Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
ACS Chem Biol ; 19(1): 193-207, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38159293

RESUMO

S-Nitrosation is a cysteine post-translational modification fundamental to cellular signaling. This modification regulates protein function in numerous biological processes in the nervous, cardiovascular, and immune systems. Small molecule or protein nitrosothiols act as mediators of NO signaling by transferring the NO group (formally NO+) to a free thiol on a target protein through a transnitrosation reaction. The protein targets of specific transnitrosating agents and the extent and functional effects of S-nitrosation on these target proteins have been poorly characterized. S-nitroso-coenzyme A (CoA-SNO) was recently identified as a mediator of endogenous S-nitrosation. Here, we identified direct protein targets of CoA-SNO-mediated transnitrosation using a competitive chemical-proteomic approach that quantified the extent of modification on 789 cysteine residues in response to CoA-SNO. A subset of cysteines displayed high susceptibility to modification by CoA-SNO, including previously uncharacterized sites of S-nitrosation. We further validated and functionally characterized the functional effects of S-nitrosation on the protein targets phosphofructokinase (platelet type), ATP citrate synthase, and ornithine aminotransferase.


Assuntos
Coenzima A , Cisteína , S-Nitrosotióis , Nitrosação , Cisteína/química , Proteômica , Proteínas/metabolismo , S-Nitrosotióis/química , S-Nitrosotióis/metabolismo , Óxido Nítrico/metabolismo
2.
Biochem Biophys Res Commun ; 680: 171-176, 2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37741264

RESUMO

Both L- and D-isomers of S-nitrosocysteine (CSNO) can bind to the intracellular domain of voltage-gated potassium channels in vitro. CSNO binding inhibits these channels in the carotid body, leading to increased minute ventilation in vivo. However, only the l-isomer is active in vivo because it requires the l-amino acid transporter (LAT) for transmembrane transport. In rodents and dogs, the esterified D-CSNO precursor-d-cystine dimethyl ester (ATLX-0199)-overcomes opioid- and benzodiazepine-induced respiratory depression while maintaining analgesia. Although ATLX-0199 can enter cells independently of LAT because it is an ester, its stability in plasma is limited by the presence of esterases. Here, we hypothesized that the drug could be sequestered in erythrocytes to avoid de-esterification in circulation. We developed a liquid chromatography-mass spectrometry method for detecting ATLX-0199 and characterized a new metabolite, S-nitroso-d-cysteine monomethyl ester (DNOCE), which is also a D-CSNO precursor. We found that both ATLX-0199 and DNOCE readily enter erythrocytes and neurons and remain stable over 20 min; thus ATLX-0199 can enter cells where the ester is stable, but the thiol is reduced. Depending on hemoglobin conformation, the reduced ester can be S-nitrosylated and enter carotid body neurons, where it then increases minute ventilation. These data may help explain the paradox that ATLX-0199, a dimethyl ester, can avoid de-esterification in plasma and exert its effects at the level of the carotid body.


Assuntos
S-Nitrosotióis , Animais , Cães , S-Nitrosotióis/metabolismo , S-Nitrosotióis/farmacologia , Cisteína/metabolismo , Eritrócitos/metabolismo , Compostos de Sulfidrila , Ésteres
3.
Chem Commun (Camb) ; 59(64): 9774-9777, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486167

RESUMO

S-Nitrosothiols (SNOs) serve as endogenous carriers and donors of NO within living cells, releasing nitrosonium ions (NO+), NO, or other nitroso derivatives. In this study, we present a bioinspired {Co(NO)2}10 complex 1 that achieved S-nitrosation towards Cys residues. The incorporation of a ferrocenyl group in 1 allowed for fine-tuning of the nitrosation reaction, taking advantage of the redox ability of Cys residues. Complex 1 was synthesized and characterized, demonstrating its NO translation reactivity. Furthermore, complex 1 successfully converted Cys into S-nitrosocysteine (Cys-SNO), as confirmed by UV-Vis, IR, and XAS spectroscopy. This study presents a promising approach for S-nitrosation of Cys residues for further exploration in the modification of Cys-containing peptides.


Assuntos
Cisteína , S-Nitrosotióis , Nitrosação , Cisteína/química , S-Nitrosotióis/química , S-Nitrosotióis/metabolismo , Óxido Nítrico/química , Oxirredução
4.
Cell Death Dis ; 14(4): 284, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085483

RESUMO

S-nitrosylation is a post-translational modification in which nitric oxide (NO) binds to the thiol group of cysteine, generating an S-nitrosothiol (SNO) adduct. S-nitrosylation has different physiological roles, and its alteration has also been linked to a growing list of pathologies, including cancer. SNO can affect the function and stability of different proteins, such as the mitochondrial chaperone TRAP1. Interestingly, the SNO site (C501) of TRAP1 is in the proximity of another cysteine (C527). This feature suggests that the S-nitrosylated C501 could engage in a disulfide bridge with C527 in TRAP1, resembling the well-known ability of S-nitrosylated cysteines to resolve in disulfide bridge with vicinal cysteines. We used enhanced sampling simulations and in-vitro biochemical assays to address the structural mechanisms induced by TRAP1 S-nitrosylation. We showed that the SNO site induces conformational changes in the proximal cysteine and favors conformations suitable for disulfide bridge formation. We explored 4172 known S-nitrosylated proteins using high-throughput structural analyses. Furthermore, we used a coarse-grained model for 44 protein targets to account for protein flexibility. This resulted in the identification of up to 1248 proximal cysteines, which could sense the redox state of the SNO site, opening new perspectives on the biological effects of redox switches. In addition, we devised two bioinformatic workflows ( https://github.com/ELELAB/SNO_investigation_pipelines ) to identify proximal or vicinal cysteines for a SNO site with accompanying structural annotations. Finally, we analyzed mutations in tumor suppressors or oncogenes in connection with the conformational switch induced by S-nitrosylation. We classified the variants as neutral, stabilizing, or destabilizing for the propensity to be S-nitrosylated and undergo the population-shift mechanism. The methods applied here provide a comprehensive toolkit for future high-throughput studies of new protein candidates, variant classification, and a rich data source for the research community in the NO field.


Assuntos
Proteínas de Choque Térmico HSP90 , Óxido Nítrico , Proteínas Oncogênicas , S-Nitrosotióis , Cisteína/metabolismo , Óxido Nítrico/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Oxirredução , Processamento de Proteína Pós-Traducional , S-Nitrosotióis/metabolismo , Compostos de Sulfidrila/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo
5.
Free Radic Biol Med ; 194: 357-368, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513331

RESUMO

Following pathogen recognition, plant cells produce a nitrosative burst resulting in a striking increase in nitric oxide (NO), altering the redox state of the cell, which subsequently helps orchestrate a plethora of immune responses. NO is a potent redox cue, efficiently relayed between proteins through its co-valent attachment to highly specific, powerfully reactive protein cysteine (Cys) thiols, resulting in formation of protein S-nitrosothiols (SNOs). This process, known as S-nitrosylation, can modulate the function of target proteins, enabling responsiveness to cellular redox changes. Key targets of S-nitrosylation control the production of reactive oxygen species (ROS), the transcription of immune-response genes, the triggering of the hypersensitive response (HR) and the establishment of systemic acquired resistance (SAR). Here, we bring together recent advances in the control of plant immunity by S-nitrosylation, furthering our appreciation of how changes in cellular redox status reprogramme plant immune function.


Assuntos
Imunidade Vegetal , S-Nitrosotióis , Plantas/metabolismo , Óxido Nítrico/metabolismo , Compostos de Sulfidrila/metabolismo , Proteínas/metabolismo , Oxirredução , S-Nitrosotióis/metabolismo
6.
Front Endocrinol (Lausanne) ; 13: 1011383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313766

RESUMO

Diabetic cardiomyopathy (DCM) is a severe complication of diabetes mellitus that is characterized by aberrant myocardial structure and function and is the primary cause of heart failure and death in diabetic patients. Endothelial dysfunction plays an essential role in diabetes and is associated with an increased risk of cardiovascular events, but its role in DCM is unclear. Previously, we showed that S-nitroso-L-cysteine(CSNO), an endogenous S-nitrosothiol derived from eNOS, inhibited the activity of protein tyrosine phosphatase 1B (PTP1B), a critical negative modulator of insulin signaling. In this study, we reported that CSNO treatment induced cellular insulin-dependent and insulin-independent glucose uptake. In addition, CSNO activated insulin signaling pathway and promoted GLUT4 membrane translocation. CSNO protected cardiomyocytes against high glucose-induced injury by ameliorating excessive autophagy activation, mitochondrial impairment and oxidative stress. Furthermore, nebulized CSNO improved cardiac function and myocardial fibrosis in diabetic mice. These results suggested a potential site for endothelial modulation of insulin sensitivity and energy metabolism in the development of DCM. Data from these studies will not only help us understand the mechanisms of DCM, but also provide new therapeutic options for treatment.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , S-Nitrosotióis , Camundongos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , S-Nitrosotióis/efeitos adversos , S-Nitrosotióis/metabolismo , Insulina/efeitos adversos
7.
Pediatr Pulmonol ; 57(10): 2291-2297, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35785452

RESUMO

Though endogenous S-nitroso-l-cysteine (l-CSNO) signaling at the level of the carotid body increases minute ventilation (v̇E ), neither the background data nor the potential clinical relevance are well-understood by pulmonologists in general, or by pediatric pulmonologists in particular. Here, we first review how regulation of the synthesis, activation, transmembrane transport, target interaction, and degradation of l-CSNO can affect the ventilatory drive. In particular, we review l-CSNO formation by hemoglobin R to T conformational change and by nitric oxide (NO) synthases (NOS), and the downstream effects on v̇E through interaction with voltage-gated K+ (Kv) channel proteins and other targets in the peripheral and central nervous systems. We will review how these effects are independent of-and, in fact may be opposite to-those of NO. Next, we will review evidence that specific elements of this pathway may underlie disorders of respiratory control in childhood. Finally, we will review the potential clinical implications of this pathway in the development of respiratory stimulants, with a particular focus on potential pediatric applications.


Assuntos
Medicamentos para o Sistema Respiratório , S-Nitrosotióis , Criança , Cisteína/análogos & derivados , Cisteína/metabolismo , Hemoglobinas , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase , S-Nitrosotióis/metabolismo
8.
Nitric Oxide ; 122-123: 1-5, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35182743

RESUMO

S-nitrosylation of proteins is a nitric oxide (NO)-based post-translational modification of cysteine residues. By removing the NO moiety from S-nitrosothiol adducts, denitrosylases restore sulfhydryl protein pool and act as downstream tuners of S-nitrosylation signaling. Alterations in the S-nitrosylation/denitrosylation dynamics are implicated in many pathological states, including cancer ontogenesis and progression, skeletal muscle myogenesis and function. Here, we aim to provide and link different lines of evidence, and elaborate on the possible role of S-nitrosylation/denitrosylation signaling in rhabdomyosarcoma, one of the most common pediatric mesenchymal malignancy.


Assuntos
Rabdomiossarcoma , S-Nitrosotióis , Criança , Humanos , Desenvolvimento Muscular , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , S-Nitrosotióis/metabolismo
9.
Nitric Oxide ; 118: 26-30, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742907

RESUMO

The intracellular concentration of reduced glutathione (GSH) lies in the range of 1-10 mM, thereby indisputably making it the most abundant intracellular thiol. Such a copious amount of GSH makes it the most potent and robust cellular antioxidant that plays a crucial role in cellular defence against redox stress. The role of GSH as a denitrosylating agent is well established; in this study, we demonstrate GSH mediated denitrosylation of HepG2 cell-derived protein nitrosothiols (PSNOs), by a unique spin-trapping mechanism, using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as the spin trapping agent, followed by a western blot analysis. We also report our findings of two, hitherto unidentified substrates of GSH mediated S-denitrosylation, namely S-nitrosoglutaredoxin 1 (Grx1-SNO) and S-nitrosylated R1 subunit of ribonucleotide reductase (R1-SNO).


Assuntos
Glutarredoxinas/metabolismo , Glutationa/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , S-Nitrosotióis/metabolismo , Óxidos N-Cíclicos/química , Glutarredoxinas/química , Células Hep G2 , Humanos , Ribonucleosídeo Difosfato Redutase/química , S-Nitrosotióis/química , Marcadores de Spin , Detecção de Spin , Tiorredoxinas/química , Tiorredoxinas/metabolismo
10.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-34857676

RESUMO

S-nitrosothiols (SNOs) are small naturally occurring thiol and nitric oxide adducts that participate in many cell signaling pathways in living organisms. SNOs receive widespread attention in cell biology, biochemistry and chemistry because they can donate nitric oxide and/or nitrosonium ions in S-nitrosylation reactions, which are comparable to phosphorylation, acetylation, glutathionylation, and palmitoylation reactions. SNOs have advantageous effects in respiratory diseases and other systems in the body. S-nitrosylation signaling is a metabolically regulated physiological process that leads to specific post-translational protein modifications. S-nitrosylation signaling is faulty in cystic fibrosis (CF) and many other lung diseases. CF is an inherited, lethal autosomal recessive multisystem disease resulting from mutations in the gene encoding the CF transmembrane conductance regulatory (CFTR) protein. F508del CFTR is the most common mutation associated with CF, which results in CFTR misfolding because a phenylalanine is deleted from the primary structure of CFTR. The majority of wild-type CFTR and almost all F508del is degraded before reaching the cell surface. Ultimately, CF researchers have been looking to correct the mutated CFTR protein in the CF patients. Remarkably, researchers have found that SNOs levels are low in the CF lower airway compared to non-CF patients. We have been interested in determining whether SNOs increase CFTR maturation through S-nitrosylation. Maturation of both wild type and mutant F508del CFTR increases SNOs, which up-regulate CFTR maturation. In this review, we summarized our current knowledge of S-nitrosothiols signaling in cystic fibrosis airways.


Assuntos
Fibrose Cística , S-Nitrosotióis , Membrana Celular/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Mutação , S-Nitrosotióis/metabolismo , Transdução de Sinais
11.
J Cell Biochem ; 122(11): 1579-1593, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34472139

RESUMO

Nitric oxide is a well-known gasotransmitter molecule that covalently docks to sulfhydryl groups of proteins resulting in S-nitrosylation of proteins and nonprotein thiols that serve a variety of cellular processes including cGMP signaling, vasodilatation, neurotransmission, ion-channel modulation, and cardiac signaling. S-nitrosylation is an indispensable modification like phosphorylation that directly regulates the functionality of numerous proteins. However, recently there has been a controversy over the stability of S-nitrosylated proteins (PSNOs) within the cell. It has been argued that PSNOs formed within the cell is a transient intermediate step to more stable disulfide formation and disulfides are the predominant end effector modifications in NO-mediated signaling. The present article accumulates state-of-the-art evidence from numerous research that strongly supports the very existence of PSNOs within the cell and attempts to put an end to the controversy. This review illustrates critical points including comparative bond dissociation energies of S-NO bond, the half-life of S-nitrosothiols and PSNOs, cellular concentrations of PSNOs, X ray crystallographic studies on PSNOs, and stability of PSNOs at physiological concentration of antioxidants. These logical evidence cumulatively support the endogenous stability and inevitable existence of PSNOs/RSNOs within the cell that directly regulate the functionality of proteins and provide valuable insight into understanding stable S-nitrosylation mediated cell signaling.


Assuntos
Proteínas/química , Proteínas/metabolismo , S-Nitrosotióis/metabolismo , Animais , Dissulfetos/química , Dissulfetos/metabolismo , Glutationa/metabolismo , Humanos , Óxido Nítrico/metabolismo , Estabilidade Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , S-Nitrosotióis/química , Transdução de Sinais
12.
J Neurovirol ; 27(3): 367-378, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33876414

RESUMO

In the brain, both HIV-1 and methamphetamine (meth) use result in increases in oxidative and nitrosative stress. This redox stress is thought to contribute to the pathogenesis of HIV-associated neurocognitive disorder (HAND) and further worsening cognitive activity in the setting of drug abuse. One consequence of such redox stress is aberrant protein S-nitrosylation, derived from nitric oxide, which may disrupt normal protein activity. Here, we report an improved, mass spectrometry-based technique to assess S-nitrosylated protein in human postmortem brains using selective enrichment of S-nitrosocysteine residues with an organomercury resin. The data show increasing S-nitrosylation of tricarboxylic acid (TCA) enzymes in the setting of HAND and HAND/meth use compared with HIV+ control brains without CNS pathology. The consequence is systematic inhibition of multiple TCA cycle enzymes, resulting in energy collapse that can contribute to the neuronal and synaptic damage observed in HAND and meth use.


Assuntos
Ciclo do Ácido Cítrico/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Infecções por HIV/metabolismo , Metanfetamina/efeitos adversos , Processamento de Proteína Pós-Traducional , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Autopsia , Bancos de Espécimes Biológicos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Ciclo do Ácido Cítrico/genética , Disfunção Cognitiva/complicações , Disfunção Cognitiva/patologia , Disfunção Cognitiva/virologia , Cisteína/análogos & derivados , Cisteína/metabolismo , Infecções por HIV/complicações , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , HIV-1/patogenicidade , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Óxido Nítrico/metabolismo , S-Nitrosotióis/metabolismo , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/patologia , Transtornos Relacionados ao Uso de Substâncias/virologia , Sinapses/efeitos dos fármacos , Sinapses/patologia
13.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33692125

RESUMO

Rare genetic mutations result in aggregation and spreading of cognate proteins in neurodegenerative disorders; however, in the absence of mutation (i.e., in the vast majority of "sporadic" cases), mechanisms for protein misfolding/aggregation remain largely unknown. Here, we show environmentally induced nitrosative stress triggers protein aggregation and cell-to-cell spread. In patient brains with amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD), aggregation of the RNA-binding protein TDP-43 constitutes a major component of aberrant cytoplasmic inclusions. We identify a pathological signaling cascade whereby reactive nitrogen species cause S-nitrosylation of TDP-43 (forming SNO-TDP-43) to facilitate disulfide linkage and consequent TDP-43 aggregation. Similar pathological SNO-TDP-43 levels occur in postmortem human FTD/ALS brains and in cell-based models, including human-induced pluripotent stem cell (hiPSC)-derived neurons. Aggregated TDP-43 triggers additional nitrosative stress, representing positive feed forward leading to further SNO-TDP-43 formation and disulfide-linked oligomerization/aggregation. Critically, we show that these redox reactions facilitate cell spreading in vivo and interfere with the TDP-43 RNA-binding activity, affecting SNMT1 and phospho-(p)CREB levels, thus contributing to neuronal damage in ALS/FTD disorders.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , S-Nitrosotióis/metabolismo , Esclerose Lateral Amiotrófica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Cisteína/metabolismo , Proteínas de Ligação a DNA/química , Demência Frontotemporal/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Óxido Nítrico/metabolismo , Agregação Patológica de Proteínas , Processamento Pós-Transcricional do RNA , Espécies Reativas de Nitrogênio/metabolismo , S-Nitrosotióis/química , Estresse Fisiológico
14.
J Neuroinflammation ; 18(1): 14, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407649

RESUMO

BACKGROUND: P2X7 receptor (P2X7R) is an ATP-gated nonselective cationic channel playing important roles in a variety of physiological functions, including inflammation, and apoptotic or necrotic cell death. An extracellular domain has ten cysteine residues forming five intrasubunit disulfide bonds, which are needed for the P2X7R trafficking to the cell surface and the recognition of surface epitopes of apoptotic cells and bacteria. However, the underlying mechanisms of redox/S-nitrosylation of cysteine residues on P2X7R and its role in P2X7R-mediated post-status epilepticus (SE, a prolonged seizure activity) events remain to be answered. METHODS: Rats were given pilocarpine (380 mg/kg i.p.) to induce SE. Animals were intracerebroventricularly infused Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, a NOS inhibitor) 3 days before SE, or protein disulfide isomerase (PDI) siRNA 1 day after SE using an osmotic pump. Thereafter, we performed Western blot, co-immunoprecipitation, membrane fraction, measurement of S-nitrosylated (SNO)-thiol and total thiol, Fluoro-Jade B staining, immunohistochemistry, and TUNEL staining. RESULTS: SE increased S-nitrosylation ratio of P2X7R and the PDI-P2X7R bindings, which were abolished by L-NAME and PDI knockdown. In addition, both L-NAME and PDI siRNA attenuated SE-induced microglial activation and astroglial apoptosis. L-NAME and PDI siRNA also ameliorated the increased P2X7R surface expression induced by SE. CONCLUSIONS: These findings suggest that PDI-mediated redox/S-nitrosylation may facilitate the trafficking of P2X7R, which promotes microglial activation and astroglial apoptosis following SE. Therefore, our findings suggest that PDI-mediated regulations of dynamic redox status and S-nitrosylation of P2X7R may be a critical mechanism in the neuroinflammation and astroglial death following SE.


Assuntos
Isomerases de Dissulfetos de Proteínas/metabolismo , Receptores Purinérgicos P2X7/biossíntese , S-Nitrosotióis/metabolismo , Estado Epiléptico/metabolismo , Animais , Inibidores Enzimáticos/administração & dosagem , Expressão Gênica , Infusões Intraventriculares , Masculino , NG-Nitroarginina Metil Éster/administração & dosagem , Pilocarpina/toxicidade , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/genética , S-Nitrosotióis/antagonistas & inibidores , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética
15.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430208

RESUMO

Cardiac diseases including heart failure (HF), are the leading cause of morbidity and mortality globally. Among the prominent characteristics of HF is the loss of ß-adrenoceptor (AR)-mediated inotropic reserve. This is primarily due to the derangements in myocardial regulatory signaling proteins, G protein-coupled receptor (GPCR) kinases (GRKs) and ß-arrestins (ß-Arr) that modulate ß-AR signal termination via receptor desensitization and downregulation. GRK2 and ß-Arr2 activities are elevated in the heart after injury/stress and participate in HF through receptor inactivation. These GPCR regulators are modulated profoundly by nitric oxide (NO) produced by NO synthase (NOS) enzymes through S-nitrosylation due to receptor-coupled NO generation. S-nitrosylation, which is NO-mediated modification of protein cysteine residues to generate an S-nitrosothiol (SNO), mediates many effects of NO independently from its canonical guanylyl cyclase/cGMP/protein kinase G signaling. Herein, we review the knowledge on the NO system in the heart and S-nitrosylation-dependent modifications of myocardial GPCR signaling components GRKs and ß-Arrs.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/genética , Óxido Nítrico/genética , Receptores Adrenérgicos beta/genética , beta-Arrestinas/genética , GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Humanos , Óxido Nítrico Sintase/genética , S-Nitrosotióis/metabolismo , Transdução de Sinais/genética
16.
Int J Biochem Cell Biol ; 131: 105904, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359085

RESUMO

Nitric Oxide is a very well known gaseous second messenger molecule and vasorelaxant agent involved in a variety of signaling in the body such as neurotransmission, ion channel modulation, and inflammation modulation. However, it's reversible covalent attachment to thiol groups of cysteine residues under nitrosative stress leading to aberrant protein S-nitrosylation (PSNO) has been reported in several pathological conditions in the body stemming from neurodegenerative diseases, cancer, cardiovascular system, and immune system disorders. In the cell, PSNOs are partly unstable and transit to a more stable disulfide state serving as an intermediate step towards disulfide formation thus eliciting the biological response. Scientists have identified several cellular thiol-dependent disulfide reductases that have the intrinsic capability to reverse the modification by reducing the stable disulfides formed in PSNOs and thereby rescue S-nitrosylation-induced altered proteins. The physiological roles of these major cellular ubiquitous S-denitrosylases and their probable implementations have not been fully explored. Gaining knowledge from current research and development this review provides a deeper insight into understanding the interplay and role of the major ubiquitous S-denitrosylases in maintaining cellular redox homeostasis. This review umbrellas the mechanism of Thioredoxin, TRP14, and Glutaredoxin systems and highlights their substrates specificities at different cellular conditions, physiological roles, and importance in diseased conditions that would allow researchers to investigate effective therapeutic interventions for nitrosative stress-related diseases and disorders.


Assuntos
Doenças Cardiovasculares/enzimologia , Glutarredoxinas/metabolismo , Doenças do Sistema Imunitário/enzimologia , Neoplasias/enzimologia , Doenças Neurodegenerativas/enzimologia , Tiorredoxinas/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Cisteína/metabolismo , Regulação da Expressão Gênica , Glutarredoxinas/genética , Humanos , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/patologia , Neoplasias/genética , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Óxido Nítrico/metabolismo , Nitrosação , Estresse Nitrosativo/genética , Oxirredução , S-Nitrosotióis/metabolismo , Transdução de Sinais , Especificidade por Substrato , Tiorredoxinas/genética
17.
Biochim Biophys Acta Gen Subj ; 1865(1): 129768, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148501

RESUMO

BACKGROUND: Extensive research is being carried out globally to design and develop new selenium compounds for various biological applications such as antioxidants, radio-protectors, anti-carcinogenic agents, biocides, etc. In this pursuit, 3,3'-diselenodipropionic acid (DSePA), a synthetic organoselenium compound, has received considerable attention for its biological activities. SCOPE OF REVIEW: This review intends to give a comprehensive account of research on DSePA so as to facilitate further research activities on this organoselenium compound and to realize its full potential in different areas of biological and pharmacological sciences. MAJOR CONCLUSIONS: It is an interesting diselenide structurally related to selenocystine. It shows moderate glutathione peroxidase (GPx)-like activity and is an excellent scavenger of reactive oxygen species (ROS). Exposure to radiation, as envisaged during radiation therapy, has been associated with normal tissue side effects and also with the decrease in selenium levels in the body. In vitro and in vivo evaluation of DSePA has confirmed its ability to reduce radiation induced side effects into normal tissues. Administration of DSePA through intraperitoneal (IP) or oral route to mice in a dose range of 2 to 2.5 mg/kg body weight has shown survival advantage against whole body irradiation and a significant protection to lung tissue against thoracic irradiation. Pharmacokinetic profiling of DSePA suggests its maximum absorption in the lung. GENERAL SIGNIFICANCE: Research work on DSePA reported in fifteen years or so indicates that it is a promising multifunctional organoselenium compound exhibiting many important activities of biological relevance apart from radioprotection.


Assuntos
Antioxidantes/farmacologia , Propionatos/farmacologia , Protetores contra Radiação/farmacologia , Compostos de Selênio/farmacologia , Animais , Antioxidantes/síntese química , Antioxidantes/farmacocinética , Antioxidantes/toxicidade , Humanos , Oxirredução/efeitos dos fármacos , Propionatos/síntese química , Propionatos/farmacocinética , Propionatos/toxicidade , Protetores contra Radiação/síntese química , Protetores contra Radiação/farmacocinética , Protetores contra Radiação/toxicidade , Espécies Reativas de Oxigênio/metabolismo , S-Nitrosotióis/metabolismo , Compostos de Selênio/síntese química , Compostos de Selênio/farmacocinética , Compostos de Selênio/toxicidade
18.
Sci Rep ; 10(1): 21088, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273578

RESUMO

NADPH diaphorase is used as a histochemical marker of nitric oxide synthase (NOS) in aldehyde-treated tissues. It is thought that the catalytic activity of NOS promotes NADPH-dependent reduction of nitro-blue tetrazolium (NBT) to diformazan. However, it has been argued that a proteinaceous factor other than NOS is responsible for producing diformazan in aldehyde-treated tissues. We propose this is a NO-containing factor such as an S-nitrosothiol and/or a dinitrosyl-iron (II) cysteine complex or nitrosated proteins including NOS. We now report that (1) S-nitrosothiols covalently modify both NBT and TNBT, but only change the reduction potential of NBT after modification, (2) addition of S-nitrosothiols or ß- or α-NADPH to solutions of NBT did not elicit diformazan, (3) addition of S-nitrosothiols to solutions of NBT plus ß- or α-NADPH elicited rapid formation of diformazan in the absence or presence of paraformaldehyde, (4) addition of S-nitrosothiols to solutions of NBT plus ß- or α-NADP did not produce diformazan, (5) S-nitrosothiols did not promote NADPH-dependent reduction of tetra-nitro-blue tetrazolium (TNBT) in which all four phenolic rings are nitrated, (6) cytoplasmic vesicles in vascular endothelial cells known to stain for NADPH diaphorase were rich in S-nitrosothiols, and (7) procedures that accelerate decomposition of S-nitrosothiols, markedly reduced NADPH diaphorase staining in tissue sections subsequently subjected to paraformaldehyde fixation. Our results suggest that NADPH diaphorase in aldehyde-fixed tissues is not enzymatic but is due to the presence of NO-containing factors (free SNOs or nitrosated proteins such as NOS), which promote NADPH-dependent reduction of NBT to diformazan.


Assuntos
NADPH Desidrogenase/metabolismo , Óxido Nítrico Sintase/metabolismo , S-Nitrosotióis/metabolismo , Animais , Compostos Azo/metabolismo , Tronco Encefálico/química , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Cerebelo/química , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Formaldeído/farmacologia , Masculino , Nitroazul de Tetrazólio/metabolismo , Oxirredução , Polímeros/farmacologia , Ratos , Ratos Sprague-Dawley , Coloração e Rotulagem/métodos , Coloração e Rotulagem/normas
19.
Neurochem Res ; 45(12): 2815-2827, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32984933

RESUMO

S-nitrosylation (SNO) is a covalent post-translational oxidative modification. The reaction is the nitroso group (-NO) to a reactive cysteine thiol within a protein to form the SNO. In recent years, a variety of proteins in human body have been found to undergo thiol nitrosylation under specific conditions. Protein SNO, which is closely related to cardiovascular disease, Parkinson's syndrome, Alzheimer's disease and tumors, plays an important role in regulatory mechanism of protein function in both physiological and pathological pathways, such as in cellular homeostasis and metabolism. This review discusses possible molecular mechanisms protein SNO modification, such as the role of NO in vivo and the formation mechanism of SNO, with particular emphasis on mechanisms utilized by SNO to cause certain diseases of human. Importantly, the effect of SNO on diseases is multifaceted and multi-channel, and its critical value in vivo is not well defined. Intracellular redox environment is also a key factor affecting its level. Therefore, we should pay more attention to the equilibrium relationship between SNO and denitrosylation pathway in the future researches. These findings provide theoretical support for the improvement or treatment of diseases from the point of view of SNO.


Assuntos
Encefalopatias/etiologia , Doenças Cardiovasculares/etiologia , Neoplasias/etiologia , Proteínas/metabolismo , S-Nitrosotióis/metabolismo , Animais , Cisteína/química , Humanos , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas/química
20.
Int J Mol Med ; 46(4): 1359-1366, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32945437

RESUMO

Balneotherapy and spa therapy have been used in the treatment of ailments since time immemorial. Moreover, there is evidence to suggest that the beneficial effects of thermal water continue for months following the completion of treatment. The mechanisms through which thermal water exerts its healing effects remain unknown. Both balneological and hydroponic therapy at 'the oldest spa in the world', namely, the Nitrodi spring on the Island of Ischia (Southern Italy) are effective in a number of diseases and conditions. The aim of the present study was to investigate the molecular basis underlying the therapeutic effects of Nitrodi spring water in low­grade inflammation and stress­related conditions. For this purpose, an in vitro model was devised in which RKO colorectal adenocarcinoma cells were treated with phosphate­buffered saline or phosphate­buffered saline prepared with Nitrodi water for 4 h daily, 5 days a week for 6 weeks. The RKO cells were then subjected to the following assays: 3­(4,5­Dimethylthiazol­2­yl)­2,5­diphenyl­2H­tetrazolium bromide assay, Transwell migration assay, western blot analysis, the fluorimetric detection of protein S­nitrosothiols and S­nitrosylation western blot analysis. The results revealed that Nitrodi spring water promoted cell migration and cell viability, and downregulated protein S­nitrosylation, probably also the nitrosylated active form of the cyclooxygenase (COX)­2 protein. These results concur with all the previously reported therapeutic properties of Nitrodi spring water, and thus reinforce the concept that this natural resource is an important complementary therapy to traditional medicine.


Assuntos
Adenocarcinoma/terapia , Neoplasias Colorretais/terapia , Regulação para Baixo/fisiologia , Proteínas/metabolismo , S-Nitrosotióis/metabolismo , Água/fisiologia , Balneologia/métodos , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Temperatura Alta , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA