Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Virol J ; 21(1): 129, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840267

RESUMO

BACKGROUND: Global human activities were significantly impacted by the emergence of the coronavirus disease 2019 (COVID-19) pandemic caused by the 2019 novel coronavirus. This study aimed to investigate the prevalence and genotype distribution of HPV infection in Central Fujian Province during the pandemic. METHODS: Cervical samples were collected from 21,612 outpatients and 12,664 females who underwent physical examinations and HPV screening at the People's Hospital of Fujian Province in Fuzhou from April 2020 to April 2023. HPV detection and genotyping were conducted using PCR hybridization. RESULTS: The overall HPV infection rate was 16.1% during the COVID-19 pandemic, with the outpatient group exhibiting a greater infection rate (19.0%) than did the healthy group (12.3%). The top five high-risk HPV (HR-HPV) genotypes in both groups were HPV52, HPV53, HPV58, HPV16, and HPV51. Additionally, HPV81 and HPV43 were the two most common low-risk HPV (LR-HPV) genotypes in the patient group, while HPV81 and HPV42 were the two most common LR-HPV genotypes in the healthy group. The highest prevalence of HPV infection was observed in individuals aged ≤ 24 years (28.4%, 95% CI 25.9-30.9), followed by those aged ≥ 55 years (23.6%, 95% CI 21.6-24.7) and other age groups. The prevalence decreased from 23.0% (95% CI 22.4-23.7) in 2018-2019 to 13.8% (95% CI 12.0-15.5) in 2023. CONCLUSION: This study provides valuable insights into the prevalence and genotypes of HPV infection in the female population of Central Fujian Province from 2020 to 2023. The findings indicate that the prevalence of HPV infection in Central Fujian Province remains relatively low compared to the national average. Furthermore, the prevalence of HPV decreased during the COVID-19 pandemic; however, as the pandemic waned, there was potential for an increase in HPV infection rates. Therefore, it is crucial to strengthen HPV screening and vaccination strategies to prevent the potential spread of HPV.


Assuntos
COVID-19 , Genótipo , Papillomaviridae , Infecções por Papillomavirus , Humanos , Feminino , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/virologia , China/epidemiologia , Adulto , Prevalência , COVID-19/epidemiologia , COVID-19/virologia , Pessoa de Meia-Idade , Adulto Jovem , Papillomaviridae/genética , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/classificação , Adolescente , Idoso , Colo do Útero/virologia , Papillomavirus Humano
2.
Viruses ; 16(5)2024 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-38793579

RESUMO

Acute respiratory infections are a major global burden in resource-limited countries, including countries in Africa. Although COVID-19 has been well studied since the pandemic emerged in Gabon, Central Africa, less attention has been paid to other respiratory viral diseases, and very little data are available. Herein, we provide the first data on the genetic diversity and detection of 18 major respiratory viruses in Gabon during the COVID-19 pandemic. Of 582 nasopharyngeal swab specimens collected from March 2020 to July 2021, which were SARS-CoV-2 negative, 156 were positive (26%) for the following viruses: enterovirus (20.3%), human rhinovirus (HRV) (4.6%), human coronavirus OC43 (1.2%), human adenovirus (0.9%), human metapneumovirus (hMPV) (0.5%), influenza A virus (IAV) (0.3%), and human parainfluenza viruses (0.5%). To determine the genetic diversity and transmission route of the viruses, phylogenetic analyses were performed using genome sequences of the detected viruses. The IAV strain detected in this study was genetically similar to strains isolated in the USA, whereas the hMPV strain belonging to the A2b subtype formed a cluster with Kenyan strains. This study provides the first complete genomic sequences of HRV, IAV, and hMPV detected in Gabon, and provides insight into the circulation of respiratory viruses in the country.


Assuntos
COVID-19 , Variação Genética , Filogenia , Infecções Respiratórias , Humanos , Gabão/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Masculino , Adulto , Feminino , Criança , Pessoa de Meia-Idade , Adolescente , Pré-Escolar , Adulto Jovem , Rhinovirus/genética , Rhinovirus/isolamento & purificação , Rhinovirus/classificação , Vírus/genética , Vírus/classificação , Vírus/isolamento & purificação , Metapneumovirus/genética , Metapneumovirus/isolamento & purificação , Metapneumovirus/classificação , Genoma Viral , Nasofaringe/virologia , Lactente , Idoso , Pandemias , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/classificação
3.
J Virol ; 98(4): e0156523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38445884

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.


Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , Interações entre Hospedeiro e Microrganismos , SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Adenosina Trifosfatases/metabolismo , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , COVID-19/virologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/deficiência , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Helicases/metabolismo , Concentração Inibidora 50 , RNA Helicases/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , SARS-CoV-2/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Feminino , Animais , Camundongos
4.
Cell ; 187(3): 596-608.e17, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194966

RESUMO

BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Caspases/metabolismo , COVID-19/imunologia , COVID-19/virologia , Pulmão/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/genética
5.
Front Cell Infect Microbiol ; 13: 1165756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342247

RESUMO

Introduction: Increasing evidence has shown that coronavirus disease 19 (COVID-19) severity is driven by a dysregulated immunological response. Previous studies have demonstrated that natural killer (NK) cell dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of NK cell markers as a driver of death in the most critically ill patients. Methods: We enrolled 50 non-vaccinated hospitalized patients infected with the initial virus or the alpha variant of SARS-CoV-2 with moderate or severe illness, to evaluate phenotypic and functional features of NK cells. Results: Here, we show that, consistent with previous studies, evolution NK cells from COVID-19 patients are more activated, with the decreased activation of natural cytotoxicity receptors and impaired cytotoxicity and IFN-γ production, in association with disease regardless of the SARS-CoV-2 strain. Fatality was observed in 6 of 17 patients with severe disease; NK cells from all of these patients displayed a peculiar phenotype of an activated memory-like phenotype associated with massive TNF-α production. Discussion: These data suggest that fatal COVID-19 infection is driven by an uncoordinated inflammatory response in part mediated by a specific subset of activated NK cells.


Assuntos
COVID-19 , Células Matadoras Naturais , SARS-CoV-2 , COVID-19/imunologia , COVID-19/patologia , COVID-19/fisiopatologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Gravidade do Paciente , Evolução Fatal , Vacinas contra COVID-19 , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Receptores de Células Matadoras Naturais/metabolismo , Fator de Necrose Tumoral alfa , Ativação Linfocitária
6.
Nucleic Acids Res ; 50(3): 1551-1561, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35048970

RESUMO

During the course of the COVID-19 pandemic, large-scale genome sequencing of SARS-CoV-2 has been useful in tracking its spread and in identifying variants of concern (VOC). Viral and host factors could contribute to variability within a host that can be captured in next-generation sequencing reads as intra-host single nucleotide variations (iSNVs). Analysing 1347 samples collected till June 2020, we recorded 16 410 iSNV sites throughout the SARS-CoV-2 genome. We found ∼42% of the iSNV sites to be reported as SNVs by 30 September 2020 in consensus sequences submitted to GISAID, which increased to ∼80% by 30th June 2021. Following this, analysis of another set of 1774 samples sequenced in India between November 2020 and May 2021 revealed that majority of the Delta (B.1.617.2) and Kappa (B.1.617.1) lineage-defining variations appeared as iSNVs before getting fixed in the population. Besides, mutations in RdRp as well as RNA-editing by APOBEC and ADAR deaminases seem to contribute to the differential prevalence of iSNVs in hosts. We also observe hyper-variability at functionally critical residues in Spike protein that could alter the antigenicity and may contribute to immune escape. Thus, tracking and functional annotation of iSNVs in ongoing genome surveillance programs could be important for early identification of potential variants of concern and actionable interventions.


Assuntos
Evolução Molecular , Variação Genética/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , SARS-CoV-2/genética , Desaminase APOBEC-1/genética , Adenosina Desaminase/genética , Animais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Bases de Dados Genéticas , Evasão da Resposta Imune/genética , Índia/epidemiologia , Filogenia , Proteínas de Ligação a RNA/genética , SARS-CoV-2/classificação , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
7.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35058348

RESUMO

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants pose a challenge to controlling the COVID-19 pandemic. Previous studies indicate that clinical samples collected from individuals infected with the Delta variant may contain higher levels of RNA than previous variants, but the relationship between levels of viral RNA and infectious virus for individual variants is unknown. We measured infectious viral titer (using a microfocus-forming assay) and total and subgenomic viral RNA levels (using RT-PCR) in a set of 162 clinical samples containing SARS-CoV-2 Alpha, Delta, and Epsilon variants that were collected in identical swab kits from outpatient test sites and processed soon after collection. We observed a high degree of variation in the relationship between viral titers and RNA levels. Despite this, the overall infectivity differed among the three variants. Both Delta and Epsilon had significantly higher infectivity than Alpha, as measured by the number of infectious units per quantity of viral E gene RNA (5.9- and 3.0-fold increase; P < 0.0001, P = 0.014, respectively) or subgenomic E RNA (14.3- and 6.9-fold increase; P < 0.0001, P = 0.004, respectively). In addition to higher viral RNA levels reported for the Delta variant, the infectivity (amount of replication competent virus per viral genome copy) may be increased compared to Alpha. Measuring the relationship between live virus and viral RNA is an important step in assessing the infectivity of novel SARS-CoV-2 variants. An increase in the infectivity for Delta may further explain increased spread, suggesting a need for increased measures to prevent viral transmission.


Assuntos
COVID-19/epidemiologia , Regulação Viral da Expressão Gênica , Genoma Viral , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Animais , COVID-19/patologia , COVID-19/transmissão , COVID-19/virologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus/genética , Proteínas do Envelope de Coronavírus/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , RNA Viral/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/metabolismo , Células Vero , Carga Viral , Virulência
8.
Infect Genet Evol ; 97: 105128, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752930

RESUMO

The scientific community has been releasing whole genomic sequences of SARS-CoV-2 to facilitate the investigation of molecular features and evolutionary history. We retrieved 36 genomes of 18 prevalent countries of Asia, Europe and America for genomic diversity and mutational analysis. Besides, we studied mutations in the RBD regions of Spike (S) proteins to analyze the drug efficiency against these mutations. In this research, phylogenenetic analysis, evolutionary modeling, substitution pattern analysis, molecular docking, dynamics simulation, etc. were performed. The genomic sequences showed >99% similarity with the reference sequence of China.TN93 + G was predicted as a best nucleotide substitution model. It was revealed that effective transition from the co-existing SARS genome to the SARS-CoV-2 and a noticeable positive selection in the SARS-CoV-2 genomes occurred. Moreover, three mutations in RBD domain, Val/ Phe367, Val/ Leu 382 and Ala/ Val522, were discovered in the genomes from Netherland, Bangladesh and the USA, respectively. Molecular docking and dynamics study showed RBD with mutation Val/Leu382 had the lowest binding affinity with remdesivir. In conclusion, the SARS-CoV-2 genomes are similar, but multiple degrees of transitions and transversions occurred. The mutations cause a significant conformational change, which are needed to be investigated during drug and vaccine development.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/química , COVID-19/epidemiologia , Genoma Viral , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Substituição de Aminoácidos , Antivirais/farmacologia , Bangladesh/epidemiologia , Sítios de Ligação , COVID-19/virologia , China/epidemiologia , Evolução Molecular , Expressão Gênica , Humanos , Funções Verossimilhança , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Países Baixos/epidemiologia , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/classificação , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Estados Unidos/epidemiologia , Tratamento Farmacológico da COVID-19
9.
Infect Genet Evol ; 97: 105154, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808395

RESUMO

The pandemic of COVID-19 has been haunting us for almost the past two years. Although, the vaccination drive is in full swing throughout the world, different mutations of the SARS-CoV-2 virus are making it very difficult to put an end to the pandemic. The second wave in India, one of the worst sufferers of this pandemic, can be mainly attributed to the Delta variant i.e. B.1.617.2. Thus, it is very important to analyse and understand the mutational trajectory of SARS-CoV-2 through the study of the 26 virus proteins. In this regard, more than 17,000 protein sequences of Indian SARS-CoV-2 genomes are analysed using entropy-based approach in order to find the monthly mutational trajectory. Furthermore, Hellinger distance is also used to show the difference of the mutation events between the consecutive months for each of the 26 SARS-CoV-2 protein. The results show that the mutation rates and the mutation events of the viral proteins though changing in the initial months, start stabilizing later on for mainly the four structural proteins while the non-structural proteins mostly exhibit a more constant trend. As a consequence, it can be inferred that the evolution of the new mutative configurations will eventually reduce.


Assuntos
COVID-19/epidemiologia , Genoma Viral , Taxa de Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/genética , COVID-19/virologia , Entropia , Monitoramento Epidemiológico , Evolução Molecular , Expressão Gênica , Humanos , Índia/epidemiologia , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas não Estruturais Virais/classificação , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/classificação , Proteínas Estruturais Virais/metabolismo
10.
Infect Genet Evol ; 97: 105153, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801754

RESUMO

Amid the ongoing COVID-19 pandemic, it has become increasingly important to monitor the mutations that arise in the SARS-CoV-2 virus, to prepare public health strategies and guide the further development of vaccines and therapeutics. The spike (S) protein and the proteins comprising the RNA-Dependent RNA Polymerase (RdRP) are key vaccine and drug targets, respectively, making mutation surveillance of these proteins of great importance. Full protein sequences were downloaded from the GISAID database, aligned, and the variants identified. 437,006 unique viral genomes were analyzed. Polymorphisms in the protein sequence were investigated and examined longitudinally to identify sequence and strain variants appearing between January 5th, 2020 and January 16th, 2021. A structural analysis was also performed to investigate mutations in the receptor binding domain and the N-terminal domain of the spike protein. Within the spike protein, there were 766 unique mutations observed in the N-terminal domain and 360 in the receptor binding domain. Four residues that directly contact ACE2 were mutated in more than 100 sequences, including positions K417, Y453, S494, and N501. Within the furin cleavage site of the spike protein, a high degree of conservation was observed, but the P681H mutation was observed in 10.47% of sequences analyzed. Within the RNA dependent RNA polymerase complex proteins, 327 unique mutations were observed in Nsp8, 166 unique mutations were observed in Nsp7, and 1157 unique mutations were observed in Nsp12. Only 4 sequences analyzed contained mutations in the 9 residues that directly interact with the therapeutic Remdesivir, suggesting limited mutations in drug interacting residues. The identification of new variants emphasizes the need for further study on the effects of the mutations and the implications of increased prevalence, particularly for vaccine or therapeutic efficacy.


Assuntos
COVID-19/epidemiologia , RNA-Polimerase RNA-Dependente de Coronavírus/química , Genoma Viral , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Proteínas não Estruturais Virais/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , África/epidemiologia , Alanina/análogos & derivados , Alanina/química , Alanina/farmacologia , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Antivirais/farmacologia , Ásia/epidemiologia , Sítios de Ligação , COVID-19/virologia , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Bases de Dados Factuais , Monitoramento Epidemiológico , Europa (Continente)/epidemiologia , Evolução Molecular , Furina/genética , Furina/metabolismo , Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/classificação , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Estados Unidos/epidemiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Tratamento Farmacológico da COVID-19
11.
Infect Genet Evol ; 97: 105192, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933126

RESUMO

The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is the etiopathogenic agent of COVID-19, a condition that has led to a formally recognized pandemic by March 2020 (World Health Organization -WHO). The SARS-CoV-2 genome is constituted of 29,903 base pairs, that code for four structural proteins (N, M, S, and E) and more than 20 non-structural proteins. Mutations in any of these regions, especially in those that encode for the structural proteins, have allowed the identification of diverse lineages around the world, some of them named as Variants of Concern (VOC) and Variants of Interest (VOI), according to the WHO and CDC. In this study, by using Next Generation Sequencing (NGS) technology, we sequenced the SARS-CoV-2 genome of 422 samples from Colombian residents, all of them collected between April 2020 and January 2021. We obtained genetic information from 386 samples, leading us to the identification of 14 new lineages circulating in Colombia, 13 of which were identified for the first time in South America. GH was the predominant GISAID clade in our sample. Most mutations were either missense (53.6%) or synonymous mutations (37.4%), and most genetic changes were located in the ORF1ab gene (63.9%), followed by the S gene (12.9%). In the latter, we identified mutations E484K, L18F, and D614G. Recent evidence suggests that these mutations concede important particularities to the virus, compromising host immunity, the diagnostic test performance, and the effectiveness of some vaccines. Some important lineages containing these mutations are the Alpha, Beta, and Gamma (WHO Label). Further genomic surveillance is important for the understanding of emerging genomic variants and their correlation with disease severity.


Assuntos
COVID-19/epidemiologia , Genoma Viral , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Virais/genética , COVID-19/transmissão , COVID-19/virologia , Colômbia/epidemiologia , Monitoramento Epidemiológico , Evolução Molecular , Expressão Gênica , Humanos , Filogenia , Poliproteínas/genética , Poliproteínas/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Fatores de Tempo , Proteínas Virais/metabolismo , Sequenciamento Completo do Genoma
12.
Nature ; 602(7896): 307-313, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34937050

RESUMO

Emerging variants of concern (VOCs) are driving the COVID-19 pandemic1,2. Experimental assessments of replication and transmission of major VOCs and progenitors are needed to understand the mechanisms of replication and transmission of VOCs3. Here we show that the spike protein (S) from Alpha (also known as B.1.1.7) and Beta (B.1.351) VOCs had a greater affinity towards the human angiotensin-converting enzyme 2 (ACE2) receptor than that of the progenitor variant S(D614G) in vitro. Progenitor variant virus expressing S(D614G) (wt-S614G) and the Alpha variant showed similar replication kinetics in human nasal airway epithelial cultures, whereas the Beta variant was outcompeted by both. In vivo, competition experiments showed a clear fitness advantage of Alpha over wt-S614G in ferrets and two mouse models-the substitutions in S were major drivers of the fitness advantage. In hamsters, which support high viral replication levels, Alpha and wt-S614G showed similar fitness. By contrast, Beta was outcompeted by Alpha and wt-S614G in hamsters and in mice expressing human ACE2. Our study highlights the importance of using multiple models to characterize fitness of VOCs and demonstrates that Alpha is adapted for replication in the upper respiratory tract and shows enhanced transmission in vivo in restrictive models, whereas Beta does not overcome Alpha or wt-S614G in naive animals.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Replicação Viral , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Animais de Laboratório/virologia , COVID-19/veterinária , Cricetinae , Modelos Animais de Doenças , Células Epiteliais/virologia , Feminino , Furões/virologia , Humanos , Masculino , Mesocricetus/virologia , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Virulência/genética
13.
Braz. J. Pharm. Sci. (Online) ; 58: e20775, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403724

RESUMO

Abstract Up to today, there is no specific treatment against SARS-CoV-2 / COVID-19 infection; there the necessity to search for alternatives that help patients with COVID-19. The objective of this study was to review the use of ozone therapy as adjunct treatment for SARS-CoV-2 / COVID-19 infection, highlighting the mechanisms of action, forms of application and current clinical evidence. A systematic review was conducted in electronic databases, searching the terminology Ozone "or" Ozone therapy "and" SARS-CoV-2 or COVID-19 or Coronavirus. Results: nineteen studies were included; ten were editorials, comments, brief reports or reviews, and nine clinical studies. We found that ozone therapy could be favorable for treating patients infected with SARS-CoV-2 / COVID-19, through a direct antiviral effect, regulation of oxidative stress, immunomodulation and improvement of oxygen metabolism. Patients who were treated with ozone therapy responded favorably; therefore, ozone therapy appears to be a promising treatment for patients infected with SARS-CoV-2 / COVID-19. Its mechanism of action justifies its use as an adjuvant therapy; however, scientific evidence is based on case series and clinical trials are necessary to corroborate its effectiveness and safety.


Assuntos
Coronavirus/patogenicidade , SARS-CoV-2/classificação , COVID-19/patologia , Ozonioterapia , Antivirais/análise , Pacientes/classificação , Estresse Oxidativo , Relatório de Pesquisa , Infecções/classificação
14.
Microbiol Spectr ; 9(3): e0101721, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34787487

RESUMO

A big challenge for the control of COVID-19 pandemic is the emergence of variants of concern (VOCs) or variants of interest (VOIs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may be more transmissible and/or more virulent and could escape immunity obtained through infection or vaccination. A simple and rapid test for SARS-CoV-2 variants is an unmet need and is of great public health importance. In this study, we designed and analytically validated a CRISPR-Cas12a system for direct detection of SARS-CoV-2 VOCs. We further evaluated the combination of ordinary reverse transcription-PCR (RT-PCR) and CRISPR-Cas12a to improve the detection sensitivity and developed a universal system by introducing a protospacer adjacent motif (PAM) near the target mutation sites through PCR primer design to detect mutations without PAM. Our results indicated that the CRISPR-Cas12a assay could readily detect the signature spike protein mutations (K417N/T, L452R/Q, T478K, E484K/Q, N501Y, and D614G) to distinguish alpha, beta, gamma, delta, kappa, lambda, and epsilon variants of SARS-CoV-2. In addition, the open reading frame 8 (ORF8) mutations (T/C substitution at nt28144 and the corresponding change of amino acid L/S) could differentiate L and S lineages of SARS-CoV-2. The low limit of detection could reach 10 copies/reaction. Our assay successfully distinguished 4 SARS-CoV-2 strains of wild type and alpha (B.1.1.7), beta (B.1.351), and delta (B.1.617.2) variants. By testing 32 SARS-CoV-2-positive clinical samples infected with the wild type (n = 5) and alpha (n = 11), beta (n = 8), and delta variants (n = 8), the concordance between our assay and sequencing was 100%. The CRISPR-based approach is rapid and robust and can be adapted for screening the emerging mutations and immediately implemented in laboratories already performing nucleic acid amplification tests or in resource-limited settings. IMPORTANCE We described CRISPR-Cas12-based multiplex allele-specific assay for rapid SARS-CoV-2 variant genotyping. The new system has the potential to be quickly developed, continuously updated, and easily implemented for screening of SARS-CoV-2 variants in resource-limited settings. This approach can be adapted for emerging mutations and implemented in laboratories already conducting SARS-CoV-2 nucleic acid amplification tests using existing resources and extracted nucleic acid.


Assuntos
Teste para COVID-19/métodos , COVID-19/virologia , Sistemas CRISPR-Cas , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Alelos , COVID-19/diagnóstico , Bases de Dados de Ácidos Nucleicos , Humanos , Programas de Rastreamento , Mutação , Reação em Cadeia da Polimerase , Saúde Pública , Glicoproteína da Espícula de Coronavírus/genética
15.
Epidemiol Infect ; 149: e237, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34732275

RESUMO

The SARS-CoV-2 virus is rapidly evolving via mutagenesis, lengthening the pandemic, and threatening the public health. Until August 2021, 12 variants of SARS-CoV-2 named as variants of concern (VOC; Alpha to Delta) or variants of interest (VOI; Epsilon to Mu), with significant impact on transmissibility, morbidity, possible reinfection and mortality, have been identified. The VOC Delta (B.1.617.2) of Indian origin is now the dominant and the most contagious variant worldwide as it provokes a strong binding to the human ACE2 receptor, increases transmissibility and manifests considerable immune escape strategies after natural infection or vaccination. Although the development and administration of SARS-CoV-2 vaccines, based on different technologies (mRNA, adenovirus carrier, recombinant protein, etc.), are very promising for the control of the pandemic, their effectiveness and neutralizing activity against VOCs varies significantly. In this review, we describe the most significant circulating variants of SARS-CoV-2, and the known effectiveness of currently available vaccines against them.


Assuntos
Vacinas contra COVID-19/normas , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Humanos , SARS-CoV-2/classificação , SARS-CoV-2/imunologia
16.
Viruses ; 13(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834934

RESUMO

A SARS-CoV-2 B.1.1.7 variant of concern (VOC) has been associated with increased transmissibility, hospitalization, and mortality. This study aimed to explore the factors associated with B.1.1.7 VOC infection in the context of vaccination. On March 2021, we detected SARS-CoV-2 RNA in nasopharyngeal samples from 14 of 22 individuals vaccinated with a single-dose of ChAdOx1 (outbreak A, n = 26), and 22 of 42 of individuals with two doses of the CoronaVac vaccine (outbreak B, n = 52) for breakthrough infection rates for ChAdOx1 of 63.6% and 52.4% for CoronaVac. The outbreaks were caused by two independent clusters of the B.1.1.7 VOC. The serum of PCR-positive symptomatic SARS-CoV-2-infected individuals had ~1.8-3.4-fold more neutralizing capacity against B.1.1.7 compared to the serum of asymptomatic individuals. These data based on exploratory analysis suggest that the B.1.1.7 variant can infect individuals partially immunized with a single dose of an adenovirus-vectored vaccine or fully immunized with two doses of an inactivated vaccine, although the vaccines were able to reduce the risk of severe disease and death caused by this VOC, even in the elderly.


Assuntos
Vacinas contra COVID-19 , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , Vacinação , Adenoviridae , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Brasil/epidemiologia , COVID-19/prevenção & controle , Teste Sorológico para COVID-19 , Estudos de Coortes , Surtos de Doenças/estatística & dados numéricos , Feminino , Vetores Genéticos , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , RNA Viral , Vacinas de Produtos Inativados , Sequenciamento Completo do Genoma , Adulto Jovem
17.
Cell Host Microbe ; 29(12): 1788-1801.e6, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34822776

RESUMO

Previous work found that the co-occurring mutations R203K/G204R on the SARS-CoV-2 nucleocapsid (N) protein are increasing in frequency among emerging variants of concern or interest. Through a combination of in silico analyses, this study demonstrates that R203K/G204R are adaptive, while large-scale phylogenetic analyses indicate that R203K/G204R associate with the emergence of the high-transmissibility SARS-CoV-2 lineage B.1.1.7. Competition experiments suggest that the 203K/204R variants possess a replication advantage over the preceding R203/G204 variants, possibly related to ribonucleocapsid (RNP) assembly. Moreover, the 203K/204R virus shows increased infectivity in human lung cells and hamsters. Accordingly, we observe a positive association between increased COVID-19 severity and sample frequency of 203K/204R. Our work suggests that the 203K/204R mutations contribute to the increased transmission and virulence of select SARS-CoV-2 variants. In addition to mutations in the spike protein, mutations in the nucleocapsid protein are important for viral spreading during the pandemic.


Assuntos
Substituição de Aminoácidos , COVID-19/patologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Genoma Viral , Mutação , SARS-CoV-2/genética , Animais , COVID-19/epidemiologia , COVID-19/virologia , Linhagem Celular , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Cricetulus , Células Epiteliais/patologia , Células Epiteliais/virologia , Expressão Gênica , Aptidão Genética , Humanos , Modelos Moleculares , Mutagênese , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Conformação Proteica , SARS-CoV-2/classificação , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Seleção Genética , Índice de Gravidade de Doença , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/patogenicidade , Virulência , Replicação Viral
18.
EBioMedicine ; 73: 103626, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34688034

RESUMO

BACKGROUND: Highly efficacious vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed. However, the emergence of viral variants that are more infectious than the earlier SARS-CoV-2 strains is concerning. Several of these viral variants have the potential to partially escape neutralizing antibody responses, warranting continued immune-monitoring. METHODS: We used a panel of 30 post-mRNA vaccination sera to determine neutralization and RBD and spike binding activity against a number of emerging viral variants. The virus neutralization was determined using authentic SARS-CoV-2 clinical isolates in an assay format that mimics physiological conditions. FINDINGS: We tested seven currently circulating viral variants of concern/interest, including the three Iota sublineages, Alpha (E484K), Beta, Delta and Lambda in neutralization assays. We found only small decreases in neutralization against Iota and Delta. The reduction was stronger against a sub-variant of Lambda, followed by Beta and Alpha (E484K). Lambda is currently circulating in parts of Latin America and was detected in Germany, the US and Israel. Of note, reduction in a receptor binding domain and spike binding assay that also included Gamma, Kappa and A.23.1 was negligible. INTERPRETATION: Taken together, these findings suggest that mRNA SARS-CoV-2 vaccines may remain effective against these viral variants of concern/interest and that spike binding antibody tests likely retain specificity in the face of evolving SARS-CoV-2 diversity. FUNDING: This work is part of the PARIS/SPARTA studies funded by the NIAID Collaborative Influenza Vaccine Innovation Centers (CIVIC) contract 75N93019C00051. In addition, this work was also partially funded by the Centers of Excellence for Influenza Research and Surveillance (CEIRS, contract # HHSN272201400008C), the JPB Foundation, the Open Philanthropy Project (research grant 2020-215611 (5384), by anonymous donors and by the Serological Sciences Network (SeroNet) in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024, Task Order No. 75N91020F00003.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/administração & dosagem , Reações Antígeno-Anticorpo , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Testes de Neutralização , Filogenia , Domínios Proteicos/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Vacinas de mRNA
19.
Microbiol Spectr ; 9(2): e0079221, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612693

RESUMO

A wastewater surveillance program targeting a university residence hall was implemented during the spring semester 2021 as a proactive measure to avoid an outbreak of COVID-19 on campus. Over a period of 7 weeks from early February through late March 2021, wastewater originating from the residence hall was collected as grab samples 3 times per week. During this time, there was no detection of SARS-CoV-2 by reverse transcriptase quantitative PCR (RT-qPCR) in the residence hall wastewater stream. Aiming to obtain a sample more representative of the residence hall community, a decision was made to use passive samplers beginning in late March onwards. Adopting a Moore swab approach, SARS-CoV-2 was detected in wastewater samples just 2 days after passive samplers were deployed. These samples also tested positive for the B.1.1.7 (Alpha) variant of concern (VOC) using RT-qPCR. The positive result triggered a public health case-finding response, including a mobile testing unit deployed to the residence hall the following day, with testing of nearly 200 students and staff, which identified two laboratory-confirmed cases of Alpha variant COVID-19. These individuals were relocated to a separate quarantine facility, averting an outbreak on campus. Aggregating wastewater and clinical data, the campus wastewater surveillance program has yielded the first estimates of fecal shedding rates of the Alpha VOC of SARS-CoV-2 in individuals from a nonclinical setting. IMPORTANCE Among early adopters of wastewater monitoring for SARS-CoV-2 have been colleges and universities throughout North America, many of whom are using this approach to monitor congregate living facilities for early evidence of COVID-19 infection as an integral component of campus screening programs. Yet, while there have been numerous examples where wastewater monitoring on a university campus has detected evidence for infection among community members, there are few examples where this monitoring triggered a public health response that may have averted an actual outbreak. This report details a wastewater-testing program targeting a residence hall on a university campus during spring 2021, when there was mounting concern globally over the emergence of SARS-CoV-2 variants of concern, reported to be more transmissible than the wild-type Wuhan strain. In this communication, we present a clear example of how wastewater monitoring resulted in actionable responses by university administration and public health, which averted an outbreak of COVID-19 on a university campus.


Assuntos
COVID-19/epidemiologia , Surtos de Doenças , SARS-CoV-2/isolamento & purificação , Universidades , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias/virologia , COVID-19/transmissão , COVID-19/virologia , Humanos , Programas de Rastreamento , Ontário , Saúde Pública , SARS-CoV-2/classificação , SARS-CoV-2/genética
20.
Appl Environ Microbiol ; 87(23): e0144821, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34550753

RESUMO

Municipal wastewater provides an integrated sample of a diversity of human-associated microbes across a sewershed, including viruses. Wastewater-based epidemiology (WBE) is a promising strategy to detect pathogens and may serve as an early warning system for disease outbreaks. Notably, WBE has garnered substantial interest during the coronavirus disease 2019 (COVID-19) pandemic to track disease burden through analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. Throughout the COVID-19 outbreak, tracking SARS-CoV-2 in wastewater has been an important tool for understanding the spread of the virus. Unlike traditional sequencing of SARS-CoV-2 isolated from clinical samples, which adds testing burden to the health care system, in this study, metatranscriptomics was used to sequence virus directly from wastewater. Here, we present a study in which we explored RNA viral diversity through sequencing 94 wastewater influent samples across seven wastewater treatment plants (WTPs), collected from August 2020 to January 2021, representing approximately 16 million people in Southern California. Enriched viral libraries identified a wide diversity of RNA viruses that differed between WTPs and over time, with detected viruses including coronaviruses, influenza A, and noroviruses. Furthermore, single-nucleotide variants (SNVs) of SARS-CoV-2 were identified in wastewater, and we measured proportions of overall virus and SNVs across several months. We detected several SNVs that are markers for clinically important SARS-CoV-2 variants along with SNVs of unknown function, prevalence, or epidemiological consequence. Our study shows the potential of WBE to detect viruses in wastewater and to track the diversity and spread of viral variants in urban and suburban locations, which may aid public health efforts to monitor disease outbreaks. IMPORTANCE Wastewater-based epidemiology (WBE) can detect pathogens across sewersheds, which represents the collective waste of human populations. As there is a wide diversity of RNA viruses in wastewater, monitoring the presence of these viruses is useful for public health, industry, and ecological studies. Specific to public health, WBE has proven valuable during the coronavirus disease 2019 (COVID-19) pandemic to track the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) without adding burden to health care systems. In this study, we used metatranscriptomics and reverse transcription-droplet digital PCR (RT-ddPCR) to assay RNA viruses across Southern California wastewater from August 2020 to January 2021, representing approximately 16 million people from Los Angeles, Orange, and San Diego counties. We found that SARS-CoV-2 quantification in wastewater correlates well with county-wide COVID-19 case data, and that we can detect SARS-CoV-2 single-nucleotide variants through sequencing. Likewise, wastewater treatment plants (WTPs) harbored different viromes, and we detected other human pathogens, such as noroviruses and adenoviruses, furthering our understanding of wastewater viral ecology.


Assuntos
Vírus de RNA/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Viroma , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias/virologia , COVID-19/epidemiologia , California , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase , Vírus de RNA/classificação , Vírus de RNA/genética , SARS-CoV-2/classificação , SARS-CoV-2/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA