Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Clin Oral Investig ; 28(7): 391, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907162

RESUMO

OBJECTIVE: To evaluate cytokine levels of interleukin (IL)-1ß, IL-4, IL-6, IL-17a, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the gingival crevicular fluid (GCF) of periodontal sites in individuals with Down syndrome (DS) and analyze their relationship with clinical periodontal parameters. MATERIALS AND METHODS: A cross-sectional study was conducted with 49 DS patients and 32 individuals without DS (non-DS group). Periodontal probing depth (PPD), clinical attachment level (CAL), bleeding on probing (BoP), and visible plaque index (VPI) were evaluated. The periodontal sites were classified as shallow, moderate, and deep. GCF was collected in all shallow sites and, when present, in moderate and deep sites for the analysis of cytokine levels. The cytokines, IL-1ß, IL-4, IL-6, IL-17a, TNF-α, and IFN-γ, were quantified using the Luminex® automatic analyzer system. RESULTS: The DS group presented greater severity of periodontitis compared to the non-DS group (P = 0.005). The DS group showed a significant direct correlation of IL-1ß and an inverse correlation of IFN-γ and IL-14 with all periodontal variables. In the analysis stratified by periodontal pocket depth, we observed a higher level of IFN-γ, IL-17a, IL-1ß, and IL-6 in the shallow sites, and IL-17a, IL-1ß, and IL-6 in deep pockets of DS group individuals. Multivariate models showed that higher levels of IL-1ß, IL-4, IL-6, and IL-17a were associated with Down syndrome even after adjusting for periodontal status, sex, and age. CONCLUSION: The findings suggest that people with DS have greater periodontal impairment and higher levels of cytokines in GCF, even in sites having clinical periodontal parameters similar to those of individuals without DS. These data reiterate the concept of an altered and less effective immune response in the population with DS in the face of a periodontal microbial challenge. CLINICAL RELEVANCE: Elevated periodontal inflammation burden can be observed with higher cytokine levels in the gingival crevicular fluid of people with Down syndrome, especially IL-1, IL-4, IL-6, and IL-17, regardless of the stage of periodontitis.


Assuntos
Citocinas , Síndrome de Down , Líquido do Sulco Gengival , Índice Periodontal , Humanos , Líquido do Sulco Gengival/química , Estudos Transversais , Masculino , Feminino , Síndrome de Down/metabolismo , Citocinas/metabolismo , Citocinas/análise , Adulto , Índice de Placa Dentária , Adolescente
2.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474215

RESUMO

Down syndrome is a well-studied aneuploidy condition in humans, which is associated with various disease phenotypes including cardiovascular, neurological, haematological and immunological disease processes. This review paper aims to discuss the research conducted on gene expression studies during fetal development. A descriptive review was conducted, encompassing all papers published on the PubMed database between September 1960 and September 2022. We found that in amniotic fluid, certain genes such as COL6A1 and DSCR1 were found to be affected, resulting in phenotypical craniofacial changes. Additionally, other genes such as GSTT1, CLIC6, ITGB2, C21orf67, C21orf86 and RUNX1 were also identified to be affected in the amniotic fluid. In the placenta, dysregulation of genes like MEST, SNF1LK and LOX was observed, which in turn affected nervous system development. In the brain, dysregulation of genes DYRK1A, DNMT3L, DNMT3B, TBX1, olig2 and AQP4 has been shown to contribute to intellectual disability. In the cardiac tissues, dysregulated expression of genes GART, ETS2 and ERG was found to cause abnormalities. Furthermore, dysregulation of XIST, RUNX1, SON, ERG and STAT1 was observed, contributing to myeloproliferative disorders. Understanding the differential expression of genes provides insights into the genetic consequences of DS. A better understanding of these processes could potentially pave the way for the development of genetic and pharmacological therapies.


Assuntos
Síndrome de Down , Deficiência Intelectual , Gravidez , Feminino , Humanos , Síndrome de Down/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fenótipo , Expressão Gênica
3.
Neurochem Int ; 174: 105679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309665

RESUMO

Down syndrome (DS) is the most common genetic disorder associated with intellectual disability. To study this syndrome, several mouse models have been developed. Among the most common is the Ts65Dn model, which mimics most of the alterations observed in DS. Ts65Dn mice, as humans with DS, show defects in the structure, density, and distribution of dendritic spines in the cerebral cortex and hippocampus. Fasudil is a potent inhibitor of the RhoA kinase pathway, which is involved in the formation and stabilization of dendritic spines. Our study analysed the effect of early chronic fasudil treatment on the alterations observed in the hippocampus of the Ts65Dn model. We observed that treating Ts65Dn mice with fasudil induced an increase in neural plasticity in the hippocampus: there was an increment in the expression of PSA-NCAM and BDNF, in the dendritic branching and spine density of granule neurons, as well as in cell proliferation and neurogenesis in the subgranular zone. Finally, the treatment reduced the unbalance between excitation and inhibition present in this model. Overall, early chronic treatment with fasudil increases cell plasticity and eliminates differences with euploid animals.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Síndrome de Down , Humanos , Camundongos , Animais , Síndrome de Down/tratamento farmacológico , Síndrome de Down/genética , Síndrome de Down/metabolismo , Camundongos Transgênicos , Hipocampo/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
4.
Biochem Soc Trans ; 52(1): 1-13, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38174740

RESUMO

Intersectin (ITSN) is a multi-domain scaffold protein with a diverse array of functions including regulation of endocytosis, vesicle transport, and activation of various signal transduction pathways. There are two ITSN genes located on chromosomes 21 and 2 encoding for proteins ITSN1 and ITSN2, respectively. Each ITSN gene encodes two major isoforms, ITSN-Long (ITSN-L) and ITSN-Short (ITSN-S), due to alternative splicing. ITSN1 and 2, collectively referred to as ITSN, are implicated in many physiological and pathological processes, such as neuronal maintenance, actin cytoskeletal rearrangement, and tumor progression. ITSN is mis-regulated in many tumors, such as breast, lung, neuroblastomas, and gliomas. Altered expression of ITSN is also found in several neurodegenerative diseases, such as Down Syndrome and Alzheimer's disease. This review summarizes recent studies on ITSN and provides an overview of the function of this important family of scaffold proteins in various biological processes.


Assuntos
Síndrome de Down , Transdução de Sinais , Humanos , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Endocitose/fisiologia
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166991, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38128843

RESUMO

Hirschsprung disease (HSCR) is a complex genetic disorder characterized by the absence of enteric nervous system (ENS) in the distal region of the intestine. Down Syndrome (DS) patients have a >50-fold higher risk of developing HSCR than the general population, suggesting that overexpression of human chromosome 21 (Hsa21) genes contribute to HSCR etiology. However, identification of responsible genes remains challenging. Here, we describe a genetic screening of potential candidate genes located on Hsa21, using the zebrafish. Candidate genes were located in the DS-HSCR susceptibility region, expressed in the human intestine, were known potential biomarkers for DS prenatal diagnosis, and were present in the zebrafish genome. With this approach, four genes were selected: RCAN1, ITSN1, ATP5PO and SUMO3. However, only overexpression of ATP5PO, coding for a component of the mitochondrial ATPase, led to significant reduction of ENS cells. Paradoxically, in vitro studies showed that overexpression of ATP5PO led to a reduction of ATP5PO protein levels. Impaired neuronal differentiation and reduced mitochondrial ATP production, were also detected in vitro, after overexpression of ATP5PO in a neuroblastoma cell line. Finally, epistasis was observed between ATP5PO and ret, the most important HSCR gene. Taken together, our results identify ATP5PO as the gene responsible for the increased risk of HSCR in DS patients in particular if RET variants are also present, and show that a balanced expression of ATP5PO is required for normal ENS development.


Assuntos
Síndrome de Down , Sistema Nervoso Entérico , Doença de Hirschsprung , Animais , Humanos , Doença de Hirschsprung/genética , Doença de Hirschsprung/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Peixe-Zebra/genética , Sistema Nervoso Entérico/metabolismo , Biomarcadores/metabolismo
6.
Aging (Albany NY) ; 15(23): 14086-14108, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38095646

RESUMO

Trisomy 21, or Down syndrome (DS), is the most frequent human autosomal chromosome aneuploidy, which leads to multiple developmental disorders, especially mental retardation in individuals. The presence of an additional human chromosome 21 (HSA21) could account for the pathological manifestations in DS. In this study, we analyzed the mRNA gene expression profile of DS-derived amniocytes compared with normal amniocytes, aiming to evaluate the relationship between candidate dysregulated HSA21 genes and DS developmental phenotypes. Differentially expressed genes (DEGs) included 1794 upregulated genes and 1411 downregulated genes, which are mainly involved in cell adhesion, inflammation, cell proliferation and thus may play an important role in inducing multiple dysplasia during DS fetal development. Furthermore, STRING protein network studies demonstrated 7 candidate HSA21 genes participated Gene Ontology (GO) terms: cell adhesion and extracellular matrix remodeling (COL6A1, COL6A2, COL18A1, ADAMTS5, JAM2, and POFUT2), inflammation and virus infection response (MX1 and MX2), histone modification and chromatin remodeling (NRIP1), glycerolipid and glycerophospholipid metabolism (AGPAT3), mitochondrial function (ATP5PF and ATP5PO), synaptic vesicle endocytosis (ITSN1 and SYNJ1) and amyloid metabolism (APP). Meanwhile, GSEA enrichment identified several transcription factors and miRNAs, which may target gene expression in the DS group. Our study established connections between dysregulated genes, especially HSA21 genes, and DS-associated phenotypes. The alteration of multiple pathways and biological processes may contribute to DS developmental disorders, providing potential pathogenesis and therapeutic targets for DS.


Assuntos
Síndrome de Down , MicroRNAs , Humanos , Síndrome de Down/metabolismo , Transcriptoma , MicroRNAs/metabolismo , Fatores de Transcrição/genética , Inflamação
7.
Sci Adv ; 9(30): eadg1925, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494443

RESUMO

Lysosome dysfunction arises early and propels Alzheimer's disease (AD). Herein, we show that amyloid precursor protein (APP), linked to early-onset AD in Down syndrome (DS), acts directly via its ß-C-terminal fragment (ßCTF) to disrupt lysosomal vacuolar (H+)-adenosine triphosphatase (v-ATPase) and acidification. In human DS fibroblasts, the phosphorylated 682YENPTY internalization motif of APP-ßCTF binds selectively within a pocket of the v-ATPase V0a1 subunit cytoplasmic domain and competitively inhibits association of the V1 subcomplex of v-ATPase, thereby reducing its activity. Lowering APP-ßCTF Tyr682 phosphorylation restores v-ATPase and lysosome function in DS fibroblasts and in vivo in brains of DS model mice. Notably, lowering APP-ßCTF Tyr682 phosphorylation below normal constitutive levels boosts v-ATPase assembly and activity, suggesting that v-ATPase may also be modulated tonically by phospho-APP-ßCTF. Elevated APP-ßCTF Tyr682 phosphorylation in two mouse AD models similarly disrupts v-ATPase function. These findings offer previously unknown insight into the pathogenic mechanism underlying faulty lysosomes in all forms of AD.


Assuntos
Doença de Alzheimer , Síndrome de Down , Camundongos , Humanos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Doença de Alzheimer/metabolismo , Adenosina Trifosfatases/metabolismo , Lisossomos/metabolismo , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
8.
Tohoku J Exp Med ; 261(1): 51-56, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37344418

RESUMO

Transient abnormal myelopoiesis (TAM) can cause early death in children with Down syndrome, and liver failure is the most common cause of death. The aim of this single-center retrospective study was to identify a quantitative index for predicting TAM-related mortality at the time of diagnosis. Of the 462 children with Down syndrome admitted to our hospital from 1992 to 2021, we studied 12 infants with TAM-related death and 31 survivors who were diagnosed with TAM. In the death and survival groups, the median gestational ages were 34.9 and 37.1 weeks, respectively (p = 0.12). At diagnosis, the white blood cell (WBC) counts were 99.2 and 36.2 × 109/L (p = 0.011), the hemoglobin concentrations were 131 and 159 g/L (p = 0.009), and the serum albumin concentrations were 23 and 31 g/L (p < 0.001), respectively. The areas under the receiver operating characteristic curve for the abilities of the WBC count, hemoglobin, and serum albumin at diagnosis to predict survival were 0.75, 0.76, and 0.85, respectively. The serum albumin concentration threshold of 28 g/L at diagnosis had sensitivity of 0.79 and specificity of 0.82. Gestational age and serum albumin concentration were entered into a logistic regression model. The serum albumin concentration was an independent indicator of TAM-related death (adjusted odds ratio, 0.78; 95% confidence interval, 0.65-0.93; p = 0.005). In conclusion, a low serum albumin concentration at diagnosis may be a good predictor of TAM-related death.


Assuntos
Síndrome de Down , Reação Leucemoide , Criança , Lactente , Humanos , Síndrome de Down/diagnóstico , Síndrome de Down/metabolismo , Estudos Retrospectivos , Mielopoese , Reação Leucemoide/diagnóstico , Contagem de Leucócitos , Albumina Sérica
9.
Cytometry B Clin Cytom ; 104(4): 311-318, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37015883

RESUMO

BACKGROUND: Detection of measurable residual disease detection (MRD) by flow cytometry after the first course of chemotherapy is a standard measure of early response in patients with acute myeloid leukemia (AML). Myeloid leukemia associated with Down Syndrome (ML-DS) is a distinct form of AML. Differences in steady-state and regenerating hematopoiesis between patients with or without DS are not well understood. This understanding is essential to accurately determine the presence of residual leukemia in patients with ML-DS. METHODS: A standardized antibody panel defined quantitative antigen expression in 115 follow-up bone marrow (BM) aspirates from 45 patients following chemotherapy for ML-DS or DS precursor B-cell acute lymphoblastic leukemia (B-ALL-DS) with the "difference from normal (ΔN)" technique. When possible, FISH and SNP/CGH microarray studies were performed on sorted cell fractions. RESULTS: 93% of BM specimens submitted post chemotherapy had a clearly identifiable CD34+ CD56+ population present between 0.06% and 2.6% of total non-erythroid cells. An overlapping CD34+ HLA-DRheterogeneous population was observed among 92% of patients at a lower frequency (0.04%-0.8% of total non-erythroid cells). In B-ALL-DS patients, the same CD34+ CD56+ HLA-DRheterogeneous expression was observed. FACS-FISH/Array studies demonstrated no residual genetic clones in the DS-specific myeloid progenitor cells. CONCLUSIONS: Non-malignant myeloid progenitors in the regenerating BM of patients who have undergone chemotherapy for either ML-DS or B-ALL-DS express an immunophenotype that is different from normal BM of non-DS patients. Awareness of this DS-specific non-malignant myeloid progenitor is essential to the interpretation of MRD by flow cytometry in patients with ML-DS.


Assuntos
Linfoma de Burkitt , Síndrome de Down , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Medula Óssea/patologia , Síndrome de Down/diagnóstico , Síndrome de Down/metabolismo , Citometria de Fluxo/métodos , Leucemia Mieloide Aguda/patologia , Células-Tronco Hematopoéticas/metabolismo , Antígenos CD34/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Neoplasia Residual/diagnóstico , Neoplasia Residual/metabolismo , Linfoma de Burkitt/metabolismo , Imunofenotipagem
10.
Mol Cells ; 46(4): 219-230, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36625318

RESUMO

Down syndrome (DS) is the most common autosomal aneuploidy caused by trisomy of chromosome 21. Previous studies demonstrated that DS affected mitochondrial functions, which may be associated with the abnormal development of the nervous system in patients with DS. Runt-related transcription factor 1 (RUNX1) is an encoding gene located on chromosome 21. It has been reported that RUNX1 may affect cell apoptosis via the mitochondrial pathway. The present study investigated whether RUNX1 plays a critical role in mitochondrial dysfunction in DS and explored the mechanism by which RUNX1 affects mitochondrial functions. Expression of RUNX1 was detected in induced pluripotent stem cells of patients with DS (DS-iPSCs) and normal iPSCs (N-iPSCs), and the mitochondrial functions were investigated in the current study. Subsequently, RUNX1 was overexpressed in N-iPSCs and inhibited in DS-iPSCs. The mitochondrial functions were investigated thoroughly, including reactive oxygen species levels, mitochondrial membrane potential, ATP content and lysosomal activity. Finally, RNA-sequencing was used to explore the global expression pattern. It was observed that the expression levels of RUNX1 in DS-iPSCs were significantly higher than those in normal controls. Impaired mitochondrial functions were observed in DS-iPSCs. Of note, overexpression of RUNX1 in N-iPSCs resulted in mitochondrial dysfunction, while inhibition of RUNX1 expression could improve the mitochondrial function in DS-iPSCs. Global gene expression analysis indicated that overexpression of RUNX1 may promote the induction of apoptosis in DS-iPSCs by activating the PI3K/Akt signaling pathway. The present findings indicate that abnormal expression of RUNX1 may play a critical role in mitochondrial dysfunction in DS-iPSCs.


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fosfatidilinositol 3-Quinases/metabolismo , Síndrome de Down/metabolismo , Diferenciação Celular/genética , Regulação para Cima , Mitocôndrias/metabolismo
11.
Cell Death Dis ; 13(12): 1018, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470861

RESUMO

Down syndrome (DS) is the most common chromosomal abnormality in live-born infants and is caused by trisomy of chromosome 21. Most individuals with DS display craniofacial dysmorphology, including reduced sizes of the skull, maxilla, and mandible. However, the underlying pathogenesis remains largely unknown. Since the craniofacial skeleton is mainly formed by the neural crest, whether neural crest developmental defects are involved in the craniofacial anomalies of individuals with DS needs to be investigated. Here, we successfully derived DS-specific human induced pluripotent stem cells (hiPSCs) using a Sendai virus vector. When DS-hiPSCs were induced to differentiate into the neural crest, we found that trisomy 21 (T21) did not influence cell proliferation or apoptosis. However, the migratory ability of differentiated cells was significantly compromised, thus resulting in a substantially lower number of postmigratory cranial neural crest stem cells (NCSCs) in the DS group than in the control group. We further discovered that the migration defects could be partially attributed to the triplication of the coxsackievirus and adenovirus receptor gene (CXADR; an adhesion protein) in the DS group cells, since knockdown of CXADR substantially recovered the cell migratory ability and generation of postmigratory NCSCs in the DS group. Thus, the migratory deficits of neural crest cells may be an underlying cause of craniofacial dysmorphology in individuals with DS, which may suggest potential targets for therapeutic intervention to ameliorate craniofacial or other neural crest-related anomalies in DS.


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Humanos , Crista Neural/metabolismo , Síndrome de Down/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Movimento Celular/genética , Crânio/patologia
12.
Mol Biol Cell ; 33(8)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476505

RESUMO

Trisomy 21, the source of Down syndrome, causes a 0.5-fold protein increase of the chromosome 21-resident gene Pericentrin (PCNT) and reduces primary cilia formation and signaling. We investigate how PCNT imbalances disrupt cilia. Using isogenic RPE-1 cells with increased chromosome 21 dosage, we find PCNT accumulates around the centrosome as a cluster of enlarged cytoplasmic puncta that localize along microtubules (MTs) and at MT ends. Cytoplasmic PCNT puncta impact the density, stability, and localization of the MT trafficking network required for primary cilia. The PCNT puncta appear to sequester cargo peripheral to centrosomes in what we call pericentrosomal crowding. The centriolar satellite proteins PCM1, CEP131, and CEP290, important for ciliogenesis, accumulate at enlarged PCNT puncta in trisomy 21 cells. Reducing PCNT when chromosome 21 ploidy is elevated is sufficient to decrease PCNT puncta and pericentrosomal crowding, reestablish a normal density of MTs around the centrosome, and restore ciliogenesis to wild-type levels. A transient reduction in MTs also decreases pericentrosomal crowding and partially rescues ciliogenesis in trisomy 21 cells, indicating that increased PCNT leads to defects in the MT network deleterious to normal centriolar satellite distribution. We propose that chromosome 21 aneuploidy disrupts MT-dependent intracellular trafficking required for primary cilia.


Assuntos
Síndrome de Down , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Síndrome de Down/metabolismo , Humanos , Microtúbulos/metabolismo
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(3): 418-424, 2022 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-35426807

RESUMO

OBJECTIVE: To identify new biomarkers and molecular pathogenesis of Down syndrome (DS) by analyzing differentially expressed miRNAs in the placentas and their biological pathways. METHODS: Whole transcriptome sequencing was used to identify the differentially expressed miRNAs in DS (n=3) and normal placental samples (n=3) diagnosed by prenatal diagnosis. The target genes were predicted using miRWalk, Targetscan and miRDB, and GO and KEGG pathway analyses were performed for gene enrichment studies. RESULTS: We identified a total of 82 differentially expressed miRNAs in the placental tissues of DS, including 29 up-regulated miRNAs (fold change ≥2, P < 0.05) and 15 down-regulated miRNAs (fold change ≥2, P < 0.05), among which 10 miRNAs with relatively high expression abundance were selected for further analysis, including 4 up-regulated and 6 down-regulated miRNAs. These selected miRNAs shared the common target genes BTBD3 and AUTS2, both of which were associated with neurodevelopment. GO analysis showed that the target genes of the selected miRNAs were mainly enriched in protein binding, hydrolytic enzymes, metal ion binding protein combining, transferase activity, nucleotide, cytoplasmic constituents, nucleus composition, transcriptional regulation, RNA metabolism regulation, DNA-dependent RNA polymerase Ⅱ promoter transcriptional regulation, eye development, and sensory organ development. KEGG enrichment analysis showed that the target genes of these differentially expressed miRNAs were involved in the signaling pathways including tumor-related signaling pathway, PI3K-Akt signaling pathway, Ras signaling pathway, Rap1 signaling pathway, cytoskeletal regulatory signaling pathway, purine metabolization-related signaling pathway and P53 signaling pathway. CONCLUSION: The differentially expressed miRNAs may play important roles in placental damage and pregnancy pathology in DS and provide clues for the prevention and treatment of mental retardation-related diseases.


Assuntos
Síndrome de Down , MicroRNAs , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso , Fosfatidilinositol 3-Quinases/metabolismo , Placenta/metabolismo , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Sequenciamento do Exoma
14.
J Clin Invest ; 132(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35229730

RESUMO

Down syndrome (DS), or trisomy 21, is one of the critical risk factors for early-onset Alzheimer's disease (AD), implicating key roles for chromosome 21-encoded genes in the pathogenesis of AD. We previously identified a role for the deubiquitinase USP25, encoded on chromosome 21, in regulating microglial homeostasis in the AD brain; however, whether USP25 affects amyloid pathology remains unknown. Here, by crossing 5×FAD AD and Dp16 DS mice, we observed that trisomy 21 exacerbated amyloid pathology in the 5×FAD brain. Moreover, bacterial artificial chromosome (BAC) transgene-mediated USP25 overexpression increased amyloid deposition in the 5×FAD mouse brain, whereas genetic deletion of Usp25 reduced amyloid deposition. Furthermore, our results demonstrate that USP25 promoted ß cleavage of APP and Aß generation by reducing the ubiquitination and lysosomal degradation of both APP and BACE1. Importantly, pharmacological inhibition of USP25 ameliorated amyloid pathology in the 5×FAD mouse brain. In summary, we identified the DS-related gene USP25 as a critical regulator of AD pathology, and our data suggest that USP25 serves as a potential pharmacological target for AD drug development.


Assuntos
Doença de Alzheimer , Amiloidose , Síndrome de Down , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Camundongos , Camundongos Transgênicos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
15.
Virchows Arch ; 480(6): 1181-1187, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35199205

RESUMO

Transient abnormal myelopoiesis (TAM), also known as transient myeloproliferative disorder or transient leukemia, is a self-regressing neoplasia that afflicts infants with trisomy 21. A recent review article documented "myeloid cell thrombus (MCT)" and "fetal vascular malperfusion (FVM)" in placentas with TAM, although the characteristic TAM placental findings have not been clarified. Here, we compared the clinical and pathological placental findings between trisomy 21 patients with or without TAM. In 13 cases of trisomy 21, we identified six placentas with TAM and seven placentas without TAM. The six placentas with TAM included two stillborn cases. Microscopically, MCT was noted in all the cases, and a high incidence of FVM (50%) was observed in TAM cases. Immunohistochemically, MCT was found to be a platelet-rich thrombus. The placentas were grouped according to the presence or absence of TAM and subsequently compared. Clinically, the incidences of abnormal fetal heart rate pattern and fetal or neonatal death were significantly higher in TAM cases. Pathologically, placenta in TAM cases weighted more than those in cases without TAM, and the incidence of MCT was significantly higher in placentas with TAM. Moreover, the incidence of FVM was higher in placentas with TAM, but this difference was not statistically significant. We propose that MCT is a diagnostic feature of placentas with TAM and may be associated with poor fetal outcomes.


Assuntos
Síndrome de Down , Trombose , Síndrome de Down/complicações , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Reação Leucemoide , Células Mieloides/metabolismo , Células Mieloides/patologia , Placenta/patologia , Gravidez , Trombose/patologia
16.
Ann Neurol ; 91(4): 561-567, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35150166

RESUMO

Retromer deficiency is reported in Down syndrome and correlates with amyloidosis, however, its association with tau neuropathology remains unclear. Down syndrome and control brain tissues were evaluated for phosphorylated tau, tau modulators, and cathepsin-D activity. Several kinases and phosphatase PP2A were unchanged, but tau phosphorylation was elevated, and cathepsin-D activity decreased in aged patients with Down syndrome. Retromer proteins positively associated with soluble tau, whereas pathogenic tau negatively correlated with retromer proteins and cathepsin-D activity. Retromer deficiency and consequent reduction of cathepsin-D activity may contribute to pathogenic tau accumulation, thus, retromer represents a viable therapeutic target against tau pathology in Down syndrome. ANN NEUROL 2022;91:561-567.


Assuntos
Síndrome de Down , Proteínas tau , Idoso , Catepsinas/metabolismo , Síndrome de Down/metabolismo , Humanos , Neuropatologia , Fosforilação , Proteínas tau/metabolismo
17.
PLoS One ; 17(2): e0264254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196359

RESUMO

Bone abnormalities affect all individuals with Down syndrome (DS) and are linked to abnormal expression of DYRK1A, a gene found in three copies in people with DS and Ts65Dn DS model mice. Previous work in Ts65Dn male mice demonstrated that both genetic normalization of Dyrk1a and treatment with ~9 mg/kg/day Epigallocatechin-3-gallate (EGCG), the main polyphenol found in green tea and putative DYRK1A inhibitor, improved some skeletal deficits. Because EGCG treatment improved mostly trabecular skeletal deficits, we hypothesized that increasing EGCG treatment dosage and length of administration would positively affect both trabecular and cortical bone in Ts65Dn mice. Treatment of individuals with DS with green tea extract (GTE) containing EGCG also showed some weight loss in individuals with DS, and we hypothesized that weights would be affected in Ts65Dn mice after EGCG treatment. Treatment with ~20 mg/kg/day EGCG for seven weeks showed no improvements in male Ts65Dn trabecular bone and only limited improvements in cortical measures. Comparing skeletal analyses after ~20mg/kg/day EGCG treatment with previously published treatments with ~9, 50, and 200 mg/kg/day EGCG showed that increased dosage and treatment time increased cortical structural deficits leading to weaker appendicular bones in male mice. Weight was not affected by treatment in mice, except for those given a high dose of EGCG by oral gavage. These data indicate that high doses of EGCG, similar to those reported in some treatment studies of DS and other disorders, may impair long bone structure and strength. Skeletal phenotypes should be monitored when high doses of EGCG are administered therapeutically.


Assuntos
Catequina/análogos & derivados , Síndrome de Down/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Catequina/administração & dosagem , Catequina/efeitos adversos , Catequina/uso terapêutico , Síndrome de Down/metabolismo , Esquema de Medicação , Feminino , Masculino , Camundongos , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Quinases Dyrk
18.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34795060

RESUMO

Down syndrome (DS), trisomy of human chromosome 21 (HSA21), is characterized by lifelong cognitive impairments and the development of the neuropathological hallmarks of Alzheimer's disease (AD). The cellular and molecular modifications responsible for these effects are not understood. Here we performed single-nucleus RNA sequencing (snRNA-seq) employing both short- (Illumina) and long-read (Pacific Biosciences) sequencing technologies on a total of 29 DS and non-DS control prefrontal cortex samples. In DS, the ratio of inhibitory-to-excitatory neurons was significantly increased, which was not observed in previous reports examining sporadic AD. DS microglial transcriptomes displayed AD-related aging and activation signatures in advance of AD neuropathology, with increased microglial expression of C1q complement genes (associated with dendritic pruning) and the HSA21 transcription factor gene RUNX1 Long-read sequencing detected vast RNA isoform diversity within and among specific cell types, including numerous sequences that differed between DS and control brains. Notably, over 8,000 genes produced RNAs containing intra-exonic junctions, including amyloid precursor protein (APP) that had previously been associated with somatic gene recombination. These and related results illuminate large-scale cellular and transcriptomic alterations as features of the aging DS brain.


Assuntos
Envelhecimento/fisiologia , Síndrome de Down/metabolismo , Isoformas de RNA/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Cromossomos Humanos Par 21 , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Síndrome de Down/genética , Expressão Gênica , Humanos , Microglia , RNA/metabolismo , Análise de Sequência de RNA , Regulação para Cima
19.
Nature ; 598(7880): 327-331, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34588693

RESUMO

Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).


Assuntos
Células da Medula Óssea/citologia , Medula Óssea , Síndrome de Down/sangue , Síndrome de Down/imunologia , Feto/citologia , Hematopoese , Sistema Imunitário/citologia , Linfócitos B/citologia , Células Dendríticas/citologia , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Células Endoteliais/patologia , Eosinófilos/citologia , Células Eritroides/citologia , Granulócitos/citologia , Humanos , Imunidade , Células Mieloides/citologia , Células Estromais/citologia
20.
Reprod Biomed Online ; 43(4): 614-626, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34417138

RESUMO

RESEARCH QUESTION: Can cumulus cells be used as a non-invasive target for the study of determinants of preimplantation embryo quality? DESIGN: Cumulus cells were collected from monosomy 21, trisomy 21 and euploid embryos and subjected to RNA sequencing analysis and real-time polymerase chain reaction assays. The differential gene expression was analysed for different comparisons. RESULTS: A total of 3122 genes in monosomy 21 cumulus cells and 19 genes in trisomy 21 cumulus cells were differentially expressed compared with euploid cumulus cells. Thirteen of these genes were differentially expressed in both monosomy and trisomy 21, compared with euploid, including disheveled segment polarity protein 2 (DVL2), cellular communication network factor 1 (CCN1/CYR61) and serum response factor (SRF), which have been previously implicated in embryo developmental competence. In addition, ingenuity pathway analysis revealed cell-cell contact function to be affected in both monosomy and trisomy 21 cumulus cells. CONCLUSIONS: These findings support the use of cumulus cell gene expression analysis for the development of biomarkers evaluating oocyte quality for patients undergoing fertility preservation of oocytes.


Assuntos
Células do Cúmulo/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Proteínas Desgrenhadas/metabolismo , Síndrome de Down/metabolismo , Fator de Resposta Sérica/metabolismo , Adulto , Biomarcadores/metabolismo , Cromossomos Humanos Par 21/metabolismo , Embrião de Mamíferos , Feminino , Humanos , Monossomia , Oócitos , Gravidez , Estudo de Prova de Conceito , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA