of symptoms; the patient reached a state of akinetic mutism at 47 months. This was a probable case of MM2-cortical-type sCJD with anti-NAE antibodies based on the World Health Organization (WHO) diagnostic criteria for sCJD, genetic information, and the slowly progressive course. However, this case did not meet with the probable WHO diagnostic criteria until 3 years after symptom onset, highlighting the difficulty of diagnosing a living case of the MM2-type of sCJD. Therefore, establishment of clinical diagnostic criteria for MM2-type of sCJD is required.


Assuntos
Anticorpos/imunologia , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/imunologia , Fosfopiruvato Hidratase/imunologia , Idoso , Anticorpos/sangue , Síndrome de Creutzfeldt-Jakob/sangue , Síndrome de Creutzfeldt-Jakob/metabolismo , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Imunoterapia , Fosfopiruvato Hidratase/metabolismo
18.
Sci Rep ; 7(1): 10050, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855681

RESUMO

The precise molecular mechanism of how misfolded α-synuclein (α-Syn) accumulates and spreads in synucleinopathies is still unknown. Here, we show the role of the cellular prion protein (PrPC) in mediating the uptake and the spread of recombinant α-Syn amyloids. The in vitro data revealed that the presence of PrPC fosters the higher uptake of α-Syn amyloid fibrils, which was also confirmed in vivo in wild type (Prnp +/+) compared to PrP knock-out (Prnp -/-) mice. Additionally, the presence of α-Syn amyloids blocked the replication of scrapie prions (PrPSc) in vitro and ex vivo, indicating a link between the two proteins. Indeed, whilst PrPC is mediating the internalization of α-Syn amyloids, PrPSc is not able to replicate in their presence. This observation has pathological relevance, since several reported case studies show that the accumulation of α-Syn amyloid deposits in Creutzfeldt-Jakob disease patients is accompanied by a longer disease course.


Assuntos
Amiloide/metabolismo , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Neurônios/metabolismo , Proteínas Priônicas/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/administração & dosagem , Amiloide/genética , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Endopeptidase K/química , Regulação da Expressão Gênica , Humanos , Injeções Intraventriculares , Camundongos , Camundongos Knockout , Neurônios/patologia , Proteínas Priônicas/genética , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Técnicas Estereotáxicas , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genética
19.
J Pathol ; 243(3): 273-278, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28791720

RESUMO

Prion infectivity was recently identified in the blood of both sporadic and variant Creutzfeldt-Jakob disease (CJD) patients. In variant CJD (vCJD), the widespread distribution of prions in peripheral tissues of both asymptomatic and symptomatic patients is likely to explain the occurrence of the observed prionaemia. However, in sporadic CJD (sCJD), prion infectivity is described to be located principally in the central nervous system. In this study, we investigated the presence of prion infectivity in bone marrow collected after death in patients affected with different sCJD agents. Bioassays in transgenic mice expressing the human prion protein revealed the presence of unexpectedly high levels of infectivity in the bone marrow from seven out of eight sCJD cases. These findings may explain the presence of blood-borne infectivity in sCJD patients. They also suggest that the distribution of prion infectivity in peripheral tissues in sCJD patients could be wider than currently believed, with potential implications for the iatrogenic transmission risk of this disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Medula Óssea/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Proteínas Priônicas/metabolismo , Idoso , Animais , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Príons/metabolismo
20.
Emerg Infect Dis ; 23(6): 946-956, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28518033

RESUMO

In the United-Kingdom, ≈1 of 2,000 persons could be infected with variant Creutzfeldt-Jakob disease (vCJD). Therefore, risk of transmission of vCJD by medical procedures remains a major concern for public health authorities. In this study, we used in vitro amplification of prions by protein misfolding cyclic amplification (PMCA) to estimate distribution and level of the vCJD agent in 21 tissues from 4 patients who died of clinical vCJD and from 1 asymptomatic person with vCJD. PMCA identified major levels of vCJD prions in a range of tissues, including liver, salivary gland, kidney, lung, and bone marrow. Bioassays confirmed that the quantitative estimate of levels of vCJD prion accumulation provided by PMCA are indicative of vCJD infectivity levels in tissues. Findings provide critical data for the design of measures to minimize risk for iatrogenic transmission of vCJD.


Assuntos
Bioensaio , Síndrome de Creutzfeldt-Jakob/diagnóstico , Proteínas PrPC/química , Animais , Doenças Assintomáticas , Medula Óssea/metabolismo , Medula Óssea/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Feminino , Humanos , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Proteínas PrPC/metabolismo , Proteínas PrPC/patogenicidade , Dobramento de Proteína , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA