Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1291812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941907

RESUMO

The growth hormone (GH)-insulin-like growth factor-1 (IGF1) signaling pathway emerged in recent years as a key determinant of aging and longevity. Disruption of this network in different animal species, including flies, nematodes and mouse, was consistently associated with an extended lifespan. Epidemiological analyses have shown that patients with Laron syndrome (LS), the best-characterized disease under the umbrella of the congenital IGF1 deficiencies, seem to be protected from cancer. While aging and cancer, as a rule, are considered diametrically opposite processes, modern lines of evidence reinforce the notion that aging and cancer might, as a matter of fact, be regarded as divergent manifestations of identical biochemical and cellular underlying processes. While the effect of individual mutations on lifespan and health span is very difficult to assess, genome-wide screenings identified a number of differentially represented aging- and longevity-associated genes in patients with LS. The present review summarizes recent data that emerged from comprehensive analyses of LS patients and portrays a number of previously unrecognized targets for GH-IGF1 action. Our article sheds light on complex aging and longevity processes, with a particular emphasis on the role of the GH-IGF1 network in these mechanisms.


Assuntos
Hormônio do Crescimento Humano , Síndrome de Laron , Neoplasias , Humanos , Camundongos , Animais , Síndrome de Laron/genética , Envelhecimento/genética , Longevidade/genética , Hormônio do Crescimento , Hormônio do Crescimento Humano/genética , Neoplasias/metabolismo
2.
Endocr Relat Cancer ; 30(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37343154

RESUMO

Many clinical and experimental studies have implicated the growth hormone (GH)-insulin-like growth factor (IGF-1) axis with the progression of cancer. The epidemiological finding that patients with Laron syndrome (LS), the best-characterized disease under the spectrum of congenital IGF-1 deficiencies, do not develop cancer is of major scientific and translational relevance. The evasion of LS patients from cancer emphasizes the central role of the GH-IGF-1 system in cancer biology. To identify genes that are differentially expressed in LS and that might provide a biological foundation for cancer protection, we have recently conducted genome-wide profiling of LS patients and normal controls. Analyses were performed on immortalized lymphoblastoid cell lines derived from individual patients. Bioinformatic analyses identified a series of genes that are either over- or under-represented in LS. Differential expression was demonstrated in a number of gene families, including cell cycle, metabolic control, cytokine-cytokine receptor interaction, Jak-STAT and PI3K-AKT signaling, etc. Major differences between LS and controls were also noticed in pathways associated with cell cycle distribution, apoptosis, and autophagy. The identification of novel downstream targets of the GH-IGF-1 network highlights the biological complexity of this hormonal system and sheds light on previously unrecognized mechanistic aspects associated with GH-IGF-1 action in the cancer cell.


Assuntos
Hormônio do Crescimento Humano , Síndrome de Laron , Neoplasias , Humanos , Hormônio do Crescimento , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Síndrome de Laron/genética , Síndrome de Laron/metabolismo , Neoplasias/genética , Fosfatidilinositol 3-Quinases
3.
Endocr Relat Cancer ; 30(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971780

RESUMO

Meta-analyses from 2018-2022 have shown that obesity increases the risk of various cancers such as acute myeloid lymphoma, chronic myeloid lymphoma, diffuse beta cell lymphoma, Hodgkin's lymphoma, leukemia, multiple myeloma, non-Hodgkin's lymphoma, bladder, breast, cholangiocarcinoma, colorectal, ovarian, esophageal, kidney, liver, prostate, thyroid, and uterus. Contextually, obesity, and its comorbidities, is the largest, most lethal pandemics in the history of mankind; hence, identification of underlying mechanisms is needed to adequately address this global health threat. Herein, we present the metabolic and hormonal mechanisms linked to obesity that might etiologically contribute to neoplasia, including hyperinsulinemia and putative places in the insulin-signaling pathway. Excess insulin, acting as a growth factor, might contribute to tumorigenesis, while abundant ATP and GDP supply the additional energy needed for proliferation of rapidly dividing cells. Our observations in the Ecuadorian cohort of subjects with Laron syndrome (ELS) prove that obesity does not always associate with increased cancer risk. Indeed, despite excess body fat from birth to death, these individuals display a diminished incidence of cancer when compared to their age- and sex-matched relatives. Furthermore, in cell cultures exposed to potent oxidizing agents, addition of ELS serum induces less DNA damage as well as increased apoptosis. ELS individuals have absent growth hormone (GH) counter-regulatory effects in carbohydrate metabolism due to a defective GH receptor. The corresponding biochemical phenotype includes extremely low basal serum concentrations of insulin and insulin-like growth factor-I, lower basal glucose and triglyceride (TG) levels, and diminished glucose, TG, and insulin responses to orally administered glucose or to a mixed meal.


Assuntos
Síndrome de Laron , Neoplasias , Masculino , Feminino , Humanos , Síndrome de Laron/genética , Equador , Fator de Crescimento Insulin-Like I , Insulina , Neoplasias/epidemiologia , Neoplasias/complicações , Obesidade/epidemiologia , Obesidade/complicações , Glucose
4.
Stem Cell Rev Rep ; 19(2): 392-405, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269524

RESUMO

Pathway involving insulin-like growth factor 1 (IGF-1) plays significant role in growth and development. Crucial role of IGF-1 was discovered inter alia through studies involving deficient patients with short stature, including Laron syndrome individuals. Noteworthy, despite disturbances in proper growth, elevated values for selected stem cell populations were found in IGF-1 deficient patients. Therefore, here we focused on investigating role of these cells-very small embryonic-like (VSEL) and hematopoietic stem cells (HSC), in the pathology. For the first time we performed long-term observation of these populations in response to rhIGF-1 (mecasermin) therapy. Enrolled pediatric subjects with IGF-1 deficiency syndrome were monitored for 4-5 years of rhIGF-1 treatment. Selected stem cells were analyzed in peripheral blood flow cytometrically, together with chemoattractant SDF-1 using immunoenzymatic method. Patients' data were collected for correlation of experimental results with clinical outcome. IGF-1 deficient patients were found to demonstrate initially higher levels of VSEL and HSC compared to healthy controls, with their gradual decrease in response to therapy. These changes were significantly associated with SDF-1 plasma levels. Correlations of VSEL and HSC were also reported in reference to growth-related parameters, and IGF-1 and IGFBP3 values. Noteworthy, rhIGF-1 was shown to efficiently induce development of Laron patients achieving at least proper rate of growth (compared to healthy group) in 80% of subjects. In conclusion, here we provided novel insight into stem cells participation in IGF-1 deficiency in patients. Thus, we demonstrated basis for future studies in context of stem cells and IGF-1 role in growth disturbances.


Assuntos
Fator de Crescimento Insulin-Like I , Síndrome de Laron , Humanos , Criança , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Síndrome de Laron/genética , Síndrome de Laron/terapia , Células-Tronco/metabolismo
5.
Horm Res Paediatr ; 95(6): 619-630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36446332

RESUMO

The growth hormone (GH)-insulin-like growth factor (IGF) cascade is central to the regulation of growth and metabolism. This article focuses on the history of the components of the IGF system, with an emphasis on the peptide hormones, IGF-I and -II, their cell surface receptors, and the IGF binding proteins (IGFBPs) and IGFBP proteases that regulate the availability of the peptide hormones for interaction with their receptors in relevant target tissues. We describe landmark events in the evolution of the somatomedin hypothesis, including evidence that has become available from experiments at the molecular and cellular levels, whole animal and tissue-specific gene knockouts, studies of cancer epidemiology, identification of prismatic human cases, and short- and long-term clinical trials of IGF-I therapy in humans. In addition, this new evidence has expanded our clinical definition of GH insensitivity (GHI) beyond growth hormone receptor mutations (classic Laron syndrome) to include conditions that cause primary IGF deficiency by impacting post-receptor signal transduction, IGF production, IGF availability to interact with the IGF-I receptor (IGF-1R), and defects in the IGF-1R, itself. We also discuss the clinical aspects of IGFs, from their description as insulin-like activity, to the use of IGF-I in the diagnosis and treatment of GH deficiency, and to the use of recombinant human IGF-I for therapy of children with GHI.


Assuntos
Fator de Crescimento Insulin-Like II , Fator de Crescimento Insulin-Like I , Síndrome de Laron , Animais , Humanos , Fator de Crescimento Insulin-Like I/deficiência , Fator de Crescimento Insulin-Like I/história , Fator de Crescimento Insulin-Like I/fisiologia , Fator de Crescimento Insulin-Like I/uso terapêutico , Síndrome de Laron/tratamento farmacológico , Síndrome de Laron/genética , Síndrome de Laron/história , Síndrome de Laron/fisiopatologia , Hormônios Peptídicos , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Somatomedinas/deficiência , Somatomedinas/história , Somatomedinas/fisiologia , Fator de Crescimento Insulin-Like II/deficiência , Fator de Crescimento Insulin-Like II/história , Fator de Crescimento Insulin-Like II/fisiologia , Fator de Crescimento Insulin-Like II/uso terapêutico
6.
Cells ; 11(10)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35626664

RESUMO

Normal growth and development in mammals are tightly controlled by numerous genetic factors and metabolic conditions. The growth hormone (GH)-insulin-like growth factor-1 (IGF1) hormonal axis is a key player in the regulation of these processes. Dysregulation of the GH-IGF1 endocrine system is linked to a number of pathologies, ranging from growth deficits to cancer. Laron syndrome (LS) is a type of dwarfism that results from mutation of the GH receptor (GHR) gene, leading to GH resistance and short stature as well as a number of metabolic abnormalities. Of major clinical relevance, epidemiological studies have shown that LS patients do not develop cancer. While the mechanisms associated with cancer protection in LS have not yet been elucidated, genomic analyses have identified a series of metabolic genes that are over-represented in LS patients. We hypothesized that these genes might constitute novel targets for IGF1 action. With a fold-change of 11.09, UDP-glucuronosyltransferase 2B15 (UGT2B15) was the top up-regulated gene in LS. The UGT2B15 gene codes for an enzyme that converts xenobiotic substances into lipophilic compounds and thereby facilitates their clearance from the body. We investigated the regulation of UGT2B15 gene expression by IGF1 and insulin. Both hormones inhibited UGT2B15 mRNA levels in endometrial and breast cancer cell lines. Regulation of UGT2B15 protein levels by IGF1/insulin, however, was more complex and not always correlated with mRNA levels. Furthermore, UGT2B15 expression was dependent on p53 status. Thus, UGT2B15 mRNA levels were higher in cell lines expressing a wild-type p53 compared to cells containing a mutated p53. Animal studies confirmed an inverse correlation between UGT2B15 and p53 levels. In summary, increased UGT2B15 levels in LS might confer upon patient's protection from genotoxic damage.


Assuntos
Glucuronosiltransferase/metabolismo , Síndrome de Laron , Neoplasias , Animais , Glucuronosiltransferase/genética , Glicosiltransferases/metabolismo , Hormônio do Crescimento/metabolismo , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Síndrome de Laron/genética , Síndrome de Laron/metabolismo , Mamíferos/metabolismo , Neoplasias/metabolismo , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/genética , Difosfato de Uridina
7.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769292

RESUMO

The growth hormone (GH)-insulin-like growth factor-1 (IGF1) endocrine axis is a central player in normal growth and metabolism as well as in a number of pathologies, including cancer. The GH-IGF1 hormonal system, in addition, has emerged as a major determinant of lifespan and healthspan. Laron syndrome (LS), the best characterized entity under the spectrum of the congenital IGF1 deficiencies, results from mutation of the GH receptor (GHR) gene, leading to dwarfism, obesity and other defects. Consistent with the key role of IGF1 in cellular proliferation, epidemiological studies have shown that LS patients are protected from cancer development. While reduced expression of components of the GH-IGF1 axis is associated with enhanced longevity in animal models, it is still unknown whether LS is associated with an increased lifespan. MicroRNAs (miRs) are endogenous short non-coding RNAs that regulate the expression of complementary mRNAs. While a number of miRs involved in the regulation of IGF components have been identified, no previous studies have investigated the differential expression of miRs in congenital IGF1 deficiencies. The present study was aimed at identifying miRs that are differentially expressed in LS and that might account for the phenotypic features of LS patients, including longevity. Our genomic analyses provide evidence that miR-132-3p was highly expressed in LS. In addition, we identified SIRT1, a member of the sirtuin family of histone deacetylases, as a target for negative regulation by miR-132-3p. The data was consistent with the notion that low concentrations of IGF1 in LS lead to elevated miR-132-3p levels, with ensuing reduction in SIRT1 gene expression. The impact of the IGF1-miR-132-3p-SIRT1 loop on aging merits further investigation.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Síndrome de Laron/genética , MicroRNAs/genética , Sirtuína 1/genética , Regulação para Cima , Regiões 3' não Traduzidas , Adulto , Estudos de Casos e Controles , Linhagem Celular , Proliferação de Células , Feminino , Humanos , Longevidade , Pessoa de Meia-Idade
8.
Cells ; 10(6)2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204736

RESUMO

Endometrial cancer is the most common gynecologic malignancy in Western countries. The insulin-like growth factor-1 (IGF1) axis has an important role in endometrial cancer biology and emerged as a promising therapeutic target in oncology. However, there is an urgent need to identify biomarkers that may help in patient stratification and prognosis. Laron syndrome (LS) is a type of dwarfism that results from the mutation of the growth hormone receptor (GHR) gene, leading to congenital IGF1 deficiency. While high circulating IGF1 is regarded as a risk factor in cancer, epidemiological studies have shown that LS patients are protected from cancer development. Recent genome-wide profilings conducted on LS-derived lymphoblastoid cells led to the identification of a series of genes whose over- or under-representation in this condition might be mechanistically linked to cancer protection. The olfactory receptor 5 subfamily H member 2 (OR5H2) was the top downregulated gene in LS, its expression level being 5.8-fold lower than in the control cells. In addition to their typical role in the olfactory epithelium, olfactory receptors (ORs) are expressed in multiple tissues and play non-classical roles in various pathologies, including cancer. The aim of our study was to investigate the regulation of OR5H2 gene expression by IGF1 in endometrial cancer. Data showed that IGF1 and insulin stimulate OR5H2 mRNA and the protein levels in uterine cancer cell lines expressing either a wild-type or a mutant p53. OR5H2 silencing led to IGF1R downregulation, with ensuing reductions in the downstream cytoplasmic mediators. In addition, OR5H2 knockdown reduced the proliferation rate and cell cycle progression. Analyses of olfr196 (the mouse orthologue of OR5H2) mRNA expression in animal models of GHR deficiency or GH overexpression corroborated the human data. In summary, OR5H2 emerged as a novel target for positive regulation by IGF1, with potential relevance in endometrial cancer.


Assuntos
Neoplasias do Endométrio/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Receptores Odorantes/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Neoplasias do Endométrio/patologia , Feminino , Humanos , Síndrome de Laron/genética , Síndrome de Laron/metabolismo , Camundongos , Camundongos Transgênicos , Receptor IGF Tipo 1/metabolismo
9.
J Clin Endocrinol Metab ; 106(11): e4716-e4733, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34136918

RESUMO

CONTEXT: Growth hormone insensitivity (GHI) in children is characterized by short stature, functional insulin-like growth factor (IGF)-I deficiency, and normal or elevated serum growth hormone (GH) concentrations. The clinical and genetic etiology of GHI is expanding. OBJECTIVE: We undertook genetic characterization of short stature patients referred with suspected GHI and features which overlapped with known GH-IGF-I axis defects. METHODS: Between 2008 and 2020, our center received 149 GHI referrals for genetic testing. Genetic analysis utilized a combination of candidate gene sequencing, whole exome sequencing, array comparative genomic hybridization, and a targeted whole genome short stature gene panel. RESULTS: Genetic diagnoses were identified in 80/149 subjects (54%) with 45/80 (56%) having known GH-IGF-I axis defects (GHR n = 40, IGFALS n = 4, IGFIR n = 1). The remaining 35/80 (44%) had diagnoses of 3M syndrome (n = 10) (OBSL1 n = 7, CUL7 n = 2, and CCDC8 n = 1), Noonan syndrome (n = 4) (PTPN11 n = 2, SOS1 n = 1, and SOS2 n = 1), Silver-Russell syndrome (n = 2) (loss of methylation on chromosome 11p15 and uniparental disomy for chromosome 7), Class 3-5 copy number variations (n = 10), and disorders not previously associated with GHI (n = 9) (Barth syndrome, autoimmune lymphoproliferative syndrome, microcephalic osteodysplastic primordial dwarfism type II, achondroplasia, glycogen storage disease type IXb, lysinuric protein intolerance, multiminicore disease, macrocephaly, alopecia, cutis laxa, and scoliosis syndrome, and Bloom syndrome). CONCLUSION: We report the wide range of diagnoses in 149 patients referred with suspected GHI, which emphasizes the need to recognize GHI as a spectrum of clinical entities in undiagnosed short stature patients. Detailed clinical and genetic assessment may identify a diagnosis and inform clinical management.


Assuntos
Biomarcadores/análise , Estatura , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Transtornos do Crescimento/patologia , Síndrome de Laron/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Seguimentos , Testes Genéticos , Transtornos do Crescimento/complicações , Transtornos do Crescimento/genética , Transtornos do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Humanos , Lactente , Fator de Crescimento Insulin-Like I/metabolismo , Síndrome de Laron/complicações , Síndrome de Laron/genética , Síndrome de Laron/metabolismo , Masculino , Prognóstico , Adulto Jovem
10.
Front Endocrinol (Lausanne) ; 12: 605736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912130

RESUMO

Purpose: Laron syndrome (LS) is a severe growth disorder caused by GHR gene mutation or post-receptor pathways defect. The clinical features of these patients collected in our present study were summarized, GHR gene variants were investigated and further in vitro functional verification was carried out. Methods: Four patients with LS were collected, their clinical characteristics were summarized, genomic DNA was extracted, and GHR gene was amplified and sequenced. GHR wild type (GHR-WT) and mutant GHR expression plasmids were constructed, and transiently transfected into HepG2 cells and HEK293T cells to observe the subcellular distribution of the GHR protein by immunofluorescence and to determine the expression of GHR and its post-receptor signaling pathway changes by Western blotting. Results: All of the four patients were male, and the median height was -4.72 SDS. Four GHR gene variants including c.587A>C (p.Y196S), c.766C>T (p.Q256*), c.808A>G (p.I270V) and c.1707-1710del (p.E570Afs*30) were identified, and the latter two were novel mutations. The results of mutant GHR plasmids transfection experiments and immunofluorescence assay showed that the subcellular distribution of GHR-Q256* and GHR-E570Afs*30 mutant proteins in HepG2 and HEK293T cells presented with a unique ring-like pattern, gathering around the nucleus, while GHR-Y196S mutant protein was evenly distributed on HepG2 cell membrane similar to GHR-WT. The GHR protein levels of HepG2 cells transiently transfected with GHR-Y196S, GHR-Q256* and GHR-E570Afs*30 were all significantly lower when compared with cells transfected with GHR-WT (P<0.05). Further mutant GHR post-receptor signal transduction investigation demonstrated that GH induced phosphorylated STAT5 levels of HepG2 cells transfected with three mutant plasmids were all significantly decreased in comparison with that of GHR-WT (P<0.05). Conclusions: Two novel GHR gene mutations (I270V and E570Afs*30) were found in our patients with LS. GHR mutations influenced the subcellular distribution and GHR protein levels, then led to the impaired post-receptor signal transduction, suggesting that the GHR mutations contributed to the pathological condition of LS patients.


Assuntos
Proteínas de Transporte/genética , Síndrome de Laron/genética , Adolescente , Criança , Pré-Escolar , China , Análise Mutacional de DNA , Células HEK293 , Células Hep G2 , Humanos , Síndrome de Laron/diagnóstico , Síndrome de Laron/patologia , Masculino , Mutação
11.
Rev Endocr Metab Disord ; 22(1): 59-70, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33047268

RESUMO

The Ecuadorian cohort of subjects with LS has taught us valuable lessons since the late 80's. We have learned about migration of Sephardic Jews to our country, their isolation in remote hamlets and further inbreeding. These geographical, historical and social determinants induced dissemination of a growth hormone (GH) receptor mutation which widely occurred in those almost inaccessible villages. Consequently, the world's largest Laron syndrome (LS) cohort emerged in Loja and El Oro, two of the southern provinces of Ecuador. We have been fortunate to study these patients since 1987. New clinical features derived from GH insensitivity, their growth patterns as well as treatment with exogenous insulin-like growth factor I (IGF-I) have been reported. Novel biochemical characteristics in the field of GH insensitivity, IGFs, IGF binding proteins (BP) and their clinical correlates have also been described. In the last few years, studies on the morbidity and mortality of Ecuadorian LS adults surprisingly demonstrated that despite obesity, they had lower incidence of diabetes and cancer than their relatives. These events were linked to their metabolic phenotype of elevated but ineffective GH concentrations and low circulating IGF-I and IGFBP-3. It was also noted that absent GH counter-regulation induces a decrease in insulin resistance (IR), which results in low but highly efficient insulin levels which properly handle metabolic substrates. We propose that the combination of low IGF-I signaling, decreased IR, and efficient serum insulin concentrations are reasonable explanations for the diminished incidence of diabetes and cancer in these subjects.


Assuntos
Síndrome de Laron , Equador/epidemiologia , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Síndrome de Laron/epidemiologia , Síndrome de Laron/genética , Fenótipo , Receptores da Somatotropina/genética
12.
Rev Endocr Metab Disord ; 22(1): 31-41, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32964395

RESUMO

Laron Syndrome (LS) [OMIm#262500], or primary GH insensitivity, was first described in 1966 in consanguineous Jewish families from Yemen. LS is characterized by a typical phenotype that includes dwarfism, obesity and hypogenitalism. The disease is caused by deletions or mutations of the GH-receptor gene, causing high serum GH and low IGF-I serum levels. We studied 75 patients from childhood to adult age. After early hypoglycemia due to the progressive obesity, patients tend to develop glucose intolerance and diabetes. The treatment is by recombinant IGF-I, which improves the height and restores some of the metabolic parameters. An unexpected finding was that patients homozygous for GH-R defects are protected from malignancy lifelong, not so heterozygotes or double heterozygote subjects. We estimate that there are at least 500 patients worldwide, unfortunately only few treated.


Assuntos
Síndrome de Laron , Receptores da Somatotropina/genética , Adulto , Criança , Hormônio do Crescimento/sangue , Humanos , Fator de Crescimento Insulin-Like I/análise , Síndrome de Laron/genética , Mutação , Neoplasias , Obesidade
13.
Cells ; 9(11)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182502

RESUMO

Laron syndrome (LS) is a rare genetic endocrinopathy that results from mutation of the growth hormone receptor (GH-R) gene and is typically associated with dwarfism and obesity. LS is the best characterized entity under the spectrum of the congenital insulin-like growth factor-1 (IGF1) deficiencies. Epidemiological analyses have shown that LS patients do not develop cancer, whereas heterozygous family members have a cancer prevalence similar to the general population. To identify genes and signaling pathways differentially represented in LS that may help delineate a biochemical and molecular basis for cancer protection, we have recently conducted a genome-wide profiling of LS patients. Studies were based on our collection of Epstein-Barr virus (EBV)-immortalized lymphoblastoid cell lines derived from LS patients, relatives and healthy controls. Bioinformatic analyses identified differences in gene expression in several pathways, including apoptosis, metabolic control, cytokine biology, Jak-STAT and PI3K-AKT signaling, etc. Genes involved in the control of cell cycle, motility, growth and oncogenic transformation are, in general, down-regulated in LS. These genetic events seem to have a major impact on the biological properties of LS cells, including proliferation, apoptosis, response to oxidative stress, etc. Furthermore, genomic analyses allowed us to identify novel IGF1 downstream target genes that have not been previously linked to the IGF1 signaling pathway. In summary, by 'mining' genomic data from LS patients, we were able to generate clinically-relevant information in oncology and, potentially, related disciplines.


Assuntos
Pesquisa Biomédica , Síndrome de Laron/patologia , Neoplasias/patologia , Animais , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Síndrome de Laron/genética , Neoplasias/epidemiologia , Fatores de Risco
14.
Eur J Cancer ; 141: 115-127, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130549

RESUMO

INTRODUCTION: The growth hormone (GH)-insulin-like growth factor-1 (IGF1) endocrine axis has a key role in normal growth and development. Laron syndrome (LS) is a type of dwarfism that results from mutation of the GH receptor, leading to congenital IGF1 deficiency. Epidemiological studies have shown that LS patients are protected from cancer. Genome-wide profiling led to the identification of a series of metabolic genes whose differential expression in LS might be linked to cancer protection. Nephronectin (NPNT) is an intracellular and secreted extracellular matrix protein with important roles in kidney development. NPNT was identified as the top-downregulated gene in LS-derived cells in comparison with ethnic-, age- and gender-matched controls (p-value = 0.0148; fold-change = -3.12 versus controls). NPNT has not been previously linked to the IGF1 signaling pathway. The present study was aimed at evaluating the hypothesis that NPNT is a new target for IGF1 action and that decreased expression of NPNT in LS is correlated with cancer protection. METHODS: Basal and IGF1-stimulated NPNT expression were assessed in LS lymphoblastoid cells as well as in human breast and prostate cancer cells. NPNT silencing experiments were conducted using siRNA methodology. RESULTS: We provide evidence that IGF1 stimulates NPNT expression in LS-derived lymphoblastoids and various cancer cell lines. In addition, we demonstrate that NPNT silencing results in diminished activation of the AKT and ERK1/2 pathways, with ensuing decreases in cellular proliferation. CONCLUSIONS: Our data identified the NPNT gene as a target for IGF1 action. The clinical implications of the functional and physical interactions between NPNT and the IGF1 pathway merit further investigation.


Assuntos
Proliferação de Células/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Humanos , Síndrome de Laron/genética , Síndrome de Laron/metabolismo , Neoplasias/genética
15.
Cells ; 8(6)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208077

RESUMO

Laron syndrome (LS), or primary growth hormone resistance, is a prototypical congenital insulin-like growth factor 1 (IGF1) deficiency. The recent epidemiological finding that LS patients do not develop cancer is of major scientific and clinical relevance. Epidemiological data suggest that congenital IGF1 deficiency confers protection against the development of malignancies. This 'experiment of nature' reflects the critical role of IGF1 in tumor biology. The present review article provides an overview of recently conducted genome-wide profiling analyses aimed at identifying mechanisms and signaling pathways that are directly responsible for the link between life-time low IGF1 levels and protection from tumor development. The review underscores the concept that 'data mining' an orphan disease might translate into new developments in oncology.


Assuntos
Estudo de Associação Genômica Ampla , Síndrome de Laron/genética , Neoplasias/prevenção & controle , Humanos , Fator de Crescimento Insulin-Like I/deficiência , Neoplasias/genética , Oncogenes , Transdução de Sinais
16.
Eur J Endocrinol ; 178(5): R155-R181, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29459441

RESUMO

Growth hormone (GH) is produced primarily by anterior pituitary somatotroph cells. Numerous acute human (h) GH treatment and long-term follow-up studies and extensive use of animal models of GH action have shaped the body of GH research over the past 70 years. Work on the GH receptor (R)-knockout (GHRKO) mice and results of studies on GH-resistant Laron Syndrome (LS) patients have helped define many physiological actions of GH including those dealing with metabolism, obesity, cancer, diabetes, cognition and aging/longevity. In this review, we have discussed several issues dealing with these biological effects of GH and attempt to answer the question of whether decreased GH action may be beneficial.


Assuntos
Doenças do Sistema Endócrino/genética , Doenças do Sistema Endócrino/fisiopatologia , Hormônio do Crescimento/fisiologia , Hormônio do Crescimento Humano/fisiologia , Camundongos Knockout/genética , Receptores da Somatotropina/genética , Animais , Doenças do Sistema Endócrino/psicologia , Humanos , Síndrome de Laron/genética , Síndrome de Laron/fisiopatologia , Longevidade , Camundongos
17.
Proc Natl Acad Sci U S A ; 115(5): 1045-1050, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339473

RESUMO

Laron syndrome (LS), or primary growth hormone (GH) insensitivity, is the best-characterized entity among the congenital insulin-like growth factor 1 (IGF1) deficiencies. Life-long exposure to minute endogenous IGF1 levels is linked to low stature as well as a number of endocrine and metabolic abnormalities. While elevated IGF1 is correlated with increased cancer incidence, epidemiological studies revealed that patients with LS do not develop tumors. The mechanisms associated with cancer protection in LS are yet to be discovered. Recent genomic analyses identified a series of metabolic genes that are overrepresented in patients with LS. Given the augmented expression of these genes in a low IGF1 milieu, we hypothesized that they may constitute targets for IGF1 action. Thioredoxin-interacting protein (TXNIP) plays a critical role in cellular redox control by thioredoxin. TXNIP serves as a glucose and oxidative stress sensor, being commonly silenced by genetic or epigenetic events in cancer cells. Consistent with its enhanced expression in LS, we provide evidence that TXNIP gene expression is negatively regulated by IGF1. These results were corroborated in animal studies. In addition, we show that oxidative and glucose stresses led to marked increases in TXNIP expression. Supplementation of IGF1 attenuated TXNIP levels, suggesting that IGF1 exerts its antiapoptotic effect via inhibition of TXNIP Augmented TXNIP expression in LS may account for cancer protection in this condition. Finally, TXNIP levels could be potentially useful in the clinic as a predictive or diagnostic biomarker for IGF1R-targeted therapies.


Assuntos
Proteínas de Transporte/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Síndrome de Laron/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Expressão Gênica , Glucose/metabolismo , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Síndrome de Laron/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Estresse Oxidativo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Growth Horm IGF Res ; 39: 6-12, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29208357

RESUMO

Laron syndrome (LS), or primary growth hormone (GH) insensitivity, is a growth disorder that results from mutation of the GH-receptor (GHR) gene leading to congenital insulin-like growth factor-1 (IGF-1) deficiency. Recent epidemiological studies have shown that LS patients are protected from cancer development. Genome-wide profiling identified genes and signaling pathways that are differentially represented in LS patients, and that may contribute to cancer protection. The present study was aimed at evaluating the hypothesis that IGF binding proteins (IGFBPs) are differentially expressed in LS, most probably as a result of low circulating levels of IGF-1. Furthermore, we postulated that IGFBPs might be differentially regulated by oxidative stress in this condition and, therefore, may contribute to cancer evasion. Our results show that IGFBP-3, which is predominantly protective, was highly expressed in LS-derived lymphoblastoid cells in comparison to control cells from the same ethnic group. On the other hand, levels of IGFBP-2, -4, -5, and -6 were diminished in LS patients, as demonstrated by RQ-PCR, Western immunoblots and confocal immunofluorescence. In addition, our data provide evidence for a pattern of IGFBP response to H2O2 treatment that might be associated with distinct expression of apoptosis markers (BCL2, pro-caspase-9, pro-caspase-3) in LS. In summary, differential expression of specific IGFBPs in LS might be correlated with cellular mechanisms underlying cancer protection and, probably, additional phenotypes due to congenital IGF-1 deficiency.


Assuntos
Apoptose , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Síndrome de Laron/genética , Linfócitos/metabolismo , Neoplasias/prevenção & controle , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Síndrome de Laron/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/metabolismo , Estresse Oxidativo
20.
Mutat Res Rev Mutat Res ; 772: 123-133, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28528685

RESUMO

Laron syndrome (LS) is a unique model of congenital IGF-I deficiency. It is characterized by dwarfism and obesity, and is caused by deletion or mutations of the growth hormone receptor (GH-R) gene. It is hypothesized that LS is an old disease originating in Indonesia and that the mutated gene spread to South Asia, the Middle East, the Mediterranean region and South America.


Assuntos
Fator de Crescimento Insulin-Like I/deficiência , Síndrome de Laron/genética , Longevidade , Neoplasias/genética , Adolescente , Adulto , Criança , Estudos de Coortes , Éxons , Feminino , Deleção de Genes , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/farmacologia , Israel , Síndrome de Laron/complicações , Masculino , Pessoa de Meia-Idade , Mutação , Obesidade/complicações , Obesidade/genética , Linhagem , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA