Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.628
Filtrar
1.
Biochem Pharmacol ; 229: 116464, 2024 11.
Artigo em Inglês | MEDLINE | ID: mdl-39111604

RESUMO

CC chemokine receptor 2 and CCL2 are highly involved in cancer growth and metastasis, and immune escape. Raised sodium ion concentrations in solid tumours have also been correlated to metastasis and immune modulation. Sodium ions can modulate class A G protein-coupled receptors through the sodium ion binding site characterized by a highly conserved aspartic acid residue (D2.50), also present in CCR2. Hence, we further explored this binding site in CCR2 by radioligand binding studies and mutagenesis. Modulation of three distinctly binding radioligands by sodium ions and amiloride derivates was investigated. Sodium ions were observed to be relatively weak modulators of antagonist binding, but substantially increased 125I-CCL2 dissociation from CCR2. 6-Substituted Hexamethylene Amiloride (HMA) modulated all tested radioligands. Induced-fit docking of HMA in the presumed sodium ion binding site of CCR2 confirmed its binding site. Finally, investigation of (cancer-associated) mutations in the sodium ion binding site showed a markedly decreased expression compared to wild type. Only two mutants, G123A3.35 and G127K3.39, were able to be bound by [3H]INCB3344 and [3H]CCR2-RA-[R]. Thus, mutagenesis showed that the sodium ion binding site residues, which are distinct from other class A GPCRs and related to chemokine receptor evolution, are crucial for receptor integrity. Moreover, the tested mutations appeared to have no effect on modulation observed by HMA or a minor effect on sodium chloride modulation on the tested radioligands. All in all, these results invite further exploration of the CCR2 sodium ion binding site in (cancer) biology, and potentially as a third druggable binding site.


Assuntos
Amilorida , Receptores CCR2 , Sódio , Humanos , Sítios de Ligação/fisiologia , Sódio/metabolismo , Amilorida/farmacologia , Amilorida/análogos & derivados , Amilorida/química , Amilorida/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/química , Receptores CCR2/genética , Receptores CCR2/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Animais , Células HEK293 , Simulação de Acoplamento Molecular
2.
Biochem Pharmacol ; 208: 115399, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581051

RESUMO

CC chemokine receptor 2 (CCR2), a G protein-coupled receptor, plays a role in many cancer-related processes such as metastasis formation and immunosuppression. Since âˆ¼ 20 % of human cancers contain mutations in G protein-coupled receptors, ten cancer-associated CCR2 mutants obtained from the Genome Data Commons were investigated for their effect on receptor functionality and antagonist binding. Mutations were selected based on either their vicinity to CCR2's orthosteric or allosteric binding sites or their presence in conserved amino acid motifs. One of the mutant receptors, namely S101P2.63 with a mutation near the orthosteric binding site, did not express on the cell surface. All other studied mutants showed a decrease in or a lack of G protein activation in response to the main endogenous CCR2 ligand CCL2, but no change in potency was observed. Furthermore, INCB3344 and LUF7482 were chosen as representative orthosteric and allosteric antagonists, respectively. No change in potency was observed in a functional assay, but mutations located at F1163.28 impacted orthosteric antagonist binding significantly, while allosteric antagonist binding was abolished for L134Q3.46 and D137N3.49 mutants. As CC chemokine receptor 2 is an attractive drug target in cancer, the negative effect of these mutations on receptor functionality and drugability should be considered in the drug discovery process.


Assuntos
Neoplasias , Receptores CCR2 , Humanos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Sítios de Ligação/fisiologia , Sítio Alostérico , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética
3.
Nat Cell Biol ; 24(1): 112-122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35013558

RESUMO

Nuclear pore complexes (NPCs) embedded within the nuclear envelope mediate rapid, selective and bidirectional traffic between the cytoplasm and the nucleoplasm. Deciphering the mechanism and dynamics of this process is challenged by the need for high spatial and temporal resolution. We report here a multicolour imaging approach that enables direct three-dimensional visualization of cargo transport trajectories relative to a super-resolved octagonal double-ring structure of the NPC scaffold. The success of this approach is enabled by the high positional stability of NPCs within permeabilized cells, as verified by a combined experimental and simulation analysis. Hourglass-shaped translocation conduits for two cargo complexes representing different nuclear transport receptor pathways indicate rapid migration through the permeability barrier on or near the NPC scaffold. Binding sites for cargo complexes extend more than 100 nm from the pore openings, which is consistent with a wide distribution of the phenylalanine-glycine polypeptides that bind nuclear transport receptors.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Imageamento Tridimensional/métodos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/fisiologia , Sítios de Ligação/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Biologia Computacional/métodos , Humanos , Imagem Individual de Molécula
4.
Cell Rep ; 37(7): 110025, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788616

RESUMO

Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable cation channel, is gated by intracellular adenosine diphosphate ribose (ADPR), Ca2+, warm temperature, and oxidative stress. It is critically involved in physiological and pathological processes ranging from inflammation to stroke to neurodegeneration. At present, the channel's gating and ion permeation mechanisms, such as the location and identity of the selectivity filter, remain ambiguous. Here, we report the cryo-electron microscopy (cryo-EM) structure of human TRPM2 in nanodisc in the ligand-free state. Cryo-EM map-guided computational modeling and patch-clamp recording further identify a quadruple-residue motif as the ion selectivity filter, which adopts a restrictive conformation in the closed state and acts as a gate, profoundly contrasting with its widely open conformation in the Nematostella vectensis TRPM2. Our study reveals the gating of human TRPM2 by the filter and demonstrates the feasibility of using cryo-EM in conjunction with computational modeling and functional studies to garner structural information for intrinsically dynamic but functionally important domains.


Assuntos
Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/fisiologia , Sítios de Ligação/fisiologia , Cálcio/metabolismo , Cátions , Microscopia Crioeletrônica/métodos , Humanos , Ativação do Canal Iônico/fisiologia , Técnicas de Patch-Clamp/métodos , Ligação Proteica/fisiologia , Canais de Cátion TRPM/ultraestrutura
5.
Amino Acids ; 53(12): 1863-1874, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34792644

RESUMO

L-Thioproline (L-thiazolidine-4-carboxylate, L-T4C) is a cyclic sulfur-containing analog of L-proline found in multiple kingdoms of life. The oxidation of L-T4C leads to L-cysteine formation in bacteria, plants, mammals, and protozoa. The conversion of L-T4C to L-Cys in bacterial cell lysates has been attributed to proline dehydrogenase and L-Δ1-pyrroline-5-carboxylate (P5C) reductase (PYCR) enzymes but detailed kinetic studies have not been conducted. Here, we characterize the dehydrogenase activity of human PYCR isozymes 1 and 2 with L-T4C using NAD(P)+ as the hydride acceptor. Both PYCRs exhibit significant L-T4C dehydrogenase activity; however, PYCR2 displays nearly tenfold higher catalytic efficiency (136 M-1 s-1) than PYCR1 (13.7 M-1 s-1). Interestingly, no activity was observed with either L-Pro or the analog DL-thiazolidine-2-carboxylate, indicating that the sulfur at the 4-position is critical for PYCRs to utilize L-T4C as a substrate. Inhibition kinetics show that L-Pro is a competitive inhibitor of PYCR1 [Formula: see text] with respect to L-T4C, consistent with these ligands occupying the same binding site. We also confirm by mass spectrometry that L-T4C oxidation by PYCRs leads to cysteine product formation. Our results suggest a new enzyme function for human PYCRs in the metabolism of L-T4C.


Assuntos
Pirrolina Carboxilato Redutases/metabolismo , Tiazolidinas/metabolismo , Sítios de Ligação/fisiologia , Cisteína/metabolismo , Humanos , Cinética , Prolina/metabolismo , Pirróis/metabolismo
6.
Life Sci ; 287: 120125, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34762904

RESUMO

AIMS: 3-n-Butylphthalide (NBP) is widely used for the treatment of cerebral ischaemic stroke but can causeliver injury in clinical practice. This study aims to elucidate the underlying mechanisms and propose potential preventive strategies. MAIN METHODS: NBP and its four major metabolites, 3-hydroxy-NBP (3-OH-NBP), 10-hydroxy-NBP, 10-keto-NBP and NBP-11-oic acid, were synthesized and evaluated in primary human or rat hepatocytes (PHHs, PRHs). NBP-related substances or amino acid adducts were identified and semi-quantitated by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The target proteins and binding sites were identified by shotgun proteomics based on peptide mass fingerprinting coupled with tandem mass spectrometry and verified by molecular docking. KEY FINDINGS: The toxicity of NBP and its four major metabolites were compared in both PHHs and PRHs, and 3-OH-NBP was found to be the most toxic metabolite. 3-OH-NBP induced remarkable cell death and oxidative stresses in hepatocytes, which correlated well with the levels of glutathione and N-acetylcysteine adducts (3-GSH-NBP and 3-NAC-NBP) in cell supernatants. Additionally, 3-OH-NBP covalently conjugated with intracellular Cys, Lys and Ser, with preferable binding to Cys sites at Myh9 Cys1380, Prdx4 Cys53, Vdac2 Cys48 and Vdac3 Cys36. Furthermore, we found that CYP3A4 induction by rifampicin augmented NBP-induced cell toxicity and supplementing with GSH or NAC alleviated the oxidative stresses and reactive metabolites caused by 3-OH-NBP. SIGNIFICANCE: Our work suggests that glutathione depletion, mitochondrial injury and covalent protein modification are the main causes of NBP-induced hepatotoxicity, which may be prevented by exogenous GSH or NAC supplementation and avoiding concomitant use of CYP3A4 inducers.


Assuntos
Acetilcisteína/metabolismo , Benzofuranos/metabolismo , Benzofuranos/toxicidade , Glutationa/metabolismo , Hepatócitos/metabolismo , Animais , Sítios de Ligação/fisiologia , Células Cultivadas , Indutores do Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/toxicidade , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Humanos , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
7.
Cell Mol Life Sci ; 78(23): 7145-7160, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34633481

RESUMO

The double-stranded multifunctional RNA-binding protein (dsRBP) Staufen was initially discovered in insects as a regulator of mRNA localization. Later, its mammalian orthologs have been described in different organisms, including humans. Two human orthologues of Staufen, named Staufen1 (STAU1) and Staufen2 (STAU2), share some structural and functional similarities. However, given their different spatio-temporal expression patterns, each of these orthologues plays distinct roles in cells. In the current review, we focus on the role of STAU1 in cell functions and cancer development. Since its discovery, STAU1 has mostly been studied for its involvement in various aspects of RNA metabolism. Given the pivotal role of RNA metabolism within cells, recent studies have explored the mechanistic impact of STAU1 in a wide variety of cell functions ranging from cell growth to cell death, as well as in various disease states. In particular, there has been increasing attention on the role of STAU1 in neuromuscular disorders, neurodegeneration, and cancer. Here, we provide an overview of the current knowledge on the role of STAU1 in RNA metabolism and cell functions. We also highlight the link between STAU1-mediated control of cellular functions and cancer development, progression, and treatment. Hence, our review emphasizes the potential of STAU1 as a novel biomarker and therapeutic target for cancer diagnosis and treatment, respectively.


Assuntos
Carcinogênese/patologia , Proteínas do Citoesqueleto/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Doenças Neuromusculares/patologia , Proteínas de Ligação a RNA/metabolismo , Animais , Sítios de Ligação/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Polaridade Celular/fisiologia , Transformação Celular Neoplásica/patologia , Proteínas do Citoesqueleto/genética , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
8.
Cell Mol Life Sci ; 78(21-22): 6869-6885, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34541613

RESUMO

The central role of eukaryotic translation initiation factor 4E (eIF4E) in controlling mRNA translation has been clearly assessed in the last decades. eIF4E function is essential for numerous physiological processes, such as protein synthesis, cellular growth and differentiation; dysregulation of its activity has been linked to ageing, cancer onset and progression and neurodevelopmental disorders, such as autism spectrum disorder (ASD) and Fragile X Syndrome (FXS). The interaction between eIF4E and the eukaryotic initiation factor 4G (eIF4G) is crucial for the assembly of the translational machinery, the initial step of mRNA translation. A well-characterized group of proteins, named 4E-binding proteins (4E-BPs), inhibits the eIF4E-eIF4G interaction by competing for the same binding site on the eIF4E surface. 4E-BPs and eIF4G share a single canonical motif for the interaction with a conserved hydrophobic patch of eIF4E. However, a second non-canonical and not conserved binding motif was recently detected for eIF4G and several 4E-BPs. Here, we review the structural features of the interaction between eIF4E and its molecular partners eIF4G and 4E-BPs, focusing on the implications of the recent structural and biochemical evidence for the development of new therapeutic strategies. The design of novel eIF4E-targeting molecules that inhibit translation might provide new avenues for the treatment of several conditions.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Humanos , Transtornos do Neurodesenvolvimento/metabolismo , Ligação Proteica/fisiologia , Biossíntese de Proteínas/fisiologia
9.
Biochem Pharmacol ; 192: 114715, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339714

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are part of the incretin system that regulates glucose homeostasis. A series of GIPR residues putatively important for ligand binding and receptor activation were mutated and pharmacologically evaluated using GIPR selective agonists in cAMP accumulation, ERK1/2 phosphorylation (pERK1/2) and ß-arrestin 2 recruitment assays. The impact of mutation on ligand efficacy was determined by operational modelling of experimental data for each mutant, with results mapped onto the full-length, active-state GIPR structure. Two interaction networks, comprising transmembrane helix (TM) 7, TM1 and TM2, and extracellular loop (ECL) 2, TM5 and ECL3 were revealed, respectively. Both networks were critical for Gαs-mediated cAMP accumulation and the recruitment of ß-arrestin 2, however, cAMP response was more sensitive to alanine substitution, with most mutated residues displaying reduced signaling. Unlike the other two assays, activation of ERK1/2 was largely independent of the network involving ECL2, TM5 and ECL3, indicating that pERK1/2 is at least partially distinct from Gαs or ß-arrestin pathways and this network is also crucial for potential biased agonism at GIPR. Collectively, our work advances understanding of the structure-function relationship of GIPR and provides a framework for the design and/or interpretation of GIP analogues with unique signaling profiles.


Assuntos
Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Células COS , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Polipeptídeo Inibidor Gástrico/química , Polipeptídeo Inibidor Gástrico/farmacologia , Células HEK293 , Humanos , Mutação/fisiologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Estrutura Secundária de Proteína , Receptores dos Hormônios Gastrointestinais/química
10.
Sci Rep ; 11(1): 16109, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373510

RESUMO

Scedosporium apiospermum is an emerging opportunistic fungal pathogen responsible for life-threatening infections in humans. Host-pathogen interactions often implicate lectins that have become therapeutic targets for the development of carbohydrate mimics for antiadhesive therapy. Here, we present the first report on the identification and characterization of a lectin from S. apiospermum named SapL1. SapL1 was found using bioinformatics as a homolog to the conidial surface lectin FleA from Aspergillus fumigatus known to play a role in the adhesion to host glycoconjugates present in human lung epithelium. In our strategy to obtain recombinant SapL1, we discovered the importance of osmolytes to achieve its expression in soluble form in bacteria. Analysis of glycan arrays indicates specificity for fucosylated oligosaccharides as expected. Submicromolar affinity was measured for fucose using isothermal titration calorimetry. We solved SapL1 crystal structure in complex with α-methyl-L-fucoside and analyzed its structural basis for fucose binding. We finally demonstrated that SapL1 binds to bronchial epithelial cells in a fucose-dependent manner. The information gathered here will contribute to the design and development of glycodrugs targeting SapL1.


Assuntos
Proteínas Fúngicas/metabolismo , Lectinas/metabolismo , Scedosporium/metabolismo , Sequência de Aminoácidos , Aspergillus fumigatus/metabolismo , Sítios de Ligação/fisiologia , Células Cultivadas , Células Epiteliais/metabolismo , Fucose/metabolismo , Glicoconjugados/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo
11.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 8): 262-268, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34341192

RESUMO

Plasmodium falciparum invades erythrocytes and extensively modifies them in a manner that increases the virulence of this malaria parasite. A single heat-shock 70 kDa-type chaperone, PfHsp70-x, is among the parasite proteins exported to the host cell. PfHsp70-x assists in the formation of a key protein complex that underpins parasite virulence and supports parasite growth during febrile episodes. Previous work resolved the crystallographic structures of the PfHsp70-x ATPase and substrate-binding domains, and showed them to be highly similar to those of their human counterparts. Here, 233 chemical fragments were screened for binding to the PfHsp70-x ATPase domain, resulting in three crystallographic structures of this domain in complex with ligands. Two binding sites were identified, with most ligands binding proximal to the ATPase nucleotide-binding pocket. Although amino acids participating in direct ligand interactions are conserved between the parasite and human erythrocytic chaperones, one nonconserved residue is also present near the ligand. This work suggests that PfHsp70-x features binding sites that may be exploitable by small-molecule ligands towards the specific inhibition of the parasite chaperone.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Cristalografia por Raios X/métodos , Proteínas de Choque Térmico HSP70/química , Humanos , Plasmodium falciparum/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Arch Pharm (Weinheim) ; 354(11): e2100160, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34427335

RESUMO

Boswellic acids (BAs) have been shown to possess antiviral activity. Using bioinformatic methods, it was tested whether or not acetyl-11-keto-ß-boswellic acid (AKBA), 11-keto-ß-boswellic acid (KBA), ß-boswellic acid (BBA), and the phosphorylated active metabolite of Remdesivir® (RGS-P3) bind to functional proteins of SARS-CoV-2, that is, the replicase polyprotein P0DTD1, the spike glycoprotein P0DTC2, and the nucleoprotein P0DTC9. Using P0DTD1, AKBA and KBA showed micromolar binding affinity to the RNA-dependent RNA polymerase (RdRp) and to the main proteinase complex Mpro . Phosphorylated BAs even bond in the nanomolar range. Due to their positive and negative charges, BAs and RGS-P3 bond to corresponding negative and positive areas of the protein. BAs and RGS-P3 docked in the tunnel-like cavity of RdRp. BAs also docked into the elongated surface rim of viral Mpro . In both cases, binding occurred with active site amino acids in the lower micromolecular to upper nanomolar range. KBA, BBA, and RGS-P3 also bond to P0DTC2 and P0DTC9. The binding energies for BAs were in the range of -5.8 to -6.3 kcal/mol. RGS-P3 and BAs occluded the centrally located pore of the donut-like protein structure of P0DTC9 and, in the case of P0DTC2, RGS-P3 and BAs impacted the double-wing-like protein structure. The data of this bioinformatics study clearly show that BAs bind to three functional proteins of the SARS-CoV-2 virus responsible for adhesion and replication, as does RGS-P3, a drug on the market to treat this disease. The binding effectiveness of BAs can be increased through phosphate esterification. Whether or not BAs are druggable against the SARS-CoV-2 disease remains to be established.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/fisiologia , Triterpenos/farmacologia , Proteínas Virais/fisiologia , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/farmacologia , Sítios de Ligação/fisiologia , Boswellia , COVID-19/virologia , Biologia Computacional/métodos , Humanos , Simulação de Acoplamento Molecular , Nucleoproteínas/metabolismo , Poliproteínas/metabolismo , Pró-Fármacos/farmacologia , Ligação Proteica/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Relação Estrutura-Atividade
13.
Molecules ; 26(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204178

RESUMO

We recently reported on a potent synthetic agent, 135H11, that selectively targets the receptor tyrosine kinase, EphA2. While 135H11 possesses a relatively high binding affinity for the ligand-binding domain of EphA2 (Kd~130 nM), receptor activation in the cell required the synthesis of dimeric versions of such agent (namely 135H12). This was expected given that the natural ephrin ligands also need to be dimerized or clustered to elicit agonistic activity in cell. In the present report we investigated whether the agonistic activity of 135H11 could be enhanced by biotin conjugation followed by complex formation with streptavidin. Therefore, we measured the agonistic EphA2 activity of 135H11-biotin (147B5) at various agent/streptavidin ratios, side by side with 135H12, and a scrambled version of 147B5 in pancreatic- and breast-cancer cell lines. The (147B5)n-streptavidin complexes (when n = 2, 3, 4, but not when n = 1) induced a strong receptor degradation effect in both cell lines compared to 135H12 or the (scrambled-147B5)4-streptavidin complex as a control, indicating that multimerization of the targeting agent resulted in an increased ability to cause receptor clustering and internalization. Subsequently, we prepared an Alexa-Fluor-streptavidin conjugate to demonstrate that (147B5)4-AF-streptavidin, but not the scrambled equivalent complex, concentrates in pancreatic and breast cancers in orthotopic nude-mouse models. Hence, we conclude that these novel targeting agents, with proper derivatization with imaging reagents or chemotherapy, can be used as diagnostics, and/or to deliver chemotherapy selectively to EphA2-expressing tumors.


Assuntos
Receptor EphA2/agonistas , Receptor EphA2/química , Animais , Sítios de Ligação/fisiologia , Biotina/química , Biotina/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Ligantes , Camundongos , Neoplasias Pancreáticas/metabolismo , Ligação Proteica/fisiologia , Receptor EphA2/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo
14.
Nat Commun ; 12(1): 3763, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145245

RESUMO

The glucagon-like peptide-1 (GLP-1) receptor is a validated drug target for metabolic disorders. Ago-allosteric modulators are capable of acting both as agonists on their own and as efficacy enhancers of orthosteric ligands. However, the molecular details of ago-allosterism remain elusive. Here, we report three cryo-electron microscopy structures of GLP-1R bound to (i) compound 2 (an ago-allosteric modulator); (ii) compound 2 and GLP-1; and (iii) compound 2 and LY3502970 (a small molecule agonist), all in complex with heterotrimeric Gs. The structures reveal that compound 2 is covalently bonded to C347 at the cytoplasmic end of TM6 and triggers its outward movement in cooperation with the ECD whose N terminus penetrates into the GLP-1 binding site. This allows compound 2 to execute positive allosteric modulation through enhancement of both agonist binding and G protein coupling. Our findings offer insights into the structural basis of ago-allosterism at GLP-1R and may aid the design of better therapeutics.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Animais , Sítios de Ligação/fisiologia , Células CHO , Linhagem Celular , Cricetulus , Microscopia Crioeletrônica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ativação Enzimática/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Peptídeos Semelhantes ao Glucagon/farmacologia , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Células Sf9 , Spodoptera
15.
Nat Commun ; 12(1): 4012, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188035

RESUMO

Recognition of laminin by integrin receptors is central to the epithelial cell adhesion to basement membrane, but the structural background of this molecular interaction remained elusive. Here, we report the structures of the prototypic laminin receptor α6ß1 integrin alone and in complex with three-chain laminin-511 fragment determined via crystallography and cryo-electron microscopy, respectively. The laminin-integrin interface is made up of several binding sites located on all five subunits, with the laminin γ1 chain C-terminal portion providing focal interaction using two carboxylate anchor points to bridge metal-ion dependent adhesion site of integrin ß1 subunit and Asn189 of integrin α6 subunit. Laminin α5 chain also contributes to the affinity and specificity by making electrostatic interactions with large surface on the ß-propeller domain of α6, part of which comprises an alternatively spliced X1 region. The propeller sheet corresponding to this region shows unusually high mobility, suggesting its unique role in ligand capture.


Assuntos
Células Epiteliais/metabolismo , Integrina alfa6/metabolismo , Integrina alfa6beta1/metabolismo , Integrina beta1/metabolismo , Laminina/metabolismo , Sequência de Aminoácidos , Membrana Basal/metabolismo , Sítios de Ligação/fisiologia , Adesão Celular/fisiologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Conformação Proteica , Domínios Proteicos/fisiologia , Eletricidade Estática
16.
PLoS One ; 16(6): e0253260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138914

RESUMO

We have previously reported that the 26-amino acid N-terminus stalk region of soluble Fas ligand (sFasL), which is separate from its binding site, is required for its biological function. Here we investigate the mechanisms that link the structure of the sFasL stalk region with its function. Using site-directed mutagenesis we cloned a mutant form of sFasL in which all the charged amino acids of the stalk region were changed to neutral alanines (mut-sFasL). We used the Fas-sensitive Jurkat T-cell line and mouse and human alveolar epithelial cells to test the bioactivity of sFasL complexes, using caspase-3 activity and Annexin-V externalization as readouts. Finally, we tested the effects of mut-sFasL on lipopolysaccharide-induced lung injury in mice. We found that mutation of all the 8 charged amino acids of the stalk region into the non-charged amino acid alanine (mut-sFasL) resulted in reduced apoptotic activity compared to wild type sFasL (WT-sFasL). The mut-sFasL attenuated WT-sFasL function on the Fas-sensitive human T-cell line Jurkat and on primary human small airway epithelial cells. The inhibitory mechanism was associated with the formation of complexes of mut-sFasL with the WT protein. Intratracheal administration of the mut-sFasL to mice 24 hours after intratracheal Escherichia coli lipopolysaccharide resulted in attenuation of the inflammatory response 24 hours later. Therefore, the stalk region of sFasL has a critical role on bioactivity, and changes in the structure of the stalk region can result in mutant variants that interfere with the wild type protein function in vitro and in vivo.


Assuntos
Células Epiteliais Alveolares/metabolismo , Aminoácidos/metabolismo , Proteína Ligante Fas/metabolismo , Animais , Sítios de Ligação/fisiologia , Humanos , Células Jurkat , Camundongos
17.
Purinergic Signal ; 17(3): 331-344, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33987781

RESUMO

The P2X7 receptor, originally known as the P2Z receptor due to its distinctive functional properties, has a structure characteristic of the ATP-gated ion channel P2X receptor family. The P2X7 receptor is an important mediator of ATP-induced purinergic signalling and is involved the pathogenesis of numerous conditions as well as in the regulation of diverse physiological functions. Functional characterisations, in conjunction with site-directed mutagenesis, molecular modelling, and, recently, structural determination, have provided significant insights into the structure-function relationships of the P2X7 receptor. This review discusses the current understanding of the structural basis for the functional properties of the P2X7 receptor.


Assuntos
Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Líquido Extracelular/metabolismo , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Humanos , Estrutura Secundária de Proteína , Receptores Purinérgicos P2X7/genética
18.
Biosystems ; 206: 104444, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34023485

RESUMO

Placozoa remain an ancient multicellular system with a dynamic body structure where calcium ions carry out a primary role in maintaining the integrity of the entire animal. Zinc ions can compete with calcium ions adsorption. We studied the effect of zinc ions and l-cysteine molecules on the interaction of Trichoplax sp. H2 cells. The regularity of formless motion was diminished in the presence of 20-25 µM of Zn2+ ions leading to the formation of branching animal forms. Locomotor ciliated cells moved chaotically and independently of each other leaving the Trichoplax body and opening a network of fiber cells. Application of 100 µM cysteine resulted in dissociation of the plate into separate cells. The combined chemical treatment shifted the effect in a random sample of animals toward disintegration, i.e. initially leading to disorder of collective cell movement and then to total body fragmentation. Two dissociation patterns of Trichoplax plate as "expanding ring" and "bicycle wheel" were revealed. Analysis of the interaction of Ca2+ and Zn2+ ions with cadherin showed that more than half (54%) of the amino acid residues with which Ca2+ and Zn2+ ions bind are common. The contact interaction of cells covered by the cadherin molecules is important for the coordinated movements of Trichoplax organism, while zinc ions are capable to break junctions between the cells. The involvement of other players, for example, l-cysteine in the regulation of Ca2+-dependent adhesion may be critical leading to the typical dissociation of Trichoplax body like in a calcium-free environment. A hypothesis about the essential role of calcium ions in the emergence of Metazoa ancestor is proposed.


Assuntos
Ensaios de Migração Celular/métodos , Cisteína/metabolismo , Placozoa/metabolismo , Análise de Sistemas , Zinco/metabolismo , Animais , Sítios de Ligação/fisiologia , Sinalização do Cálcio/fisiologia , Células Cultivadas , Biologia Computacional/métodos , Cisteína/química , Íons , Placozoa/química , Zinco/química
19.
Adv Sci (Weinh) ; 8(9): 2003630, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33977052

RESUMO

The molecular mechanisms and forces involved in the translocation of bacterial toxins into host cells are still a matter of intense research. The adenylate cyclase (CyaA) toxin from Bordetella pertussis displays a unique intoxication pathway in which its catalytic domain is directly translocated across target cell membranes. The CyaA translocation region contains a segment, P454 (residues 454-484), which exhibits membrane-active properties related to antimicrobial peptides. Herein, the results show that this peptide is able to translocate across membranes and to interact with calmodulin (CaM). Structural and biophysical analyses reveal the key residues of P454 involved in membrane destabilization and calmodulin binding. Mutational analysis demonstrates that these residues play a crucial role in CyaA translocation into target cells. In addition, calmidazolium, a calmodulin inhibitor, efficiently blocks CyaA internalization. It is proposed that after CyaA binding to target cells, the P454 segment destabilizes the plasma membrane, translocates across the lipid bilayer and binds calmodulin. Trapping of CyaA by the CaM:P454 interaction in the cytosol may assist the entry of the N-terminal catalytic domain by converting the stochastic motion of the polypeptide chain through the membrane into an efficient vectorial chain translocation into host cells.


Assuntos
Toxina Adenilato Ciclase/metabolismo , Calmodulina/metabolismo , Células Eucarióticas/metabolismo , Domínios Proteicos/fisiologia , Sítios de Ligação/fisiologia , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia
20.
Immunity ; 54(4): 660-672.e9, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852830

RESUMO

Interleukin-22 (IL-22) acts on epithelial cells to promote tissue protection and regeneration, but can also elicit pro-inflammatory effects, contributing to disease pathology. Here, we engineered a high-affinity IL-22 super-agonist that enabled the structure determination of the IL-22-IL-22Rα-IL-10Rß ternary complex to a resolution of 2.6 Å. Using structure-based design, we systematically destabilized the IL-22-IL-10Rß binding interface to create partial agonist analogs that decoupled downstream STAT1 and STAT3 signaling. The extent of STAT bias elicited by a single ligand varied across tissues, ranging from full STAT3-biased agonism to STAT1/3 antagonism, correlating with IL-10Rß expression levels. In vivo, this tissue-selective signaling drove tissue protection in the pancreas and gastrointestinal tract without inducing local or systemic inflammation, thereby uncoupling these opposing effects of IL-22 signaling. Our findings provide insight into the mechanisms underlying the cytokine pleiotropy and illustrate how differential receptor expression levels and STAT response thresholds can be synthetically exploited to endow pleiotropic cytokines with enhanced functional specificity.


Assuntos
Inflamação/metabolismo , Interleucinas/metabolismo , Animais , Sítios de Ligação/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Células HEK293 , Células HT29 , Células Hep G2 , Humanos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA