Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 232, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720301

RESUMO

Diabetic wounds pose a challenge to healing due to increased bacterial susceptibility and poor vascularization. Effective healing requires simultaneous bacterial and biofilm elimination and angiogenesis stimulation. In this study, we incorporated polyaniline (PANI) and S-Nitrosoglutathione (GSNO) into a polyvinyl alcohol, chitosan, and hydroxypropyltrimethyl ammonium chloride chitosan (PVA/CS/HTCC) matrix, creating a versatile wound dressing membrane through electrospinning. The dressing combines the advantages of photothermal antibacterial therapy and nitric oxide gas therapy, exhibiting enduring and effective bactericidal activity and biofilm disruption against methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Furthermore, the membrane's PTT effect and NO release exhibit significant synergistic activation, enabling a nanodetonator-like burst release of NO through NIR irradiation to disintegrate biofilms. Importantly, the nanofiber sustained a uniform release of nitric oxide, thereby catalyzing angiogenesis and advancing cellular migration. Ultimately, the employment of this membrane dressing culminated in the efficacious amelioration of diabetic-infected wounds in Sprague-Dawley rats, achieving wound closure within a concise duration of 14 days. Upon applying NIR irradiation to the PVA-CS-HTCC-PANI-GSNO nanofiber membrane, it swiftly eradicates bacteria and biofilm within 5 min, enhancing its inherent antibacterial and anti-biofilm properties through the powerful synergistic action of PTT and NO therapy. It also promotes angiogenesis, exhibits excellent biocompatibility, and is easy to use, highlighting its potential in treating diabetic wounds.


Assuntos
Antibacterianos , Bandagens , Biofilmes , Óxido Nítrico , Terapia Fototérmica , Ratos Sprague-Dawley , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Ratos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Terapia Fototérmica/métodos , Masculino , Quitosana/química , Quitosana/farmacologia , Nanofibras/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Staphylococcus aureus/efeitos dos fármacos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , S-Nitrosoglutationa/farmacologia , S-Nitrosoglutationa/química
2.
Molecules ; 25(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932594

RESUMO

Tetrathiolate zinc fingers are potential targets of oxidative assault under cellular stress conditions. We used the synthetic 37-residue peptide representing the tetrathiolate zinc finger domain of the DNA repair protein XPA, acetyl-DYVICEECGKEFMSYLMNHFDLPTCDNCRDADDKHK-amide (XPAzf) as a working model to study the reaction of its Zn(II) complex (ZnXPAzf) with hydrogen peroxide and S-nitrosoglutathione (GSNO), as oxidative and nitrosative stress agents, respectively. We also used the Cd(II) substituted XPAzf (CdXPAzf) to assess the situation of cadmium assault, which is accompanied by oxidative stress. Using electrospray mass spectrometry (ESI-MS), HPLC, and UV-vis and circular dichroism spectroscopies we demonstrated that even very low levels of H2O2 and GSNO invariably cause irreversible thiol oxidation and concomitant Zn(II) release from ZnXPAzf. In contrast, CdXPAzf was more resistant to oxidation, demonstrating the absence of synergy between cadmium and oxidative stresses. Our results indicate that GSNO cannot act as a reversible modifier of XPA, and rather has a deleterious effect on DNA repair.


Assuntos
Cádmio/toxicidade , Peróxido de Hidrogênio/química , S-Nitrosoglutationa/química , Proteína de Xeroderma Pigmentoso Grupo A/química , Motivos de Aminoácidos , Cádmio/química , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Reparo do DNA , Humanos , Estresse Nitrosativo , Estresse Oxidativo , Oxigênio/química , Espectrometria de Massas por Ionização por Electrospray , Compostos de Sulfidrila , Dedos de Zinco
3.
J Biol Chem ; 295(25): 8524-8536, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371394

RESUMO

Sirtuins (e.g. human Sirt1-7) catalyze the removal of acyl groups from lysine residues in proteins in an NAD+-dependent manner, and loss of sirtuin deacylase activity correlates with the development of aging-related diseases. Although multiple reports suggest that sirtuin activity is regulated by oxidative post-translational modifications of cysteines during inflammation and aging, no systematic comparative study of potential direct sirtuin cysteine oxidative modifications has been performed. Here, using IC50 and kinact/KI analyses, we quantified the ability of nitrosothiols (S-nitrosoglutathione and S-nitroso-N-acetyl-d,l-penicillamine), nitric oxide, oxidized GSH, and hydrogen peroxide to post-translationally modify and inhibit the deacylase activity of Sirt1, Sirt2, Sirt3, Sirt5, and Sirt6. The inhibition was correlated with cysteine modification and assessed with chemical-probe and blot-based assays for cysteine S-nitrosation, sulfenylation, and glutathionylation. We show that the primarily nuclear sirtuins Sirt1 and Sirt6, as well as the primarily cytosolic sirtuin Sirt2, are modified and inhibited by cysteine S-nitrosation in response to exposure to both free nitric oxide and nitrosothiols (kinact/KI ≥ 5 m-1 s-1), which is the first report of Sirt2 and Sirt6 inhibition by S-nitrosation. Surprisingly, the mitochondrial sirtuins Sirt3 and Sirt5 were resistant to inhibition by cysteine oxidants. Collectively, these results suggest that nitric oxide-derived oxidants may causatively link nuclear and cytosolic sirtuin inhibition to aging-related inflammatory disease development.


Assuntos
Cisteína/metabolismo , Oxidantes/metabolismo , Sirtuínas/metabolismo , Cisteína/química , Glutationa/química , Glutationa/metabolismo , Humanos , Cinética , Mitocôndrias/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxidantes/química , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , S-Nitrosoglutationa/química , S-Nitrosoglutationa/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/genética , Sirtuína 2/metabolismo , Sirtuínas/antagonistas & inibidores , Sirtuínas/genética
4.
Methods Mol Biol ; 2057: 45-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31595469

RESUMO

S-nitrosation as a redox-based posttranslational modification of protein cysteine has emerged as an integral part of signaling pathways of nitric oxide across all types of organisms. Protein S-nitrosation status is controlled by two key mechanisms: by direct denitrosation performed by the thioredoxin/thioredoxin reductase system, and in an indirect way mediated by S-nitrosoglutathione reductase (GSNOR). GSNOR, which has been identified as a key component of S-nitrosothiols catabolism, catalyzes an irreversible decomposition of abundant intracellular S-nitrosothiol, S-nitrosoglutathione (GSNO) to oxidized glutathione using reduced NADH cofactor. In plants, GSNOR has been shown to play important roles in plant growth and development and plant responses to abiotic and biotic stress stimuli. In this chapter, optimized protocols of spectrophotometric measurement of GSNOR enzymatic activity and activity staining in native polyacrylamide gels in plant GSNOR are presented.


Assuntos
Aldeído Oxirredutases/metabolismo , Ensaios Enzimáticos/métodos , Plantas/enzimologia , S-Nitrosotióis/metabolismo , Fluorescência , NAD/química , Eletroforese em Gel de Poliacrilamida Nativa , Óxido Nítrico/metabolismo , Nitrosação , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , S-Nitrosoglutationa/síntese química , S-Nitrosoglutationa/química , Coloração e Rotulagem/métodos , Fluxo de Trabalho
5.
Molecules ; 24(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454893

RESUMO

Glutathione-based products, GSnX, of the reaction of hydrogen sulfide, H2S, S-nitroso glutathione, and GSNO, at varied stoichiometries have been analyzed by liquid chromatography high-resolution mass spectrometry (LC-HRMS) and chemical trapping experiments. A wide variety of glutathione-based species with catenated sulfur chains have been identified including sulfanes (GSSnG), sulfides (GSSnH), and sulfenic acids (GSnOH); sulfinic (GSnO2H) and sulfonic (GSnO3H) acids are also seen in reactions exposed to air. The presence of each species of GSnX within the original reaction mixtures was confirmed using Single Ion Chromatograms (SICs), to demonstrate the separation on the LC column, and given approximate quantification by the peak area of the SIC. Further, confirmation for different GSnX families was obtained by trapping with species-specific reagents. Several unique GSnX families have been characterized, including bridging mixed di- and tetra-valent polysulfanes and internal trithionitrates (GSNHSnH) with polysulfane branches. Competitive trapping experiments suggest that the polysulfane chains are formed via the intermediacy of sulfenic acid species, GSSnOH. In the presence of radical trap vinylcyclopropane (VCP) the relative distributions of polysulfane speciation are relatively unaffected, suggesting that radical coupling is not a dominant pathway. Therefore, we suggest polysulfane catenation occurs via reaction of sulfides with sulfenic acids.


Assuntos
Glutationa/química , Ácidos Sulfênicos/química , Sulfetos/química , Cromatografia Líquida , Sulfeto de Hidrogênio/química , Cinética , Espectrometria de Massas , S-Nitrosoglutationa/química
6.
Methods ; 168: 29-34, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31278980

RESUMO

This study describes the theoretical basis and the methods for the facile synthesis and characterization of four fluorogenic probes, N-amido-O-aminobenzoyl-S-nitrosoglutathione (AOASNOG), N-thioamido-fluoresceinyl-S-nitroso-glutathione (TFSNOG), N,N-di(thioamido-fluoresceinyl)-cystine (DTFCys2) and N,N-di(thioamido-fluoresceinyl)-homocystine (DTFHCys2). In addition, the study describes the methodology for the application of these reagents for measuring and imaging of free thiols on cell surfaces as well as their use as pseudo substrates for the thiol reductase and S-nitrosothioldenitrosylase activities of protein disulfide isomerase (PDI) and S-nitrosothiol reductase activity of S-nitrosoglutathione reductase (GSNOR) in vitro and on live cells in culture.


Assuntos
Dissulfetos/metabolismo , Corantes Fluorescentes/química , Oxirredutases/metabolismo , S-Nitrosoglutationa/química , Membrana Celular/metabolismo , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/metabolismo , Epitélio Pigmentado da Retina/citologia , Compostos de Sulfidrila
7.
Nat Commun ; 10(1): 2195, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097712

RESUMO

Cysteine modifications emerge as important players in cellular signaling and homeostasis. Here, we present a chemical proteomics strategy for quantitative analysis of reversibly modified Cysteines using bioorthogonal cleavable-linker and switch technique (Cys-BOOST). Compared to iodoTMT for total Cysteine analysis, Cys-BOOST shows a threefold higher sensitivity and considerably higher specificity and precision. Analyzing S-nitrosylation (SNO) in S-nitrosoglutathione (GSNO)-treated and non-treated HeLa extracts Cys-BOOST identifies 8,304 SNO sites on 3,632 proteins covering a wide dynamic range of the proteome. Consensus motifs of SNO sites with differential GSNO reactivity confirm the relevance of both acid-base catalysis and local hydrophobicity for NO targeting to particular Cysteines. Applying Cys-BOOST to SH-SY5Y cells, we identify 2,151 SNO sites under basal conditions and reveal significantly changed SNO levels as response to early nitrosative stress, involving neuro(axono)genesis, glutamatergic synaptic transmission, protein folding/translation, and DNA replication. Our work suggests SNO as a global regulator of protein function akin to phosphorylation and ubiquitination.


Assuntos
Cisteína/análise , Proteoma/metabolismo , Proteômica/métodos , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Cisteína/metabolismo , Células HeLa , Humanos , Nitrosação/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteoma/análise , Proteômica/instrumentação , S-Nitrosoglutationa/química , S-Nitrosoglutationa/metabolismo , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
8.
J Colloid Interface Sci ; 544: 217-229, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849619

RESUMO

Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) (F127) hydrogels have been used to deliver nitric oxide (NO) topically in biomedical applications. Here, the effect of F127 microenvironments on the photochemical NO release from S-nitrosoglutathione (GSNO) was investigated in F127 solutions 7.6 wt% 15 wt% and 22.5 wt% at 15 °C and 37 °C. Small-angle X-ray Scattering (SAXS) and Differential Scanning Calorimetry (DSC) measurements, along with proton Nuclear Magnetic Resonance (1H NMR) spectral shifts and T2 relaxation data at six different concentration-temperature conditions, allowed identifying F127 microphases characterized by: a sol phase of unimers; micelles in non-defined periodic order, and a gel phase of cubic packed micelles. Kinetic measurements showed that GSNO photodecompositon proceeds faster in micellized F127 where GSNO is segregated to the intermicellar microenvironment. Real time kinetic monitoring of NO release and T2 relaxation profiles showed that NO is preferentially partitioned into the hydrophobic PPO cores of the F127 micelles, with the consequent decrease in its rate of release to the gas phase. These results show that F127 microphases affect both the kinetics of GSNO photodecomposition and the rate of NO escape and can be used to modulate the photochemical NO delivery from F127/GSNO solutions.


Assuntos
Hidrogéis/química , Óxido Nítrico/química , Poloxâmero/química , Polietilenoglicóis/química , Polímeros/química , Propilenoglicóis/química , S-Nitrosoglutationa/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Cinética , Micelas , Processos Fotoquímicos , Temperatura
9.
Nitric Oxide ; 86: 31-37, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735785

RESUMO

The light induced nitric oxide (NO) release properties of S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO) NO donors doped within polydimethylsiloxane (PDMS) films (PDMS-SNAP and PDMS-GSNO respectively) for potential inhaled NO (iNO) applications is examined. To achieve photolytic release of gas phase NO from the PDMS-SNAP and PDMS-GSNO films, narrow-band LED light sources are employed and the NO concentration in a N2 sweep gas above the film is monitored with an electrochemical NO sensor. The NO release kinetics using LED sources with different nominal wavelengths and optical power densities are reported. The effect of the NO donor loading within the PDMS films is also examined. The NO release levels can be controlled by the LED triggered release from the NO donor-doped silicone rubber films in order to generate therapeutic levels in a sweep gas for suitable durations potentially useful for iNO therapy. Hence this work may lay the groundwork for future development of a highly portable iNO system for treatment of patients with pulmonary hypertension, hypoxemia, and cystic fibrosis.


Assuntos
Portadores de Fármacos/química , Doadores de Óxido Nítrico/química , Óxido Nítrico/química , S-Nitroso-N-Acetilpenicilamina/química , S-Nitrosoglutationa/química , Silicones/química , Liberação Controlada de Fármacos , Gases/química , Cinética , Membranas Artificiais , Doadores de Óxido Nítrico/efeitos da radiação , S-Nitroso-N-Acetilpenicilamina/efeitos da radiação , S-Nitrosoglutationa/efeitos da radiação , Raios Ultravioleta
10.
ACS Appl Mater Interfaces ; 11(6): 6589-6604, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30653288

RESUMO

Because of their antibacterial activity, silver nanoparticles (AgNPs) have been explored in biomedical applications. Similarly, nitric oxide (NO) is an important endogenous free radical with an antimicrobial effect and toxicity toward cancer cells that plays pivotal roles in several processes. In this work, biogenic AgNPs were prepared using green tea extract and the principles of green chemistry, and the NO donor S-nitrosoglutathione (GSNO) was prepared by the nitrosation of glutathione. To enhance the potentialities of GSNO and AgNPs in biomedical applications, the NO donor and metallic nanoparticles were individually or simultaneously incorporated into polymeric solid films of poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG). The resulting solid nanocomposites were characterized by several techniques, and the diffusion profiles of GSNO and AgNPs were investigated. The results demonstrated the formation of homogeneous PVA/PEG solid films containing GSNO and nanoscale AgNPs that are distributed in the polymeric matrix. PVA/PEG films containing AgNPs demonstrated a potent antibacterial effect against Gram-positive and Gram-negative bacterial strains. GSNO-containing PVA/PEG films demonstrated toxicity toward human cervical carcinoma and human prostate cancer cell lines. Interestingly, the incorporation of AgNPs in PVA/PEG/GSNO films had a superior effect on the decrease of cell viability of both cancer cell lines, compared with cells treated with films containing GSNO or AgNPs individually. To our best knowledge, this is the first report to describe the preparation of PVA/PEG solid films containing GSNO and/or biogenically synthesized AgNPs. These polymeric films might find important biomedical applications as a solid material with antimicrobial and antitumorigenic properties.


Assuntos
Anti-Infecciosos/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Álcool de Polivinil/química , S-Nitrosoglutationa/química , Prata/química , Anti-Infecciosos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Química Verde , Humanos , Chá/química , Chá/metabolismo
11.
Nitric Oxide ; 84: 30-37, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30630056

RESUMO

Primary S-nitrosothiols (RSNOs) have received significant attention for their ability to modulate NO signaling in many physiological and pathophysiological processes. Such actions and their potential pharmaceutical uses demand a better knowledge of their stability in aqueous solutions. Herein, we investigated the effects of concentration, temperature, pH, room light and metal ions on the long-term kinetic behavior of two representative primary RSNOs, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC). The thermal decomposition of GSNO and SNAC were shown to be affected by the auto-catalytic action of the thiyl radicals. At 25 °C in the dark and protected from the catalytic action of metal ions, GSNO and SNAC solutions 1 mM showed half-lives of 49 and 76 days, and apparent activation energies of 84 ±â€¯14 and 90 ±â€¯6 kJ mol-1, respectively. Both GSNO and SNAC exhibited increased stability in the pH range 5-7. At high pH the decomposition pathway of GSNO involves the formation of an intermediate (GS-NO22-), which decomposes generating GSH and nitrite. GSNO solutions displayed lower sensitivity to the catalytic action of metal ions than SNAC and the exposure to room light led to a 5-fold increase in the initial rates of decomposition of both RSNOs. In all comparisons, SNAC solutions showed higher stability than GSNO solutions. These findings provide strategic information about the stability of GSNO and SNAC and may open new perspectives for their use as experimental or therapeutic NO donors.


Assuntos
Acetilcisteína/análogos & derivados , S-Nitrosoglutationa/química , Acetilcisteína/síntese química , Acetilcisteína/química , Concentração de Íons de Hidrogênio , Cinética , Luz , S-Nitrosoglutationa/síntese química , Temperatura
12.
ChemSusChem ; 12(3): 661-671, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30427595

RESUMO

Exposure to airborne particulate matter (PM) is associated with hazardous effects on human health. Soluble constituents of PM may be released in biological fluids and disturb the precisely tuned nitric oxide signaling processes. The influence of aqueous extracts from two types of airborne urban PM (SRM 1648a, a commercially available sample, and KR PM2.5, a sample collected "in-house" in Krakow, Poland) on the stability of S-nitrosoglutathione (GSNO) was investigated. The particle interfaces had no direct effect on the studied reaction, but extracts obtained from both samples facilitated NO release from GSNO. The effectiveness of NO release was significantly affected by glutathione (GSH) and ascorbic acid (AscA). Examination of the combined influence of Cu2+ , Fe3+ , and reductants on GSNO stability revealed copper to be the main GSNO decomposing species. Computational models of nitrosothiols interacting with metal oxide substrates and solvated metal ions support these claims. The study stresses the importance of the interplay between metal ions and biological reductants in S-nitrosothiols decomposition.


Assuntos
Óxido Nítrico/química , Material Particulado/química , S-Nitrosoglutationa/química , Transdução de Sinais , Ácido Ascórbico/química , Cobre/química , Compostos Férricos/química , Glutationa/química , Humanos
13.
Colloids Surf B Biointerfaces ; 175: 636-643, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30583219

RESUMO

Biomimetic nanofibrous scaffolds targeting multiple dysfunctional processes provide a multi-pronged strategy to restore functions and regenerate the damaged tissue. This study investigates a strategy of combining a regenerative component, Type I collagen Peptide (CP), along with a nitric oxide donor, S-Nitrosoglutathione (GSNO), in the form of nanofibrous scaffold to address the non-healing diabetic ulcer. Silk Fibroin-Polyvinyl alcohol (SF-PVA) nanofibrous scaffold is used as a carrier for delivering functional moieties. The developed nanofibrous electrospun mats (SF-PVA, CP-SF-PVA, and CP-GSNO-SF-PVA) showed continuous, bead-less and randomly oriented fibers with highly porous morphology. The in vitro biocompatibility was assessed by MTT assay, DAPI-Rhodamine 123 and FITC-Phalloidin imaging studies. CP-GSNO-SF-PVA nanofibrous scaffold showed a high degree of cell attachment, spreading of F-actin with viable cell morphology and appreciable inter-cellular connection. Thus the study showed that the proliferation of fibroblast cells are mainly facilitated by the presence of collagen peptide in the nanofibrous matrix. Griess assay demonstrated immediate release of NO for a day from the developed multifunctional scaffold. These results demonstrate the in vitro efficacy of CP-GSNO and indicate the opportunity of CP-GSNO-SF-PVA nanofibrous scaffold for the treatment of ischemic non-healing ulcers.


Assuntos
Colágeno Tipo I/farmacologia , Fibroínas/farmacologia , Nanofibras/química , Óxido Nítrico/química , Alicerces Teciduais , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/química , Técnicas Eletroquímicas , Fibroínas/química , Camundongos , Células NIH 3T3 , Nanofibras/ultraestrutura , Doadores de Óxido Nítrico/química , Peptídeos/química , Peptídeos/farmacologia , Álcool de Polivinil/química , Porosidade , S-Nitrosoglutationa/química , Engenharia Tecidual/métodos
14.
Analyst ; 144(1): 180-185, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30379147

RESUMO

S-nitrosothiols (RSNOs) are very important biomolecules that play crucial roles in many physiological and physiopathological processes. They act as NO-donors and are candidates for future medicines. Their identification and quantitation are therefore important for biomedical applications. One, two or more RSNOs can then be combined to design a drug and therefore, the quantification of each is important to establish an acceptable quality control process. Till date, miniaturized devices have been used to detect RSNOs based on their total quantitation without a preceding separation step. This study reports on an original and integrated microdevice allowing for the successive electrokinetic separation of low molecular weight RSNOs, their decomposition under metal catalysis, and their quantitation by amperometric detection of the produced nitrite in the end-channel arrangement, leading to their quantitation in a single run. For this purpose, a commercial SU-8/Pyrex microfluidic system was coupled to a portable and wireless potentiostat. Different operating and running parameters were optimized to achieve the best analytical data, allowing for an LOD equal to 20 µM. The simultaneous separation of S-nitrosoglutathione and S-nitrosocysteine was successfully obtained within 75 s. The proposed methodology using SU-8/Pyrex microfluidic devices opens new possibilities to investigate future drug candidates for NO-donors.


Assuntos
Cisteína/análogos & derivados , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , S-Nitrosoglutationa/análise , S-Nitrosotióis/análise , Catálise , Cobre/química , Cisteína/análise , Cisteína/síntese química , Cisteína/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Limite de Detecção , Técnicas Analíticas Microfluídicas/instrumentação , S-Nitrosoglutationa/síntese química , S-Nitrosoglutationa/química , S-Nitrosotióis/síntese química , S-Nitrosotióis/química
15.
Acta Biomater ; 74: 312-325, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29777958

RESUMO

Topical nitric oxide (NO) delivery has been shown to accelerate wound healing. However, delivering NO to wounds at appropriate rates and doses requires new biomaterial-based strategies. Here, we describe the development of supramolecular interpolymer complex hydrogels comprising PEO-PPO-PEO (F127) micelles embedded in a poly(acrylic acid) (PAA) matrix, with S-nitrosoglutathione (GSNO) molecules dissolved in the hydrophilic domain. We show that PAA:F127/GSNO hydrogels start releasing NO upon hydration at rates controlled by their rates of water absorption. SAXS measurements indicate that the supramolecular structure of the hydrogels retains long-range order domains of F127 micelles. The PAA/F1227 hydrogels displayed dense morphologies and reduced rates of hydration. The NO release rates remain constant over the first 200 min, are directly correlated with the hydration rates of the PAA:F127/GSNO hydrogels, and can be modulated in the range of 40 nmol/g h to 1.5 µmol/g h by changing the PAA:F127 mass ratio. Long-term NO-release profiles over 5 days are governed by the first-order exponential decay of GSNO, with half-lives in the range of 0.5-3.4 days. A preliminary in vivo study on full-thickness excisional wounds in mice showed that topical NO release from the PAA:F127/GSNO hydrogels is triggered by exudate absorption and leads to increased angiogenesis and collagen fiber organization, as well as TGF-ß, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue. In summary, these results suggest that hydration-controlled NO release from topical PAA:F127/GSNO hydrogels is a potential strategy for enhancing wound healing. STATEMENT OF SIGNIFICANCE: The topical delivery of nitric oxide (NO) to wounds may provide significant beneficial results and represent a promising strategy to treat chronic wounds. However, wound dressings capable of releasing NO after application and allowing the modulation of NO release rates, demand new platforms. Here, we describe a novel strategy to overcome these challenges, based on the use of supramolecular poly(acrylic acid) (PAA):F127 hydrogels charged with the NO donor S-nitrosoglutathione (GSNO) from whereby the NO release can be triggered by exudate absorption and delivered to the wound at rates controlled by the PAA:F127 mass ratio. Preliminary in vivo results offer a proof of concept for this strategy by demonstrating increased angiogenesis; collagen fibers organization; and TGF-ß, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue after topical treatment with a PAA:F127/GSNO hydrogel.


Assuntos
Resinas Acrílicas , Hidrogéis , Óxido Nítrico , Polietilenos , Polipropilenos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões , Resinas Acrílicas/farmacocinética , Resinas Acrílicas/farmacologia , Animais , Citocinas/biossíntese , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Camundongos , Micelas , Óxido Nítrico/química , Óxido Nítrico/farmacocinética , Óxido Nítrico/farmacologia , Polietilenos/química , Polietilenos/farmacocinética , Polietilenos/farmacologia , Polipropilenos/química , Polipropilenos/farmacocinética , Polipropilenos/farmacologia , S-Nitrosoglutationa/química , S-Nitrosoglutationa/farmacocinética , S-Nitrosoglutationa/farmacologia , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
16.
Free Radic Biol Med ; 108: 445-451, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28419866

RESUMO

S-nitrosoglutathione reductase (GSNOR) is a multifunctional enzyme. It can catalyze NADH-dependent reduction of S-nitrosoglutathione (GSNO); as well as NAD+-dependent oxidation of hydroxymethylglutathione (HMGSH; an adduct formed by the spontaneous reaction between formaldehyde and glutathione). While initially recognized as the enzyme that is involved in formaldehyde detoxification, increasing amount of evidence has shown that GSNOR also plays a significant role in nitric oxide mediated signaling through its modulation of protein S-nitrosothiol signaling. In humans, GSNOR/S-nitrosothiols have been implicated in the etiology of several diseases including lung cancer, cystic fibrosis, asthma, pulmonary hypertension, and neuronal dysfunction. Currently, it is not possible to monitor the activity of GSNOR in live cells. In this article, we present a new compound, O-aminobenzoyl-S-nitrosoglutathione (OAbz-GSNO), which acts as a fluorogenic pseudo-substrate for GSNOR with an estimated Km value of 320µM. The weak OAbz-GSNO fluorescence increases by approximately 14 fold upon reduction of its S-NO moiety. In live cell imaging studies, OAbz-GSNO is readily taken up by primary pulmonary endothelial cells and localizes to the same perinuclear region as GSNOR. The perinuclear OAbz-GSNO fluorescence increases in a time dependent manner and this increase in fluorescence is abolished by siRNA knockdown of GSNOR or by treatment with GSNOR-specific inhibitors N6022 and C3. Taken together, these data demonstrate that OAbz-GSNO can be used as a tool to monitor the activity of GSNOR in live cells.


Assuntos
Aldeído Oxirredutases/metabolismo , Células Endoteliais/fisiologia , Corantes Fluorescentes/metabolismo , Pulmão/citologia , S-Nitrosoglutationa/metabolismo , Aldeído Oxirredutases/genética , Animais , Permeabilidade da Membrana Celular , Células Cultivadas , Corantes Fluorescentes/química , Formaldeído/química , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , RNA Interferente Pequeno/genética , S-Nitrosoglutationa/análogos & derivados , S-Nitrosoglutationa/química , Transdução de Sinais , Especificidade por Substrato
17.
Nitric Oxide ; 62: 1-10, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27989818

RESUMO

It has been established that treatment of mice with sodium nitrite, S-nitrosoglutathione and the water-soluble nitroglycerine derivative isosorbide dinitrate (ISDN) as NO donors initiates in vivo synthesis of significant amounts of EPR-silent binuclear dinitrosyl iron complexes (B-DNIC) with thiol-containing ligands in the liver and other tissues of experimental mice. This effect is especially apparent if NO donors are administered to mice simultaneously with the Fe2+-citrate complex. Similar results were obtained in experiments on isolated liver and other mouse tissues treated with gaseous NО in vitro and during stimulation of endogenous NO synthesis in the presence of inducible NO synthase. B-DNIC appeared in mouse tissues after in vitro treatment of tissue samples with an aqueous solution of diethyldithiocarbamate (DETC), which resulted in the transfer of iron-mononitrosyl fragments from B-DNIC to the thiocarbonyl group of DETC and the formation of EPR-detectable mononitrosyl iron complexes (MNIC) with DETC. EPR-Active MNIC with N-methyl-d-glucamine dithiocarbamate (MGD) were synthesized in a similar way. MNIC-MGD were also formed in the reaction of water-soluble MGD-Fe2+ complexes with sodium nitrite, S-nitrosoglutathione and ISDN.


Assuntos
Ditiocarb/metabolismo , Compostos Ferrosos/metabolismo , Sorbitol/análogos & derivados , Tiocarbamatos/metabolismo , Acetilcisteína/química , Acetilcisteína/metabolismo , Animais , Ditiocarb/química , Compostos Ferrosos/química , Glutationa/química , Glutationa/metabolismo , Hemoglobinas/metabolismo , Dinitrato de Isossorbida/química , Ligantes , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/química , Nitritos/metabolismo , S-Nitrosoglutationa/química , S-Nitrosoglutationa/metabolismo , Sorbitol/química , Sorbitol/metabolismo , Marcadores de Spin , Tiocarbamatos/química
18.
Ann Pharm Fr ; 75(2): 95-104, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27770996

RESUMO

OBJECTIVE: In recent years, S-nitrosoglutathione has been proposed for the treatment of Crohn's disease to prevent mucosal barrier failure. In this paper, we report the formulation of spray dried microparticles of glutathione and S-nitrosoglutathione based on Eudragit® FS 30D polymer (i.e. colon-specific delivery system). MATERIAL AND METHODS: The influence of several spray-drying parameters (inlet temperature 80-150°C, solvent flow 5-10mL/min) was studied. The parameters that yielded the best formulations (inlet temperature 120°C, outlet temperature 47°C, solvent flow 5mL/min and air flow 100%) were selected for further studies. RESULTS: Scanning electron microscopy revealed that the resulting microparticles were spherical in shape. The powder X-ray diffraction patterns of pure GSH and GSNO showed sharp peaks that were not present in the microparticles, confirming a molecular dispersion of the drugs by the polymer. The stability of the drugs in the microparticles was confirmed by Fourier transform infrared spectroscopy. Release studies in phosphate buffer solutions showed fast release at basic pH 7.4, sustained release at pH 6.8, but practically no release at the acidic pHs of 1.2, 3 and 6 for the pH-sensitive microparticles. The microparticles prevented the release of drugs at acidic pH while demonstrating fast release at basic pH 7.4; this suggests the suitability of these microparticles to be evaluated for specific colon targeting. CONCLUSION: Using Eudragit® FS 30D as a gastro-resistant rate-controlling polymer, S-nitrosoglutathion could be targeted to the colon for further studies in the treatment of inflammatory bowel diseases including Crohn's disease.


Assuntos
Glutationa/química , Nanopartículas/química , Ácidos Polimetacrílicos/química , S-Nitrosoglutationa/química , Dessecação/métodos , Composição de Medicamentos , Excipientes , Espectrometria de Massas por Ionização por Electrospray , Temperatura
19.
Free Radic Biol Med ; 101: 296-304, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693379

RESUMO

S-nitrosothiols (SNO) perform many important functions in biological systems, but the mechanism by which they are generated in vivo remains a contentious issue. Nitric oxide (NO) reacts with thiols to form SNO only in the presence of a molecule that will accept an electron from either NO or the thiol. In this study, we present evidence that ferriheme accepts an electron from NO or glutathione (GSH) to generate S-nitrosoglutathione (GSNO) in vitro under anaerobic or hypoxic (2% O2) conditions. Ferriheme formed charge transfer-stable complexes with NO to form ferriheme-NO (heme-Fe(II)-NO+) and with GSH to form ferriheme-GS (heme-Fe(II)-GS•) under anaerobic conditions. The reaction between GSH and the heme-Fe(II)-NO+ complex or between NO and the heme-Fe(II)-GS• complex resulted in simultaneous reductive ferriheme nitrosylation (heme-Fe(II)NO) and the generation of GSNO. Thus, ferriheme is readily reduced to ferroheme in the presence of NO and GSH together, but not with either individually. The reaction between NO and the heme-Fe(II)-GS• complex to generate GSNO occurred more rapidly than NO was consumed by endothelial cells, but not red blood cells. In addition, pretreatment of endothelial cells with ferriheme or the ferriheme-GS complex generated SNO upon addition of NO under hypoxic conditions. The results of this study raise the possibility that in vivo, ferriheme can complex with GSH to form ferriheme-GS complex (heme-Fe(II)-GS•), which rapidly reacts with NO to generate GSNO under intracellular oxygen levels. The GSNO formation by this mechanism is more efficient than any other in vitro mechanism(s) reported so far.


Assuntos
Células Endoteliais/efeitos dos fármacos , Glutationa/química , Hemina/química , Óxido Nítrico/química , S-Nitrosoglutationa/química , Biocatálise , Hipóxia Celular , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Glutationa/metabolismo , Hemina/farmacologia , Humanos , Cinética , Óxido Nítrico/metabolismo , Especificidade de Órgãos , Oxirredução , S-Nitrosoglutationa/metabolismo
20.
J Biol Chem ; 291(49): 25398-25410, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27756843

RESUMO

The sirtuin family of proteins catalyze the NAD+-dependent deacylation of acyl-lysine residues. Humans encode seven sirtuins (Sirt1-7), and recent studies have suggested that post-translational modification of Sirt1 by cysteine S-nitrosation correlates with increased acetylation of Sirt1 deacetylase substrates. However, the mechanism of Sirt1 inhibition by S-nitrosation was unknown. Here, we show that Sirt1 is transnitrosated and inhibited by the physiologically relevant nitrosothiol S-nitrosoglutathione. Steady-state kinetic analyses and binding assays were consistent with Sirt1 S-nitrosation inhibiting binding of both the NAD+ and acetyl-lysine substrates. Sirt1 S-nitrosation correlated with Zn2+ release from the conserved sirtuin Zn2+-tetrathiolate and a loss of α-helical structure without overall thermal destabilization of the enzyme. Molecular dynamics simulations suggested that Zn2+ loss due to Sirt1 S-nitrosation results in repositioning of the tetrathiolate subdomain away from the rest of the catalytic domain, thereby disrupting the NAD+ and acetyl-lysine-binding sites. Sirt1 S-nitrosation was reversed upon exposure to the thiol-based reducing agents, including physiologically relevant concentrations of the cellular reducing agent glutathione. Reversal of S-nitrosation resulted in full restoration of Sirt1 activity only in the presence of Zn2+, consistent with S-nitrosation of the Zn2+-tetrathiolate as the primary source of Sirt1 inhibition upon S-nitrosoglutathione treatment.


Assuntos
NAD/química , S-Nitrosoglutationa/química , Sirtuína 1/química , Zinco/química , Animais , Bovinos , Cisteína/química , Cisteína/metabolismo , Estabilidade Enzimática , Humanos , NAD/metabolismo , Nitrosação , Sirtuína 1/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA