Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.251
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(7): e3002724, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39052688

RESUMO

Alternative transcription start site (TSS) usage regulation has been identified as a major means of gene expression regulation in metazoans. However, in fungi, its impact remains elusive as its study has thus far been restricted to model yeasts. Here, we first re-analyzed TSS-seq data to define genuine TSS clusters in 2 species of pathogenic Cryptococcus. We identified 2 types of TSS clusters associated with specific DNA sequence motifs. Our analysis also revealed that alternative TSS usage regulation in response to environmental cues is widespread in Cryptococcus, altering gene expression and protein targeting. Importantly, we performed a forward genetic screen to identify a unique transcription factor (TF) named Tur1, which regulates alternative TSS (altTSS) usage genome-wide when cells switch from exponential phase to stationary phase. ChiP-Seq and DamID-Seq analyses suggest that at some loci, the role of Tur1 might be direct. Tur1 has been previously shown to be essential for virulence in C. neoformans. We demonstrated here that a tur1Δ mutant strain is more sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the wild-type (WT) strain.


Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Fatores de Transcrição , Sítio de Iniciação de Transcrição , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cryptococcus/genética , Cryptococcus/patogenicidade , Cryptococcus/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/metabolismo , Macrófagos/microbiologia , Macrófagos/metabolismo , Animais , Camundongos , Virulência/genética , Fagocitose/genética
2.
Sci Adv ; 10(29): eadm9577, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028815

RESUMO

Pausing of RNA polymerase II (Pol II) at transcription start sites (TSSs) primes target genes for productive elongation. Coincidentally, DNA double-strand breaks (DSBs) enrich at highly transcribed and Pol II-paused genes, although their interplay remains undefined. Using androgen receptor (AR) signaling as a model, we have uncovered AR-interacting protein 4 (ARIP4) helicase as a driver of androgen-dependent transcription induction. Chromatin immunoprecipitation sequencing analysis revealed that ARIP4 preferentially co-occupies TSSs with paused Pol II. Moreover, we found that ARIP4 complexes with topoisomerase II beta and mediates transient DSB formation upon hormone stimulation. Accordingly, ARIP4 deficiency compromised release of paused Pol II and resulted in R-loop accumulation at a panel of highly transcribed AR target genes. Last, we showed that ARIP4 binds and unwinds R-loops in vitro and that its expression positively correlates with prostate cancer progression. We propose that androgen stimulation triggers ARIP4-mediated unwinding of R-loops at TSSs, enforcing Pol II pause release to effectively drive an androgen-dependent expression program.


Assuntos
Androgênios , Neoplasias da Próstata , Estruturas R-Loop , RNA Polimerase II , Receptores Androgênicos , Humanos , Androgênios/metabolismo , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , Transcrição Gênica , Quebras de DNA de Cadeia Dupla , Sítio de Iniciação de Transcrição , Regulação Neoplásica da Expressão Gênica , Ligação Proteica , Ativação Transcricional
3.
Commun Biol ; 7(1): 859, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003349

RESUMO

Our study employs pooled CRISPR screens, integrating 2D and 3D culture models, to identify miRNAs critical in Breast Cancer (BC) tumoursphere formation. These screens combine with RNA-seq experiments allowing identification of miRNA signatures and targets essential for tumoursphere growth. miR-4787-3p exhibits significant up-regulation in BC, particularly in basal-like BCs, suggesting its association with aggressive disease. Surprisingly, despite its location within the 5'UTR of a protein coding gene, which defines DROSHA-independent transcription start site (TSS)-miRNAs, we find it dependant on both DROSHA and DICER1 for maturation. Inhibition of miR-4787-3p hinders tumoursphere formation, highlighting its potential as a therapeutic target in BC. Our study proposes elevated miR-4787-3p expression as a potential prognostic biomarker for adverse outcomes in BC. We find that protein-coding genes positively selected in the CRISPR screens are enriched of miR-4787-3p targets. Of these targets, we select ARHGAP17, FOXO3A, and PDCD4 as known tumour suppressors in cancer and experimentally validate the interaction of miR-4787-3p with their 3'UTRs. Our work illuminates the molecular mechanisms underpinning miR-4787-3p's oncogenic role in BC. These findings advocate for clinical investigations targeting miR-4787-3p and underscore its prognostic significance, offering promising avenues for tailored therapeutic interventions and prognostic assessments in BC.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Sítio de Iniciação de Transcrição , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proliferação de Células/genética , Linhagem Celular Tumoral , Ribonuclease III/genética , Ribonuclease III/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Esferoides Celulares/patologia , RNA Helicases DEAD-box
4.
Sci Adv ; 10(28): eadl5606, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985880

RESUMO

Abnormal transcription initiation from alternative first exon has been reported to promote tumorigenesis. However, the prevalence and impact of gene expression regulation mediated by alternative tandem transcription initiation were mostly unknown in cancer. Here, we developed a robust computational method to analyze alternative tandem transcription start site (TSS) usage from standard RNA sequencing data. Applying this method to pan-cancer RNA sequencing datasets, we observed widespread dysregulation of tandem TSS usage in tumors, many of which were independent of changes in overall expression level or alternative first exon usage. We showed that the dynamics of tandem TSS usage was associated with epigenomic modulation. We found that significant 5' untranslated region shortening of gene TIMM13 contributed to increased protein production, and up-regulation of TIMM13 by CRISPR-mediated transcriptional activation promoted proliferation and migration of lung cancer cells. Our findings suggest that dysregulated tandem TSS usage represents an addtional layer of cancer-associated transcriptome alterations.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias , Sítio de Iniciação de Transcrição , Transcriptoma , Humanos , Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Proliferação de Células/genética
5.
Biomolecules ; 14(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38927119

RESUMO

Lung cancer is a major global health concern with a low survival rate, often due to late-stage diagnosis. Liquid biopsy offers a non-invasive approach to cancer detection and monitoring, utilizing various features of circulating cell-free DNA (cfDNA). In this study, we established two models based on cfDNA coverage patterns at the transcription start sites (TSSs) from 6X whole-genome sequencing: an Early Cancer Screening Model and an EGFR mutation status prediction model. The Early Cancer Screening Model showed encouraging prediction ability, especially for early-stage lung cancer. The EGFR mutation status prediction model exhibited high accuracy in distinguishing between EGFR-positive and wild-type cases. Additionally, cfDNA coverage patterns at TSSs also reflect gene expression patterns at the pathway level in lung cancer patients. These findings demonstrate the potential applications of cfDNA coverage patterns at TSSs in early cancer screening and in cancer subtyping.


Assuntos
Ácidos Nucleicos Livres , Detecção Precoce de Câncer , Receptores ErbB , Neoplasias Pulmonares , Mutação , Humanos , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Detecção Precoce de Câncer/métodos , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Estudo de Prova de Conceito , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Biópsia Líquida/métodos , Sequenciamento Completo do Genoma , Sítio de Iniciação de Transcrição , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue
6.
Nat Commun ; 15(1): 3561, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670996

RESUMO

Lysine lactylation (Kla) links metabolism and gene regulation and plays a key role in multiple biological processes. However, the regulatory mechanism and functional consequence of Kla remain to be explored. Here, we report that HBO1 functions as a lysine lactyltransferase to regulate transcription. We show that HBO1 catalyzes the addition of Kla in vitro and intracellularly, and E508 is a key site for the lactyltransferase activity of HBO1. Quantitative proteomic analysis further reveals 95 endogenous Kla sites targeted by HBO1, with the majority located on histones. Using site-specific antibodies, we find that HBO1 may preferentially catalyze histone H3K9la and scaffold proteins including JADE1 and BRPF2 can promote the enzymatic activity for histone Kla. Notably, CUT&Tag assays demonstrate that HBO1 is required for histone H3K9la on transcription start sites (TSSs). Besides, the regulated Kla can promote key signaling pathways and tumorigenesis, which is further supported by evaluating the malignant behaviors of HBO1- knockout (KO) tumor cells, as well as the level of histone H3K9la in clinical tissues. Our study reveals HBO1 serves as a lactyltransferase to mediate a histone Kla-dependent gene transcription.


Assuntos
Histonas , Fator C1 de Célula Hospedeira , Lisina , Transcrição Gênica , Histonas/metabolismo , Humanos , Lisina/metabolismo , Células HEK293 , Animais , Linhagem Celular Tumoral , Sítio de Iniciação de Transcrição , Regulação da Expressão Gênica , Camundongos , Processamento de Proteína Pós-Traducional
7.
Nucleic Acids Res ; 52(9): 5016-5032, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38471819

RESUMO

Viruses are master remodelers of the host cell environment in support of infection and virus production. For example, viruses typically regulate cell gene expression through modulating canonical cell promoter activity. Here, we show that Epstein Barr virus (EBV) replication causes 'de novo' transcription initiation at 29674 new transcription start sites throughout the cell genome. De novo transcription initiation is facilitated in part by the unique properties of the viral pre-initiation complex (vPIC) that binds a TATT[T/A]AA, TATA box-like sequence and activates transcription with minimal support by additional transcription factors. Other de novo promoters are driven by the viral transcription factors, Zta and Rta and are influenced by directional proximity to existing canonical cell promoters, a configuration that fosters transcription through existing promoters and transcriptional interference. These studies reveal a new way that viruses interact with the host transcriptome to inhibit host gene expression and they shed light on primal features driving eukaryotic promoter function.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Iniciação da Transcrição Genética , Replicação Viral , Humanos , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Regiões Promotoras Genéticas , TATA Box , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Proteínas Virais/metabolismo , Proteínas Virais/genética , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia
8.
Nat Struct Mol Biol ; 31(1): 190-202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177677

RESUMO

Transcription start site (TSS) selection is a key step in gene expression and occurs at many promoter positions over a wide range of efficiencies. Here we develop a massively parallel reporter assay to quantitatively dissect contributions of promoter sequence, nucleoside triphosphate substrate levels and RNA polymerase II (Pol II) activity to TSS selection by 'promoter scanning' in Saccharomyces cerevisiae (Pol II MAssively Systematic Transcript End Readout, 'Pol II MASTER'). Using Pol II MASTER, we measure the efficiency of Pol II initiation at 1,000,000 individual TSS sequences in a defined promoter context. Pol II MASTER confirms proposed critical qualities of S. cerevisiae TSS -8, -1 and +1 positions, quantitatively, in a controlled promoter context. Pol II MASTER extends quantitative analysis to surrounding sequences and determines that they tune initiation over a wide range of efficiencies. These results enabled the development of a predictive model for initiation efficiency based on sequence. We show that genetic perturbation of Pol II catalytic activity alters initiation efficiency mostly independently of TSS sequence, but selectively modulates preference for the initiating nucleotide. Intriguingly, we find that Pol II initiation efficiency is directly sensitive to guanosine-5'-triphosphate levels at the first five transcript positions and to cytosine-5'-triphosphate and uridine-5'-triphosphate levels at the second position genome wide. These results suggest individual nucleoside triphosphate levels can have transcript-specific effects on initiation, representing a cryptic layer of potential regulation at the level of Pol II biochemical properties. The results establish Pol II MASTER as a method for quantitative dissection of transcription initiation in eukaryotes.


Assuntos
Polifosfatos , RNA Polimerase II , Saccharomyces cerevisiae , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Sítio de Iniciação de Transcrição , Nucleosídeos , Transcrição Gênica , Guanosina Trifosfato
9.
Nucleic Acids Res ; 52(D1): D322-D333, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37956335

RESUMO

Transposable elements (TEs) are abundant in the genome and serve as crucial regulatory elements. Some TEs function as epigenetically regulated promoters, and these TE-derived transcription start sites (TSSs) play a crucial role in regulating genes associated with specific functions, such as cancer and embryogenesis. However, the lack of an accessible database that systematically gathers TE-derived TSS data is a current research gap. To address this, we established TE-TSS, an integrated data resource of human and mouse TE-derived TSSs (http://xozhanglab.com/TETSS). TE-TSS has compiled 2681 RNA sequencing datasets, spanning various tissues, cell lines and developmental stages. From these, we identified 5768 human TE-derived TSSs and 2797 mouse TE-derived TSSs, with 47% and 38% being experimentally validated, respectively. TE-TSS enables comprehensive exploration of TSS usage in diverse samples, providing insights into tissue-specific gene expression patterns and transcriptional regulatory elements. Furthermore, TE-TSS compares TE-derived TSS regions across 15 mammalian species, enhancing our understanding of their evolutionary and functional aspects. The establishment of TE-TSS facilitates further investigations into the roles of TEs in shaping the transcriptomic landscape and offers valuable resources for comprehending their involvement in diverse biological processes.


Assuntos
Elementos de DNA Transponíveis , Bases de Dados Genéticas , Sequências Reguladoras de Ácido Nucleico , Sítio de Iniciação de Transcrição , Animais , Humanos , Camundongos , Elementos de DNA Transponíveis/genética , Mamíferos/genética , Regiões Promotoras Genéticas , Análise de Sequência de RNA , Internet
10.
Nat Commun ; 14(1): 7240, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945584

RESUMO

Five-prime single-cell RNA-seq (scRNA-seq) has been widely employed to profile cellular transcriptomes, however, its power of analysing transcription start sites (TSS) has not been fully utilised. Here, we present a computational method suite, CamoTSS, to precisely identify TSS and quantify its expression by leveraging the cDNA on read 1, which enables effective detection of alternative TSS usage. With various experimental data sets, we have demonstrated that CamoTSS can accurately identify TSS and the detected alternative TSS usages showed strong specificity in different biological processes, including cell types across human organs, the development of human thymus, and cancer conditions. As evidenced in nasopharyngeal cancer, alternative TSS usage can also reveal regulatory patterns including systematic TSS dysregulations.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Sítio de Iniciação de Transcrição , Análise da Expressão Gênica de Célula Única , Transcriptoma/genética , Fenótipo , Análise de Célula Única/métodos
12.
Nat Struct Mol Biol ; 30(12): 1970-1984, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996663

RESUMO

Global changes in transcriptional regulation and RNA metabolism are crucial features of cancer development. However, little is known about the role of the core promoter in defining transcript identity and post-transcriptional fates, a potentially crucial layer of transcriptional regulation in cancer. In this study, we use CAGE-seq analysis to uncover widespread use of dual-initiation promoters in which non-canonical, first-base-cytosine (C) transcription initiation occurs alongside first-base-purine initiation across 59 human cancers and healthy tissues. C-initiation is often followed by a 5' terminal oligopyrimidine (5'TOP) sequence, dramatically increasing the range of genes potentially subjected to 5'TOP-associated post-transcriptional regulation. We show selective, dynamic switching between purine and C-initiation site usage, indicating transcription initiation-level regulation in cancers. We additionally detail global metabolic changes in C-initiation transcripts that mark differentiation status, proliferative capacity, radiosensitivity, and response to irradiation and to PI3K-Akt-mTOR and DNA damage pathway-targeted radiosensitization therapies in colorectal cancer organoids and cancer cell lines and tissues.


Assuntos
Fosfatidilinositol 3-Quinases , RNA , Humanos , Sítio de Iniciação de Transcrição , RNA/genética , Proliferação de Células , Purinas
13.
Nature ; 622(7981): 173-179, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731000

RESUMO

Lysine residues in histones and other proteins can be modified by post-translational modifications that encode regulatory information1. Lysine acetylation and methylation are especially important for regulating chromatin and gene expression2-4. Pathways involving these post-translational modifications are targets for clinically approved therapeutics to treat human diseases. Lysine methylation and acetylation are generally assumed to be mutually exclusive at the same residue. Here we report cellular lysine residues that are both methylated and acetylated on the same side chain to form Nε-acetyl-Nε-methyllysine (Kacme). We show that Kacme is found on histone H4 (H4Kacme) across a range of species and across mammalian tissues. Kacme is associated with marks of active chromatin, increased transcriptional initiation and is regulated in response to biological signals. H4Kacme can be installed by enzymatic acetylation of monomethyllysine peptides and is resistant to deacetylation by some HDACs in vitro. Kacme can be bound by chromatin proteins that recognize modified lysine residues, as we demonstrate with the crystal structure of acetyllysine-binding protein BRD2 bound to a histone H4Kacme peptide. These results establish Kacme as a cellular post-translational modification with the potential to encode information distinct from methylation and acetylation alone and demonstrate that Kacme has all the hallmarks of a post-translational modification with fundamental importance to chromatin biology.


Assuntos
Acetilação , Cromatina , Lisina , Metilação , Processamento de Proteína Pós-Traducional , Sítio de Iniciação de Transcrição , Animais , Humanos , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Histona Desacetilases/metabolismo
14.
J Virol ; 97(9): e0081823, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681957

RESUMO

HIV-1 uses heterogeneous transcription start sites (TSSs) to generate two RNA 5´ isoforms that adopt radically different structures and perform distinct replication functions. Although these RNAs differ in length by only two bases, exclusively, the shorter RNA is encapsidated while the longer RNA is excluded from virions and provides intracellular functions. The current study examined TSS usage and packaging selectivity for a broad range of retroviruses and found that heterogeneous TSS usage was a conserved feature of all tested HIV-1 strains, but all other retroviruses examined displayed unique TSSs. Phylogenetic comparisons and chimeric viruses' properties provided evidence that this mechanism of RNA fate determination was an innovation of the HIV-1 lineage, with determinants mapping to core promoter elements. Fine-tuning differences between HIV-1 and HIV-2, which uses a unique TSS, implicated purine residue positioning plus a specific TSS-adjacent dinucleotide in specifying multiplicity of TSS usage. Based on these findings, HIV-1 expression constructs were generated that differed from the parental strain by only two point mutations yet each expressed only one of HIV-1's two RNAs. Replication defects of the variant with only the presumptive founder TSS were less severe than those for the virus with only the secondary start site. IMPORTANCE Retroviruses use RNA both to encode their proteins and to serve in place of DNA as their genomes. A recent surprising discovery was that the genomic RNAs and messenger RNAs of HIV-1 are not identical but instead differ subtly on one of their ends. These differences enable the functional separation of HIV-1 RNAs into genome and messenger roles. In this report, we examined a broad collection of HIV-1-related viruses and discovered that each produced only one end class of RNA, and thus must differ from HIV-1 in how they specify RNA fates. By comparing regulatory signals, we generated virus variants that pinpointed the determinants of HIV-1 RNA fates, as well as HIV-1 variants that produced only one or the other functional class of RNA. Competition and replication assays confirmed that HIV-1 has evolved to rely on the coordinated actions of both its RNA forms.


Assuntos
HIV-1 , RNA Viral , Sítio de Iniciação de Transcrição , HIV-1/genética , Filogenia , Retroviridae/genética , Regiões Promotoras Genéticas , RNA Viral/genética
15.
J Biol Chem ; 299(9): 105130, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543366

RESUMO

Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators in various biological processes. However, due to their low expression, their systematic characterization is difficult to determine. Here, we performed transcript annotation by a newly developed computational pipeline, termed RNA-seq and small RNA-seq combined strategy (RSCS), in a wide variety of cellular contexts. Thousands of high-confidence potential novel transcripts were identified by the RSCS, and the reliability of the transcriptome was verified by analysis of transcript structure, base composition, and sequence complexity. Evidenced by the length comparison, the frequency of the core promoter and the polyadenylation signal motifs, and the locations of transcription start and end sites, the transcripts appear to be full length. Furthermore, taking advantage of our strategy, we identified a large number of endogenous retrovirus-associated lncRNAs, and a novel endogenous retrovirus-lncRNA that was functionally involved in control of Yap1 expression and essential for early embryogenesis was identified. In summary, the RSCS can generate a more complete and precise transcriptome, and our findings greatly expanded the transcriptome annotation for the mammalian community.


Assuntos
Anotação de Sequência Molecular , RNA Longo não Codificante , RNA-Seq , Animais , Desenvolvimento Embrionário/genética , Mamíferos/embriologia , Mamíferos/genética , Anotação de Sequência Molecular/métodos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Retroviridae/genética , RNA Longo não Codificante/genética , RNA-Seq/métodos , Sítio de Iniciação de Transcrição , Transcriptoma/genética , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
16.
Epigenetics Chromatin ; 16(1): 16, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161413

RESUMO

BACKGROUND: Proteolysis of the histone H3 N-terminal tail (H3NT) is an evolutionarily conserved epigenomic feature of nearly all eukaryotes, generating a cleaved H3 product that is retained in ~ 5-10% of the genome. Although H3NT proteolysis within chromatin was first reported over 60 years ago, the genomic sites targeted for H3NT proteolysis and the impact of this histone modification on chromatin structure and function remain largely unknown. The goal of this study was to identify the specific regions targeted for H3NT proteolysis and investigate the consequence of H3NT "clipping" on local histone post-translational modification (PTM) dynamics. RESULTS: Leveraging recent findings that matrix metalloproteinase 2 (MMP-2) functions as the principal nuclear H3NT protease in the human U2OS osteosarcoma cell line, a ChIP-Seq approach was used to map MMP-2 localization genome wide. The results indicate that MMP-2 is selectively targeted to the transcription start sites (TSSs) of protein coding genes, primarily at the + 1 nucleosome. MMP-2 localization was exclusive to highly expressed genes, further supporting a functional role for H3NT proteolysis in transcriptional regulation. MMP-2 dependent H3NT proteolysis at the TSSs of these genes resulted in a > twofold reduction of activation-associated histone H3 PTMs, including H3K4me3, H3K9ac and H3K18ac. One of genes requiring MMP-2 mediated H3NT proteolysis for proficient expression was the lysosomal cathepsin B protease (CTSB), which we discovered functions as a secondary nuclear H3NT protease in U2OS cells. CONCLUSIONS: This study revealed that the MMP-2 H3NT protease is selectively targeted to the TSSs of active protein coding genes in U2OS cells. The resulting H3NT proteolysis directly alters local histone H3 PTM patterns at TSSs, which likely functions to regulate transcription. MMP-2 mediated H3NT proteolysis directly activates CTSB, a secondary H3NT protease that generates additional cleaved H3 products within chromatin.


Assuntos
Metaloproteinase 2 da Matriz , Peptídeo Hidrolases , Humanos , Metaloproteinase 2 da Matriz/genética , Histonas , Sítio de Iniciação de Transcrição , Cromatina
17.
Nucleic Acids Res ; 50(22): 12754-12767, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36453990

RESUMO

Chromatin remodelers have been thought to be crucial in creating an accessible chromatin environment before transcription activation. However, it is still unclear how chromatin remodelers recognize and bind to the active regions. In this study, we found that chromatin remodelers SPLAYED (SYD) and BRAHMA (BRM) interact and co-occupy with Suppressor of Ty6-like (SPT6L), a core subunit of the transcription machinery, at thousands of the transcription start sites (TSS). The association of SYD and BRM to chromatin is dramatically reduced in spt6l and can be restored mainly by SPT6LΔtSH2, which binds to TSS in a RNA polymerase II (Pol II)-independent manner. Furthermore, SPT6L and SYD/BRM are involved in regulating the nucleosome and Pol II occupancy around TSS. The presence of SPT6L is sufficient to restore the association of the chromatin remodeler SYD to chromatin and maintain normal nucleosome occupancy. Our findings suggest that the two chromatin remodelers can form protein complexes with the core subunit of the transcription machinery and regulate nucleosome occupancy in the early transcription stage.


Assuntos
Adenosina Trifosfatases , Proteínas de Arabidopsis , Arabidopsis , Sítio de Iniciação de Transcrição , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Nucleossomos/genética , Nucleossomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Nucleic Acids Res ; 50(18): 10399-10417, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36189880

RESUMO

Eukaryotes have evolved multiple ATP-dependent chromatin remodelers to shape the nucleosome landscape. We recently uncovered an evolutionarily conserved SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeler complex in plants reminiscent of the mammalian BAF subclass, which specifically incorporates the MINUSCULE (MINU) catalytic subunits and the TRIPLE PHD FINGERS (TPF) signature subunits. Here we report experimental evidence that establishes the functional relevance of TPF proteins for the complex activity. Our results show that depletion of TPF triggers similar pleiotropic phenotypes and molecular defects to those found in minu mutants. Moreover, we report the genomic location of MINU2 and TPF proteins as representative members of this SWI/SNF complex and their impact on nucleosome positioning and transcription. These analyses unravel the binding of the complex to thousands of genes where it modulates the position of the +1 nucleosome. These targets tend to produce 5'-shifted transcripts in the tpf and minu mutants pointing to the participation of the complex in alternative transcription start site usage. Interestingly, there is a remarkable correlation between +1 nucleosome shift and 5' transcript length change suggesting their functional connection. In summary, this study unravels the function of a plant SWI/SNF complex involved in +1 nucleosome positioning and transcription start site determination.


Assuntos
Arabidopsis , Proteínas Cromossômicas não Histona , Nucleossomos , Sítio de Iniciação de Transcrição , Trifosfato de Adenosina/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Mamíferos/genética , Nucleossomos/genética , Dedos de Zinco PHD , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Gynecol Oncol ; 167(3): 513-518, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36253303

RESUMO

OBJECTIVE: To establish a quantitative method to evaluate the DNA methylation level of an immediate upstream region of major BRCA1 transcriptional start sites (TSSs), and to investigate whether methylation of the region is a prognostic factor in high-grade serous ovarian cancer patients after neoadjuvant chemotherapy. METHODS: Ninety-two FFPE samples of advanced high-grade serous ovarian cancers after neoadjuvant chemotherapy between 2011 and 2018 were used for mutation and methylation analysis. DNA methylation levels were assessed by pyrosequencing and DNA methylation microarray. An association between methylation level (or a mutation) and progression-free survival was assessed by Kaplan-Meier analysis. RESULT: Major BRCA1 transcripts and CpG sites immediately upstream of their TSSs were identified, and a pyrosequencing method was developed. BRCA1 methylation, BRCA1/2 mutations, and a RAD51C mutation were detected in 17/79 (21.5%), 17/92 (18.5%), and 1/92 (1.1%) high-grade serious ovarian cancer samples. In univariate analysis, BRCA1 methylation and no residual tumor were associated with progression-free survival (BRCA1 methylation: P = 0.025, no residual tumor: P = 0.0026). Multivariate analysis showed that both BRCA1 methylation (P = 0.038, HR = 0.47, 95% CI: 0.21-0.96) and no residual tumor (P = 0.012, HR = 0.49, 95% CI: 0.28-0.85) were significant favorable prognostic factors. CONCLUSION: A quantitative method to estimate the methylation level of the immediate upstream region of major BRCA1 TSSs was established. Methylation of the region of was an independent favorable prognostic factor in high-grade serous ovarian cancer patients.


Assuntos
Metilação de DNA , Neoplasias Ovarianas , Humanos , Feminino , Prognóstico , Sítio de Iniciação de Transcrição , Mutação em Linhagem Germinativa , Neoplasias Ovarianas/patologia , Proteína BRCA1/genética
20.
Genome Res ; 32(10): 1930-1940, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36100435

RESUMO

Mutation density patterns reveal unique biological properties of specific genomic regions and shed light on the mechanisms of carcinogenesis. Although previous studies reported insightful mutation density patterns associated with certain genomic regions such as transcription start sites and DNA replication origins, a tool that can systematically investigate mutational spatial patterns is still lacking. Thus, we developed MutDens, a bioinformatic tool for comprehensive analysis of mutation density patterns around genomic features, namely, genomic positions, in humans and model species. By scanning the bidirectional vicinity regions of given positions, MutDens systematically characterizes the mutation density for single-base substitution mutational classes after adjusting for total mutation burden and local nucleotide proportion. Analysis results using MutDens not only verified the previously reported transcriptional strand bias around transcription start sites and replicative strand bias around DNA replication origins, but also identified novel mutation density patterns around other genomics features, such as enhancers and retrotransposon insertion polymorphism sites. To our knowledge, MutDens is the first tool that systematically calculates, examines, and compares mutation density patterns, thus providing a valuable avenue for investigating the mutational landscapes associated with important genomic features.


Assuntos
Genômica , Origem de Replicação , Humanos , Mutação , Sítio de Iniciação de Transcrição , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA