Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Front Immunol ; 12: 779235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925356

RESUMO

The host immune system plays a pivotal role in the containment of Mycobacterium tuberculosis (Mtb) infection, and host-directed therapy (HDT) is emerging as an effective strategy to treat tuberculosis (TB), especially drug-resistant TB. Previous studies revealed that expression of sirtuin 7 (SIRT7), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, was downregulated in macrophages after Mycobacterial infection. Inhibition of SIRT7 with the pan-sirtuin family inhibitor nicotinamide (NAM), or by silencing SIRT7 expression, promoted intracellular growth of Mtb and restricted the generation of nitric oxide (NO). Addition of the exogenous NO donor SNAP abrogated the increased bacterial burden in NAM-treated or SIRT7-silenced macrophages. Furthermore, SIRT7-silenced macrophages displayed a lower frequency of early apoptotic cells after Mycobacterial infection, and this could be reversed by providing exogenous NO. Overall, this study clarified a SIRT7-mediated protective mechanism against Mycobacterial infection through regulation of NO production and apoptosis. SIRT7 therefore has potential to be exploited as a novel effective target for HDT of TB.


Assuntos
Apoptose , Macrófagos/enzimologia , Mycobacterium tuberculosis/imunologia , Óxido Nítrico/metabolismo , Fagocitose , Sirtuínas/metabolismo , Tuberculose/enzimologia , Animais , Antituberculosos/farmacologia , Apoptose/efeitos dos fármacos , Carga Bacteriana , Interações Hospedeiro-Patógeno , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Doadores de Óxido Nítrico/farmacologia , Células RAW 264.7 , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transdução de Sinais , Sirtuínas/genética , Tuberculose/tratamento farmacológico , Tuberculose/imunologia , Tuberculose/microbiologia
2.
Behav Pharmacol ; 32(7): 590-598, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34483246

RESUMO

As a promising flavonoid, naringenin has shown potential anti-inflammatory and antioxidant properties mainly in inflammatory pain models by oral administration. Therefore, we investigated the antinociceptive activity of this compound by intraperitoneally (i.p.) administration, as well as, associated mechanism of action considering the involvement of L-arginine/nitric oxide (NO)/cyclic GMP (cGMP)/potassium channel (KATP) pathway and opioid receptors. The antinociceptive effect of naringenin was evaluated in male NMRI mice using formalin test at early and late phases. To assess the involvement of L-arginine/NO/cGMP/KATP pathway and opioid receptors, mice were pretreated i.p. with L-arginine (NO precursor), S-nitroso-N-acetylpenicillamine (SNAP, NO donor), N(gamma)-nitro-L-arginine methyl ester (L-NAME, inhibitor of nitric oxide synthase), sildenafil (inhibitor of phosphodiesterase enzyme), glibenclamide (KATP channel blocker) and naloxone (an opioid receptor antagonist), respectively 20 min before administration of the most effective dose of naringenin. Naringenin showed a dose-dependent antinociceptive effect at both early and late phases of the formalin test. The dose of 100 mg/kg of naringenin was identified as the most effective dose and selected for further experiments. Our mechanistic evaluations showed that L-arginine, SNAP and sildenafil could enhance the antinociceptive effects of naringenin, revealing the critical role of NO and cGMP during its antinociceptive effect. On the other hand, glibenclamide and naloxone could mitigate the antinociceptive potential of naringenin at both phases of formalin test, which confirmed the associated role of KATP channels and opioid receptors. In conclusion, naringenin could be a promising antinociceptive agent acting through opioid receptors and L-arginine/NO/cGMP/KATP channel pathway.


Assuntos
Arginina , Flavanonas/farmacologia , Canais KATP , Óxido Nítrico/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Citrato de Sildenafila/farmacologia , Analgésicos/farmacologia , Animais , Arginina/metabolismo , Arginina/farmacologia , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Antagonistas de Estrogênios/farmacologia , Flavonoides/farmacologia , Infusões Parenterais , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , Masculino , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Arch Biochem Biophys ; 709: 108985, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34252390

RESUMO

The protein deacetylase sirtuin 1 (SIRT1) and adenosine monophosphate-dependent protein kinase (AMPK) play important roles in the development of insulin resistance. In glomerular podocytes, crosstalk between these two enzymes may be altered under hyperglycemic conditions. SIRT1 protein levels and activity and AMPK phosphorylation decrease under hyperglycemic conditions, with concomitant inhibition of the effect of insulin on glucose uptake into these cells. Nitric oxide (NO)-dependent regulatory signaling pathways have been shown to be downregulated under diabetic conditions. The present study examined the involvement of the NO synthase (NOS)/NO pathway in the regulation of SIRT1-AMPK signaling and glucose uptake in podocytes. We examined the effects of NOS/NO pathway alterations on SIRT1/AMPK signaling and glucose uptake using pharmacological tools and a small-interfering transfection approach. We also examined the ability of the NOS/NO pathway to protect podocytes against high glucose-induced alterations of SIRT1/AMPK signaling and insulin-dependent glucose uptake. Inhibition of the NOS/NO pathway reduced SIRT1 protein levels and activity, leading to a decrease in AMPK phosphorylation and blockade of the effect of insulin on glucose uptake. Treatment with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) prevented high glucose-induced decreases in SIRT1 and AMPK activity and increased GLUT4 protein expression, thereby improving glucose uptake in podocytes. These findings suggest that inhibition of the NOS/NO pathway may result in alterations of the effects of insulin on glucose uptake in podocytes. In turn, the enhancement of NOS/NO pathway activity may prevent these deleterious effects of high glucose concentrations, thus bidirectionally stimulating the SIRT1-AMPK reciprocal activation loop.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Podócitos/metabolismo , Sirtuína 1/metabolismo , Animais , Regulação para Baixo/fisiologia , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Ratos , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transdução de Sinais , Sirtuína 1/genética
4.
Neurobiol Learn Mem ; 180: 107423, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33705861

RESUMO

Social recognition memory (SRM) forms the basis of social relationships of animals. It is essential for social interaction and adaptive behavior, reproduction and species survival. Evidence demonstrates that social deficits of psychiatric disorders such as autism and schizophrenia are caused by alterations in SRM processing by the hippocampus and amygdala. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptors PAC1, VPAC1 and VPAC2 are highly expressed in these regions. PACAP is a pleiotropic neuropeptide that modulates synaptic function and plasticity and is thought to be involved in social behavior. PACAP signaling also stimulates the nitric oxide (NO) production and targets outcomes to synapses. In the present work, we investigate the effect of the infusion of PACAP-38 (endogenous neuropeptide and potent stimulator of adenylyl cyclase), PACAP 6-38 (PAC1/VPAC2 receptors antagonist) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP, NO donor) in the CA1 region of the hippocampus and in the basolateral amygdala (BLA) on the consolidation of SRM. For this, male Wistar rats with cannulae implanted in CA1 or in BLA were subjected to a social discrimination paradigm, which is based on the natural ability of rodents to investigate unfamiliar conspecifics more than familiar one. In the sample phase (acquisition), animals were exposed to a juvenile conspecific for 1 h. Immediately, 60 or 150 min after, animals received one of different pharmacological treatments. Twenty-four hours later, they were submitted to a 5 min retention test in the presence of the previously presented juvenile (familiar) and a novel juvenile. Animals that received infusions of PACAP 6-38 (40 pg/side) into CA1 immediately after the sample phase or into BLA immediately or 60 min after the sample phase were unable to recognize the familiar juvenile during the retention test. This impairment was abolished by the coinfusion of PACAP 6-38 plus SNAP (5 µg/side). These results show that the blockade of PACAP/PAC1/VPAC2 signaling in the CA1 and BLA during a restricted post-acquisition time window impairs the consolidation of SRM and that the SNAP is able to abolish this deficit. Findings like this could potentially be used in the future to influence studies of psychiatric disorders involving social behavior.


Assuntos
Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Percepção Social/efeitos dos fármacos , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Região CA1 Hipocampal/metabolismo , Consolidação da Memória/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ratos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/efeitos dos fármacos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/efeitos dos fármacos , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/efeitos dos fármacos , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Reconhecimento Psicológico/fisiologia , S-Nitroso-N-Acetilpenicilamina/farmacologia
5.
Redox Biol ; 37: 101734, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33007504

RESUMO

The ongoing SARS-CoV-2 pandemic is a global public health emergency posing a high burden on nations' health care systems and economies. Despite the great effort put in the development of vaccines and specific treatments, no prophylaxis or effective therapeutics are currently available. Nitric oxide (NO) is a broad-spectrum antimicrobial and a potent vasodilator that has proved to be effective in reducing SARS-CoV replication and hypoxia in patients with severe acute respiratory syndrome. Given the potential of NO as treatment for SARS-CoV-2 infection, we have evaluated the in vitro antiviral effect of NO on SARS-CoV-2 replication. The NO-donor S-nitroso-N-acetylpenicillamine (SNAP) had a dose dependent inhibitory effect on SARS-CoV-2 replication, while the non S-nitrosated NAP was not active, as expected. Although the viral replication was not completely abolished (at 200 µM and 400 µM), SNAP delayed or completely prevented the development of viral cytopathic effect in treated cells, and the observed protective effect correlated with the level of inhibition of the viral replication. The capacity of the NO released from SNAP to covalently bind and inhibit SARS-CoV-2 3CL recombinant protease in vitro was also tested. The observed reduction in SARS-CoV-2 protease activity was consistent with S-nitrosation of the enzyme active site cysteine.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Doadores de Óxido Nítrico/farmacologia , S-Nitroso-N-Acetilpenicilamina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Domínio Catalítico/efeitos dos fármacos , Chlorocebus aethiops , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Humanos , Modelos Moleculares , Óxido Nítrico/farmacologia , SARS-CoV-2/enzimologia , SARS-CoV-2/fisiologia , Células Vero , Inibidores de Protease Viral/farmacologia
6.
Pflugers Arch ; 472(10): 1469-1480, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32803305

RESUMO

Dysfunction of the pancreatic ß cells leads to several chronic disorders including diabetes mellitus. Several mediators and mechanisms are known to be involved in the regulation of ß cell secretory function. In this study, we propose that cytokine-induced nitric oxide (NO) production interacts with cholinergic mechanisms to modulate insulin secretion from pancreatic ß cells. Using a rat insulinoma cell line INS-1, we demonstrated that ß cell viability decreases significantly in the presence of SNAP (NO donor) in a concentration- and time-dependent manner. Cell viability was also found to be decreased in the presence of a combined treatment of SNAP with SMN (muscarinic receptor antagonist). We then investigated the impact of these findings on insulin secretion and found a significant reduction in glucose uptake by INS-1 cells in the presence of SNAP and SMN as compared with control. Nitric oxide synthase 3 gene expression was found to be significantly reduced in response to combined treatment with SNAP and SMN suggesting an interaction between the cholinergic and nitrergic systems. The analysis of gene and protein expression further pin-pointed the involvement of M3 muscarinic receptors in the cholinergic pathway. Upon treatment with cytokines, reduced cell viability was observed in the presence of TNF-α and IFN-γ. A significant reduction in insulin secretion was also noted after treatment with TNF-α and IFN-γ and IL1-ß. The findings of the present study have shown for the first time that the inhibition of the excitatory effects of cholinergic pathways on glucose-induced insulin secretion may cause ß cell injury and dysfunction of insulin secretion in response to cytokine-induced NO production.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Óxido Nítrico/metabolismo , Receptores Colinérgicos/metabolismo , Animais , Linhagem Celular Tumoral , Células Secretoras de Insulina/efeitos dos fármacos , Interferon gama/farmacologia , Doadores de Óxido Nítrico/farmacologia , Ratos , S-Nitroso-N-Acetilpenicilamina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
7.
Microcirculation ; 27(7): e12644, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32603523

RESUMO

OBJECTIVE: In this study, we examined the effect of acute hyponatremia associated with vasopressin (AVP) on the responses of the isolated rat's MCAs and PAs to acidosis, nitric oxide donor (SNAP) and to endothelium-dependent vasodilator ATP. METHODS: The studies were performed on isolated, perfused and pressurized MCAs and PAs in control conditions and during AVP-associated hyponatremia. Hyponatremia was induced in vitro by lowering Na+ concentration from 144 to 121 mmol/L in intra- and extravascular fluid in the presence of AVP. RESULTS: Parenchymal arterioles showed greater response to an increase in H+ and K+ ions concentration and to ATP in comparison with MCAs in control normonatremic conditions. Both PAs and MCAs constricted in response to acute hyponatremia associated with AVP. Interestingly, disordered regulation of vascular tone was observed in PAs but not in MCAs. The abnormalities in the regulation comprised a significant reduction of PA response to acidosis and the absence of the response to the administration of SNAP or ATP. CONCLUSIONS: Arginine vasopressin-associated hyponatremia leads to constriction and dysregulation of PAs which may impair neurovascular coupling.


Assuntos
Arteríolas/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Hiponatremia/fisiopatologia , Acidose/fisiopatologia , Doença Aguda , Trifosfato de Adenosina/farmacologia , Animais , Arginina Vasopressina/administração & dosagem , Arginina Vasopressina/fisiologia , Arteríolas/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Hiponatremia/etiologia , Técnicas In Vitro , Masculino , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/fisiopatologia , Doadores de Óxido Nítrico/farmacologia , Ratos , Ratos Wistar , S-Nitroso-N-Acetilpenicilamina/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia
8.
Chem Biol Interact ; 328: 109195, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32707044

RESUMO

A previous study demonstrated that glutathione (GSH) produces specific antidepressant-like effect in the forced swimming test (FST), a predictive test of antidepressant activity. The present study investigated the involvement of multiple cellular targets implicated in the antidepressant-like effect of GSH in the FST. The antidepressant-like effect of GSH (300 nmol/site, icv) lasted up to 3 h when mice were submitted to FST. The central administration of oxidized GSH (GSSG, 3-300 nmol/site) did not alter the behavior of mice submitted to the FST. Furthermore, the combined treatment of sub-effective doses of GSH (100 nmol/site, icv) with a sub-effective dose of classical antidepressants (fluoxetine 10 mg/kg, and imipramine 5 mg/kg, ip) presented synergistic effect by decreasing the immobility time in the FST. The antidepressant-like effect of GSH was abolished by prazosin (1 mg/kg, ip, α1-adrenoceptor antagonist), baclofen (1 mg/kg, ip, GABAB receptor agonist), bicuculline (1 mg/kg, ip, GABAA receptor antagonist), l-arginine (750 mg/kg, ip, NO precursor), SNAP (25 µg/site, icv, NO donor), but not by yohimbine (1 mg/kg, ip, α2-adrenoceptor antagonist). The NMDA receptor antagonists, MK-801(0.001 mg/kg, ip) or GMP (0.5 mg/kg, ip), potentiated the effect of a sub-effective dose of GSH in the FST. These results suggest that the antidepressant-like effect induced by GSH is connected to the activation of α1 adrenergic and GABAA receptors, as well as the inhibition of GABAB and NMDA receptors and NO biosyntesis. We speculate that redox-mediated signaling on the extracelular portion of cell membrane receptors would be a common mechanism of action of GSH.


Assuntos
Antidepressivos/farmacologia , Glutationa/farmacologia , Terapia de Alvo Molecular , Antagonistas Adrenérgicos/farmacologia , Animais , Arginina/farmacologia , Sinergismo Farmacológico , Feminino , Glutationa/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imobilização , Masculino , Camundongos , Receptores Adrenérgicos/metabolismo , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Natação
9.
Cancer Sci ; 111(8): 2779-2788, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32342615

RESUMO

Chemoresistance is a main obstacle in ovarian cancer therapy and new treatment strategies and further information regarding the mechanism of the medication cisplatin are urgently needed. Nitric oxide has a critical role in modulating the activity of chemotherapeutic drugs. Our previous work showed that connexin32 contributed to cisplatin resistance. However, whether nitric oxide is involved in connexin32-mediated cisplatin resistance remains unknown. In this study, using A2780 and A2780 cisplatin-resistant cells, we found that S-nitroso-N-acetyl-penicillamine, a nitric oxide donor, attenuated cisplatin toxicity by decreasing gap junctions in A2780 cells. Enhancement of gap junctions using retinoic acid reversed the effects of S-nitroso-N-acetyl-penicillamine on cisplatin toxicity. In A2780 cisplatin-resistant cells, however, S-nitroso-N-acetyl-penicillamine enhanced cisplatin toxicity by decreasing connexin32 expression. Downregulation of connexin32 expression by small interfering RNA exacerbated the effects of S-nitroso-N-acetyl-penicillamine on cisplatin cytotoxicity and upregulation of connexin32 expression by pcDNA transfection reversed the effects of S-nitroso-N-acetyl-penicillamine on cisplatin cytotoxicity. Our study suggests for the first time that combining cisplatin with nitric oxide in clinical therapies for ovarian cancer should be avoided before cisplatin resistance emerges. The present study provides a productive area of further study for increasing the efficacy of cisplatin by combining cisplatin with the specific inhibitors or enhancers of nitric oxide in clinical treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cisplatino/farmacologia , Conexinas/metabolismo , Doadores de Óxido Nítrico/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/uso terapêutico , Conexinas/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Junções Comunicantes/metabolismo , Humanos , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/uso terapêutico , Neoplasias Ovarianas/patologia , RNA Interferente Pequeno/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , S-Nitroso-N-Acetilpenicilamina/uso terapêutico , Fatores de Tempo , Proteína beta-1 de Junções Comunicantes
10.
Aging (Albany NY) ; 12(7): 6370-6384, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276265

RESUMO

The release of the neuropeptide CGRP from the trigeminal ganglion neurons (TGNs) plays a central role in migraine. Whereas CGRP can activate NO release from ganglionic glial cells, NO in turn enhances CGRP release. However, it remains unclear how NO promotes CGRP release. Here, we report that the NO donor SNAP triggered CGRP release from cultured primary TGNs. This event was associated with GSK-3ß activation and Akt inactivation. Immunofluorescent staining revealed that GSK-3ß primarily located in neurons. Furthermore, GSK-3ß inhibition resulted in a marked reduction in expression of CGRP as well as other migraine-related factors, including substance P, cholecystokinin, and prostaglandin E2. Last, exposure to SNAP also activated NF-κB, while NF-κB inhibition prevented the induction of CGRP by SNAP. Interestingly, this event was blocked by GSK-3ß inhibition, in association with inhibition of NF-κB/p65 expression and nuclear translocation. Together, these findings argue that NO could stimulate TGNs to release of CGRP as well as other migraine-related factors, likely by activating GSK-3ß, providing a novel mechanism underlying a potential feed-forward loop between NO and CGRP in migraine. They also raise a possibility that GSK-3ß might act to trigger migraine through activation of NF-κB, suggesting a link between neuroinflammation and migraine.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Transtornos de Enxaqueca/metabolismo , Gânglio Trigeminal/metabolismo , Células Cultivadas , Humanos , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
11.
Cell Mol Life Sci ; 77(15): 3059-3075, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31650185

RESUMO

Despite great interest, the mechanism of neutrophil extracellular traps (NETs) release is not fully understood and some aspects of this process, e.g. the role of reactive nitrogen species (RNS), still remain unclear. Therefore, our aim was to investigate the mechanisms underlying RNS-induced formation of NETs and contribution of RNS to NETs release triggered by various physiological and synthetic stimuli. The involvement of RNS in NETs formation was studied in primary human neutrophils and differentiated human promyelocytic leukemia cells (HL-60 cells). RNS (peroxynitrite and nitric oxide) efficiently induced NETs release and potentiated NETs-inducing properties of platelet activating factor and lipopolysaccharide. RNS-induced NETs formation was independent of autophagy and histone citrullination, but dependent on the activity of phosphoinositide 3-kinases (PI3K) and myeloperoxidase, as well as selective degradation of histones H2A and H2B by neutrophil elastase. Additionally, NADPH oxidase activity was required to release NETs upon stimulation with NO, as shown in NADPH-deficient neutrophils isolated from patients with chronic granulomatous disease. The role of RNS was further supported by increased RNS synthesis upon stimulation of NETs release with phorbol 12-myristate 13-acetate and calcium ionophore A23187. Scavenging or inhibition of RNS formation diminished NETs release triggered by these stimuli while scavenging of peroxynitrite inhibited NO-induced NETs formation. Our data suggest that RNS may act as mediators and inducers of NETs release. These processes are PI3K-dependent and ROS-dependent. Since inflammatory reactions are often accompanied by nitrosative stress and NETs formation, our studies shed a new light on possible mechanisms engaged in various immune-mediated conditions.


Assuntos
Armadilhas Extracelulares/efeitos dos fármacos , Neutrófilos/metabolismo , Ácido Peroxinitroso/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , DNA/metabolismo , Armadilhas Extracelulares/metabolismo , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/patologia , Humanos , Elastase de Leucócito/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Óxido Nítrico , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
FASEB J ; 33(12): 14171-14184, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31725331

RESUMO

Glioblastoma multiforme (GBM) is the most frequently occurring and gravest primary tumor of the CNS in adults. The development of chemoresistance to temozolomide (TMZ), the first-line chemotherapy for GBM, is an important factor contributing to poor treatment outcomes. Down-regulation of O-6-methylguanine-DNA methyltransferase (MGMT) expression in GBM cells is an attractive strategy for overcoming TMZ resistance and improving outcomes. This study revealed that the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) exerts antitumorigenic effects on TMZ-sensitive and TMZ-resistant (TMZ-R) glioma cells. Pretreatment with SNAP not only induced apoptosis, mitochondrial dysfunction, and hypoxia-inducing factor 1, but also resensitized TMZ-R GBM cells to TMZ through down-regulation of MGMT expression. SNAP acted principally through post-translational modification of p53, phosphorylated N-myc downstream regulated gene 1, and MGMT protein stability in TMZ-R GBM cells. Additionally, when applied together, SNAP and TMZ enhanced the inhibition of tumor growth in vitro and in vivo. This study sheds new light on a potential strategy to overcome TMZ resistance in GBM and thus possesses the potential for prolonging survival of patients with GBM.-Tsai, C.-K., Huang, L.-C., Wu, Y.-P., Kan, I.-Y., Hueng, D.-Y. SNAP reverses temozolomide resistance in human glioblastoma multiforme cells through down-regulation of MGMT.


Assuntos
Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , S-Nitroso-N-Acetilpenicilamina/farmacologia , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores/sangue , Dano ao DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais , Proteínas Supressoras de Tumor/genética
13.
Nitric Oxide ; 93: 78-89, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539562

RESUMO

Human immunodeficiency virus (HIV) infections are typically accompanied by high levels of secreted inflammatory cytokines and generation of high levels of reactive oxygen species (ROS). To elucidate how HIV-1 alters the cellular redox environment during viral replication, we used human HIV-1 infected CD4+T lymphocytes and uninfected cells as controls. ROS and nitric oxide (NO) generation, antioxidant enzyme activity, protein phosphorylation, and viral and proviral loads were measured at different times (2-36 h post-infection) in the presence and absence of the NO donor S-nitroso-N-acetylpenicillamine (SNAP). HIV-1 infection increased ROS generation and decreased intracellular NO content. Upon infection, we observed increases in copper/zinc superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities, and a marked decrease in glutathione (GSH) concentration. Exposure of HIV-1 infected CD4+T lymphocytes to SNAP resulted in an increasingly oxidizing intracellular environment, associated with tyrosine nitration and SOD1 inhibition. In addition, SNAP treatment promoted phosphorylation and activation of the host's signaling proteins, PKC, Src kinase and Akt. Inhibition of PKC leads to inhibition of Src kinase strongly suggesting that PKC is the upstream element in this signaling cascade. Changes in the intracellular redox environment after SNAP treatment had an effect on HIV-1 replication as reflected by increases in proviral and viral loads. In the absence or presence of SNAP, we observed a decrease in viral load in infected CD4+T lymphocytes pre-incubated with the PKC inhibitor GF109203X. In conclusion, oxidative/nitrosative stress conditions derived from exposure of HIV-1-infected CD4+T lymphocytes to an exogenous NO source trigger a signaling cascade involving PKC, Src kinase and Akt. Activation of this signaling cascade appears to be critical to the establishment of HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , HIV-1/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Replicação Viral/fisiologia , Infecções por HIV , Humanos , Doadores de Óxido Nítrico/farmacologia , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Quinases da Família src/metabolismo
14.
In Vitro Cell Dev Biol Anim ; 55(8): 633-640, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31385165

RESUMO

The immunosuppressive function of mesenchymal stem cells (MSCs) is well known. Aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family, is widely expressed in several cells and is involved in various physiological and pathological processes. Previously, we found that the expression of AhR was downregulated in MSCs isolated from mice with neutrophilic asthma and that the activation of AhR enhanced the function of MSCs to alleviate neutrophilic asthma. We hypothesized that AhR activation enhanced MSCs for their immunosuppressive function. We aimed to investigate whether AhR activation can augment the suppressive function of MSCs against splenocyte proliferation. We co-cultured MSCs or AhR-activated MSCs with splenocytes at different ratios. The results showed that AhR activation in MSCs upregulated the expression of inducible nitric oxide (iNOS), which promoted the production of nitric oxide (NO), thus enhancing the inhibitory effect on splenocyte proliferation. The NO donor S-nitroso-N-acetylpenicillamine also inhibited the proliferation of splenocytes, and the iNOS inhibitor N(G)-nitro L-arginine methyl ester and NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide partially reversed the immunosuppressive function. Our study indicates that the AhR activation of MSCs might have an important role in the regulation of splenocyte proliferation and might serve as a potential strategy for treating immune-related diseases.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Baço/patologia , Animais , Comunicação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Feminino , Imidazóis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitomicina/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Regulação para Cima/efeitos dos fármacos
15.
Acta Biomater ; 90: 122-131, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953800

RESUMO

The large, densely packed artificial surface area of artificial lungs results in rapid clotting and device failure. Surface generated nitric oxide (NO) can be used to reduce platelet activation and coagulation on gas exchange fibers, while not inducing patient bleeding due to its short half-life in blood. To generate NO, artificial lungs can be manufactured with PDMS hollow fibers embedded with copper nanoparticles (Cu NP) and supplied with an infusion of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP). The SNAP reacts with Cu NP to generate NO. This study investigates clot formation and gas exchange performance of artificial lungs with either NO-generating Cu-PDMS or standard polymethylpentene (PMP) fibers. One miniature artificial lung (MAL) made with 10 wt% Cu-PDMS hollow fibers and one PMP control MAL were attached to sheep in parallel in a veno-venous extracorporeal membrane oxygenation circuit (n = 8). Blood flow through each device was set at 300 mL/min, and each device received a SNAP infusion of 0.12 µmol/min. The ACT was between 110 and 180 s in all cases. Blood flow resistance was calculated as a measure of clot formation on the fiber bundle. Gas exchange experiments comparing the two groups were conducted every 24 h at blood flow rates of 300 and 600 mL/min. Devices were removed once the resistance reached 3x baseline (failure) or following 72 h. All devices were imaged using scanning electron microscopy (SEM) at the inlet, outlet, and middle of the fiber bundle. The Cu-PDMS NO generating MALs had a significantly smaller increase in resistance compared to the control devices. Resistance rose from 26 ±â€¯8 and 23 ±â€¯5 in the control and Cu-PDMS devices, respectively, to 35 ±â€¯8 mmHg/(mL/min) and 72 ±â€¯23 mmHg/(mL/min) at the end of each experiment. The resistance and SEM imaging of fiber surfaces demonstrate lower clot formation on Cu-PDMS fibers. Although not statistically significant, oxygen transfer for the Cu-PDMS MALs was 13.3% less than the control at 600 mL/min blood flow rate. Future in vivo studies with larger Cu-PDMS devices are needed to define gas exchange capabilities and anticoagulant activity over a long-term study at clinically relevant ACTs. STATEMENT OF SIGNIFICANCE: In artificial lungs, the large, densely-packed blood contacting surface area of the hollow fiber bundle is critical for gas exchange but also creates rapid, surface-generated clot requiring significant anticoagulation. Monitoring of anticoagulation, thrombosis, and resultant complications has kept permanent respiratory support from becoming a clinical reality. In this study, we use a hollow fiber material that generates nitric oxide (NO) to prevent platelet activation at the blood contacting surface. This material is tested in vivo in a miniature artificial lung and compared against the clinical standard. Results indicated significantly reduced clot formation. Surface-focused anticoagulation like this should reduce complication rates and allow for permanent respiratory support by extending the functional lifespan of artificial lungs and can further be applied to other medical devices.


Assuntos
Órgãos Artificiais , Cobre/química , Pulmão , Nanopartículas Metálicas/química , Óxido Nítrico , S-Nitroso-N-Acetilpenicilamina , Animais , Dimetilpolisiloxanos , Óxido Nítrico/química , Óxido Nítrico/farmacocinética , Óxido Nítrico/farmacologia , Nylons , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacocinética , S-Nitroso-N-Acetilpenicilamina/farmacologia , Ovinos , Fatores de Tempo
16.
Cell Physiol Biochem ; 49(5): 1840-1855, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30231236

RESUMO

BACKGROUND/AIMS: In the process of abnormal apoptosis of pulmonary alveolar type II epithelial A549 cells in acute respiratory distress syndrome (ARDS), inducible nitric oxide synthase (iNOS) activity in the lung, nitric oxide (NO) production, and the level of protein S-nitrosylation were increased. However, the role of excessive NO production in sepsis-induced ARDS is controversial. Additionally, ghrelin is a growth hormone that exerts an inhibitory role in cell apoptosis. We examined the effect of NO and S-nitrosylation on apoptosis of A549 cells induced by Lipopolysaccharide (LPS) and molecular mechanism underlying the anti-apoptotic effect of ghrelin in this process. METHODS: Flow cytometry and qPCR were used to detect lentiviral infection efficiency and iNOS gene level, respectively. Extracellular and intracellular NO levels were observed by Griess assay kit and DAF-FM DA. Mitochondrial transmembrane potential, apoptosis rate and SNO levels were determined by flow cytometry, Biotin-Switch method and immunofluoresence staining. The expression of iNOS, apoptotic proteins and JNK were assessed by immunoblot analysis. RESULTS: The results showed about two times increase in iNOS expression and intracellular NO levels response to LPS exposure at 24 hours (P< 0.05), while not in extracellular NO levels. NO donors, S-nitroso-N-acetylpenicillamine (SNAP) significantly raised (36.7%, P< 0.05; 38.4%, P< 0.05; 41.8%, P< 0.05) extracellular NO levels without influencing the intracellular NO levels. LPS increased the apoptosis rate (42.4%±2.6% vs 2.8%±1%, P< 0.05) of A549 accompanied by increased Bax levels and decreased Bcl-2 levels through activating JNK signaling, which was reversed when we diminished the iNOS expression in A549 cells using lentiviral vectors encoding iNOS shRNA in the presence of LPS (24.8%±3.8% vs 42.4%±2.6%, P< 0.05). However, the apoptosis rate was increased when SNAP was added (38.8%±1.3% vs 24.8%±3.8%, P< 0.05). Furthermore, we investigated whether ghrelin exert a protective role against LPS-induced apoptosis and the potential mechanism involved in. Ghrelin alone appeared to decrease iNOS expression (32.3%, P< 0.05; 42.3%, P< 0.05), which showed no signifiant difference between LPS+ghrelin group and LPS group. However, this study showed that ghrelin decreased the intracellular NO production (38.9%, P< 0.05), protein S-nitrosylation levels (33.5%, P< 0.05), Bax protein expression (70.2%, P< 0.05), whereas increasing Bcl-2 protein expression (14.1%, P< 0.05) and mitochondrial transmembrane potential (∆ΨM) (20.7%, P< 0.05) in the presence of LPS. CONCLUSION: The data suggested that NO derived from iNOS induced by LPS stimulation exerts an important role in promoting apoptosis of A549 cells, and ghrelin abolished intracellular NO production and protein S-nitrosylation levels, abrogating the apoptosis of A549 cells partly through inhibiting mitochondrial-dependent pathways.


Assuntos
Apoptose/efeitos dos fármacos , Grelina/farmacologia , Lipopolissacarídeos/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Células A549 , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Proteína X Associada a bcl-2/metabolismo
17.
Int J Mol Sci ; 19(3)2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29534509

RESUMO

This study investigated the expression of voltage-gated K⁺ (KV) channels in human cardiac fibroblasts (HCFs), and the effect of nitric oxide (NO) on the KV currents, and the underlying phosphorylation mechanisms. In reverse transcription polymerase chain reaction, two types of KV channels were detected in HCFs: delayed rectifier K⁺ channel and transient outward K⁺ channel. In whole-cell patch-clamp technique, delayed rectifier K⁺ current (IK) exhibited fast activation and slow inactivation, while transient outward K⁺ current (Ito) showed fast activation and inactivation kinetics. Both currents were blocked by 4-aminopyridine. An NO donor, S-nitroso-N-acetylpenicillamine (SNAP), increased the amplitude of IK in a concentration-dependent manner with an EC50 value of 26.4 µM, but did not affect Ito. The stimulating effect of SNAP on IK was blocked by pretreatment with 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or by KT5823. 8-bromo-cyclic GMP stimulated the IK. The stimulating effect of SNAP on IK was also blocked by pretreatment with KT5720 or by SQ22536. Forskolin and 8-bromo-cyclic AMP each stimulated IK. On the other hand, the stimulating effect of SNAP on IK was not blocked by pretreatment of N-ethylmaleimide or by DL-dithiothreitol. Our data suggest that NO enhances IK, but not Ito, among KV currents of HCFs, and the stimulating effect of NO on IK is through the PKG and PKA pathways, not through S-nitrosylation.


Assuntos
Miofibroblastos/metabolismo , Óxido Nítrico/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potenciais de Ação , Adenina/análogos & derivados , Adenina/farmacologia , Carbazóis/farmacologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/fisiologia , Oxidiazóis/farmacologia , Pirróis/farmacologia , Quinoxalinas/farmacologia , S-Nitroso-N-Acetilpenicilamina/farmacologia
18.
Zygote ; 25(3): 321-330, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28651653

RESUMO

This study aimed to examine the effects of nitric oxide (NO) and different phosphodiesterase (PDE) families on meiosis resumption, nucleotides levels and embryo production. Experiment I, COCs were matured in vitro with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) associated or not with the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), meiotic resumption and nucleotides levels were assessed. SNAP delayed germinal vesicle breakdown (GVBD) (53.4 ± 1.2 versus 78.4 ± 2.4% for controls, P 0.05). Cyclic GMP levels were higher in SNAP (3.94 ± 0.18, P 0.05). Embryo development did not differ from the control for SNAP and cilostamide groups (38.7 ± 5.8, 37.9 ± 6.2 and 40.5 ± 5.8%, P > 0.05), but SNAP + cilostamide decreased embryo production (25.7 ± 6.9%, P < 0.05). In conclusion, SNAP was confirmed to delay meiosis resumption by the NO/sGC/cGMP pathway, by increasing cGMP, but not cAMP. Inhibiting different PDEs to further increase nucleotides in association with SNAP did not show any additive effects on meiosis resumption, indicating that other pathways are involved. Moreover, SNAP + cilostamide affected the meiosis progression and decreased embryo development.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Blastocisto/fisiologia , Óxido Nítrico/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Animais , Bovinos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Dipiridamol/metabolismo , Feminino , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos/métodos , Masculino , Meiose/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Oócitos/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Quinolonas/farmacologia , S-Nitroso-N-Acetilpenicilamina/farmacologia , Citrato de Sildenafila/farmacologia
19.
Mol Neurobiol ; 54(4): 2685-2696, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26995406

RESUMO

The study aimed to investigate the role of NO and neuronal NO synthase (nNOS) in Zn-induced neurodegeneration. Animals were treated with zinc sulfate (20 mg/kg), twice a week, for 2-12 weeks along with control. In a few sets, animals were also treated with/without a NO donor, sodium nitroprusside (SNP), or S-nitroso-N-acetyl penicillamine (SNAP) for 12 weeks. Moreover, human neuroblastoma (SH-SY-5Y) cells were also employed to investigate the role of nNOS in Zn-induced toxicity in in vitro in the presence/absence of nNOS inhibitor, 7-nitroindazole (7-NI). Zn caused time-dependent reduction in nitrite content and total/nNOS activity/expression. SNP/SNAP discernibly alleviated Zn-induced neurobehavioral impairments, dopaminergic neurodegeneration, tyrosine hydroxylase (TH) expression, and striatal dopamine depletion. NO donors also salvage from Zn-induced increase in lipid peroxidation (LPO), mitochondrial cytochrome c release, and caspase-3 activation. While Zn elevated LPO content, it attenuated nitrite content, nNOS activity, and glutathione level along with the expression of TH and nNOS in SH-SY-5Y cells. 7-NI further augmented Zn-induced changes in the cell viability, oxidative stress, and expression of TH and nNOS. The results obtained thus demonstrate that Zn inhibits nNOS that partially contributes to an increase in oxidative stress, which subsequently leads to the nigrostriatal dopaminergic neurodegeneration.


Assuntos
Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/patologia , Neostriado/patologia , Degeneração Neural/enzimologia , Degeneração Neural/patologia , Óxido Nítrico Sintase Tipo I/metabolismo , Zinco/efeitos adversos , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Indazóis/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Metaboloma/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitritos/metabolismo , Nitroprussiato/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , S-Nitroso-N-Acetilpenicilamina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Respir Physiol Neurobiol ; 237: 13-21, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28013061

RESUMO

A recent study showed that hypoxia activates a Ca2+-sensitive, Na+-permeable non-selective cation channel (NSC) in carotid body glomus cells. We studied the effects of mitochondrial inhibitors that increase Ca2+ influx via Ca2+ channel (Cav), and receptor agonists that release Ca2+ from endoplasmic reticulum (ER) on NSC. Mitochondrial inhibitors (NaCN, FCCP, H2S, NO) elevated [Ca2+]i and activated NSC. Angiotensin II and acetylcholine that elevate [Ca2+]i via the Gq-IP3 pathway activated NSC. However, endothelin-1 (Gq) and 5-HT (Gq) showed little or no effect on [Ca2+]i and did not activate NSC. Adenosine (Gs) caused a weak rise in [Ca2+]i but did not activate NSC. Dopamine (Gs) and γ-aminobytyric acid (Gi) were ineffective in raising [Ca2+]i and failed to activate NSC. Store-operated Ca2+ entry (SOCE) produced by depletion of Ca2+ stores with cyclopiazonic acid activated NSC. Our results show that Ca2+ entry via Cav, ER Ca2+ release and SOCE can activate NSC. Thus, NSC contributes to both voltage- and receptor-mediated excitation of glomus cells.


Assuntos
Cálcio/metabolismo , Corpo Carotídeo/citologia , Células Quimiorreceptoras/fisiologia , Canais Iônicos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Angiotensina II/farmacologia , Anilidas/farmacologia , Animais , Animais Recém-Nascidos , Cafeína/farmacologia , Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Células Quimiorreceptoras/efeitos dos fármacos , Relação Dose-Resposta a Droga , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Hipóxia/fisiopatologia , Ionóforos de Próton/farmacologia , Ratos , Ratos Sprague-Dawley , S-Nitroso-N-Acetilpenicilamina/farmacologia , Cianeto de Sódio/farmacologia , Tiadiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA