Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.356
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Virol J ; 21(1): 109, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734674

RESUMO

BACKGROUND: Syndrome coronavirus-2 (SARS-CoV-2) has developed various strategies to evade the antiviral impact of type I IFN. Non-structural proteins and auxiliary proteins have been extensively researched on their role in immune escape. Nevertheless, the detailed mechanisms of structural protein-induced immune evasion have not been well elucidated. METHODS: Human alveolar basal epithelial carcinoma cell line (A549) was stimulated with polyinosinic-polycytidylic acid (PIC) and independently transfected with four structural proteins expression plasmids, including nucleocapsid (N), spike (S), membrane (M) and envelope (E) proteins. By RT-qPCR and ELISA, the structural protein with the most pronounced inhibitory effects on IFN-ß induction was screened. RNA-sequencing (RNA-Seq) and two differential analysis strategies were used to obtain differentially expressed genes associated with N protein inhibition of IFN-ß induction. Based on DIANA-LncBase and StarBase databases, the interactive competitive endogenous RNA (ceRNA) network for N protein-associated genes was constructed. By combining single-cell sequencing data (GSE158055), lncRNA-miRNA-mRNA axis was further determined. Finally, RT-qPCR was utilized to illustrate the regulatory functions among components of the ceRNA axis. RESULTS: SARS-CoV-2 N protein inhibited IFN-ß induction in human alveolar epithelial cells most significantly compared with other structural proteins. RNA-Seq data analysis revealed genes related to N protein inhibiting IFNs induction. The obtained 858 differentially expressed genes formed the reliable ceRNA network. The function of LINC01002-miR-4324-FRMD8 axis in the IFN-dominated immune evasion was further demonstrated through integrating single-cell sequencing data. Moreover, we validated that N protein could reverse the effect of PIC on LINC01002, FRMD8 and miR-4324 expression, and subsequently on IFN-ß expression level. And LINC01002 could regulate the production of FRMD8 by inhibiting miR-4324. CONCLUSION: SARS-CoV-2 N protein suppressed the induction of IFN-ß by regulating LINC01002 which was as a ceRNA, sponging miR-4324 and participating in the regulation of FRMD8 mRNA. Our discovery provides new insights into early intervention therapy and drug development on SARS-CoV-2 infection.


Assuntos
COVID-19 , MicroRNAs , RNA Longo não Codificante , SARS-CoV-2 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , COVID-19/virologia , COVID-19/imunologia , SARS-CoV-2/genética , Células A549 , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Evasão da Resposta Imune , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , RNA Endógeno Competitivo , Fosfoproteínas
2.
PLoS One ; 19(5): e0299696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728335

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 disease, which represents a new life-threatening disaster. Regarding viral infection, many therapeutics have been investigated to alleviate the epidemiology such as vaccines and receptor decoys. However, the continuous mutating coronavirus, especially the variants of Delta and Omicron, are tended to invalidate the therapeutic biological product. Thus, it is necessary to develop molecular entities as broad-spectrum antiviral drugs. Coronavirus replication is controlled by the viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme, which is required for the virus's life cycle. In the cases of severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV), 3CLpro has been shown to be a promising therapeutic development target. Here we proposed an attention-based deep learning framework for molecular graphs and sequences, training from the BindingDB 3CLpro dataset (114,555 compounds). After construction of such model, we conducted large-scale screening the in vivo/vitro dataset (276,003 compounds) from Zinc Database and visualize the candidate compounds with attention score. geometric-based affinity prediction was employed for validation. Finally, we established a 3CLpro-specific deep learning framework, namely GraphDPI-3CL (AUROC: 0.958) achieved superior performance beyond the existing state of the art model and discovered 10 molecules with a high binding affinity of 3CLpro and superior binding mode.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Aprendizado Profundo , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Ligação Proteica , COVID-19/virologia , Simulação de Acoplamento Molecular
3.
Viral Immunol ; 37(4): 186-193, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38717821

RESUMO

Coronavirus disease 2019 (COVID-19) represented an international health risk. Variants of the interferon-induced transmembrane protein-3 (IFITM3) gene can increase the risk of developing severe viral infections. This cross-sectional study investigated the association between IFITM3 rs12252A>G single nucleotide polymorphism (SNP) and COVID-19 severity and mortality in 100 Egyptian patients. All participants were subjected to serum interleukin-6 (IL-6) determination by ELISA and IFITM3 rs12252 genotyping by real-time polymerase chain reaction. Of all participants, 85.0% had the IFITM3 rs12252 homozygous AA genotype, whereas 15.0% had the heterozygous AG genotype. None of our participants had the homozygous GG genotype. The IFITM3 rs12252A allele was found in 92.5% and the G allele in only 7.5%. There was no significant association (p > 0.05) between the IFITM3 rs12252 SNP and COVID-19 severity, intensive care unit (ICU) admission, or IL-6 serum levels. The heterozygous AG genotype frequency showed a significant increase among participants who died (32.0%) compared with those who had been cured (9.3%). The mutant G allele was associated with patients' death. Its frequency among cured participants was 8.5%, whereas in those who died was 24.2% (p = 0.024) with 3.429 odds ratio [95% confidence interval: 1.1-10.4]. In conclusion, this study revealed a significant association between the G allele variant of IFITM3 rs12252 and COVID-19 mortality. However, results were unable to establish a significant link between rs12252 polymorphism, disease severity, ICU admission, or serum IL-6 levels.


Assuntos
COVID-19 , Genótipo , Interleucina-6 , Proteínas de Membrana , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a RNA , SARS-CoV-2 , Humanos , COVID-19/mortalidade , COVID-19/genética , Feminino , Masculino , Egito , Pessoa de Meia-Idade , Proteínas de Membrana/genética , Adulto , Interleucina-6/sangue , Interleucina-6/genética , Estudos Transversais , SARS-CoV-2/genética , Proteínas de Ligação a RNA/genética , Predisposição Genética para Doença , Alelos , Índice de Gravidade de Doença , Frequência do Gene , Idoso
4.
Artigo em Inglês | MEDLINE | ID: mdl-38747849

RESUMO

This study aimed to provide further insight into the evolutionary dynamics of SARS-CoV-2 by analyzing the case of a 40-year-old man who had previously undergone autologous hematopoietic stem cell transplantation due to a diffuse large B-cell lymphoma. He developed a persistent SARS-CoV-2 infection lasting at least 218 days and did not manifest a humoral immune response to the virus during this follow-up period. Whole-genome sequencing and viral cultures confirmed a persistent infection with a replication-positive virus that had undergone genetic variation for at least 196 days after symptom onset.


Assuntos
COVID-19 , Hospedeiro Imunocomprometido , SARS-CoV-2 , Eliminação de Partículas Virais , Humanos , Adulto , Masculino , COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Linfoma Difuso de Grandes Células B/virologia , Linfoma Difuso de Grandes Células B/imunologia , Transplante de Células-Tronco Hematopoéticas , Sequenciamento Completo do Genoma
5.
J Med Virol ; 96(5): e29642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38708812

RESUMO

Molnupiravir, an oral direct-acting antiviral effective in vitro against SARS-CoV-2, has been largely employed during the COVID-19 pandemic, since December 2021. After marketing and widespread usage, a progressive increase in SARS-CoV-2 lineages characterized by a higher transition/transversion ratio, a characteristic signature of molnupiravir action, appeared in the Global Initiative on Sharing All Influenza Data (GISAID) and International Nucleotide Sequence Database Collaboration (INSDC) databases. Here, we assessed the drug effects by SARS-CoV-2 whole-genome sequencing on 38 molnupiravir-treated persistently positive COVID-19 outpatients tested before and after treatment. Seventeen tixagevimab/cilgavimab-treated outpatients served as controls. Mutational analyses confirmed that SARS-CoV-2 exhibits an increased transition/transversion ratio seven days after initiation of molnupiravir. Moreover we observed an increased G->A ratio compared to controls, which was not related to apolipoprotein B mRNAediting enzyme, catalytic polypeptide-like (APOBEC) activity. In addition, we demonstrated for the first time an increased diversity and complexity of the viral quasispecies.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Citidina/análogos & derivados , Genoma Viral , Hidroxilaminas , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Antivirais/uso terapêutico , Antivirais/farmacologia , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Masculino , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Citidina/uso terapêutico , Citidina/farmacologia , Idoso , Adulto , Sequenciamento Completo do Genoma , Variação Genética , Uridina/farmacologia , COVID-19/virologia , Mutação
6.
New Microbiol ; 47(1): 80-87, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700887

RESUMO

The COVID-19 pandemic forced the adoption of non-pharmaceutical interventions (NPIs) which influenced the circulation of other respiratory pathogens, such as Influenza virus (FLU), Parainfluenza virus (PIV), Respiratory Syncytial virus (RSV), Rhinovirus (RV), Enterovirus (EV), Adenovirus (AdV), Human Metapneumovirus (hMPV), and Human Coronavirus (CoV). The aim of the current study was to investigate how, with the end of the pandemic, the withdrawal of the NPIs impacted on the circulation and distribution of common respiratory viruses. The analyzed samples were collected from June 2021 to March 2023 (post-pandemic period) and compared to ones from the pandemic period. Nucleic acid detection of all respiratory viruses was performed by multiplex real time Polymerase Chain Reaction (PCR) and sequencing was conducted by Next Generation Sequencing (NGS) technique. Our analysis shows that the NPIs adopted against SARS-CoV-2 were also effective in controlling the spread of other respiratory viruses. Moreover, we documented how RV/EVs were the most commonly identified species, with the more abundant strains represented by Coxsackievirus (CV)-A/B and RV-A/C. RV/EVs were also detected in some co-infection cases; in particular, the majority of co-infections concerned CV-B/RV-A, CV-B/ECHO. Given the pandemic potential of respiratory viruses, accurate molecular screening is essential for a proper surveillance and prevention strategy.


Assuntos
COVID-19 , Infecções Respiratórias , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/virologia , Itália/epidemiologia , SARS-CoV-2/genética , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Pandemias , Vírus/genética , Vírus/isolamento & purificação , Vírus/classificação , Adulto , Masculino , Criança
7.
BMC Genomics ; 25(1): 431, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693480

RESUMO

Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.


Assuntos
COVID-19 , Edição de RNA , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virologia , SARS-CoV-2/genética , Adenosina/metabolismo , Inosina/metabolismo , Inosina/genética , Transcriptoma , Olho/metabolismo , Olho/virologia
8.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717926

RESUMO

Background. Respiratory tract infections are among the most important causes of mortality and morbidity in children worldwide. The COVID-19 pandemic has affected the distribution of seasonal respiratory viruses as in all areas of life. In this study, we have aimed to evaluate the changes in the rates of seasonal respiratory viruses with the onset of the pandemic.Methods. This study included patients who were admitted to the Pediatrics Clinic of Eskisehir Osmangazi University Faculty of Medicine Hospital between December 2018 and February 2022 with respiratory tract infections and in whom pathogens were detected from nasopharyngeal swab samples analysed by multiplex PCR method.Results. A total of 833 respiratory tract pathogens were detected in 684 cases consisting of male (55.3 %), and female (44.7 %), patients with a total mean age of 42 months. Single pathogen was revealed in 550, and multiple pathogens in 134 cases. Intensive care was needed in 14 % of the cases. Most frequently influenza A/B, rhinovirus and respiratory syncytial virus (RSV) were detected during the pre-pandemic period, while rhinovirus, RSV, and adenovirus were observed during the lockdown period. In the post-lockdown period, the incidence rates of rhinovirus, RSV, human bocavirus (HboV) (12 %), influenza virus infections increased, and patients with RSV and bocavirus infections required intensive care hospitalization.Conclusion. It is thought that the COVID-9 pandemic lockdown measures may have an impact on the distribution of seasonal respiratory viruses, especially RSV and influenza. Current, prospective and large case series regarding the mechanism of action and dynamics are needed.


Assuntos
COVID-19 , Infecções Respiratórias , SARS-CoV-2 , Estações do Ano , Humanos , Feminino , Masculino , COVID-19/epidemiologia , COVID-19/virologia , Pré-Escolar , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Lactente , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Criança , Rhinovirus/isolamento & purificação , Rhinovirus/genética , Nasofaringe/virologia , Adolescente , Influenza Humana/epidemiologia , Influenza Humana/virologia , Pandemias , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/virologia
9.
Front Cell Infect Microbiol ; 14: 1295841, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707510

RESUMO

Introduction: Although the existence of Candida species in the respiratory tract is often considered commensal, it is crucial to recognize the significance of Candida colonization in immunocompromised or COVID-19 patients. The emergence of Candida auris as an emerging pathogen further emphasizes the importance of monitoring yeast infection/colonization, particularly in COVID-19 patients. Methods: In this study, respiratory samples mainly from COVID-19 patients, primarily those suspected of having a fungal infection, were cultured on Sabouraud dextrose agar plates and the yeast colonies were identified using a two-step multiplex PCR method. The samples suspected of C. auris underwent specific nested PCR followed by sequence analysis. Results: A total of 199 respiratory samples were collected from 73 women and 126 men, ranging in age from 1.6 to 88 years. Among the patients, 141 had COVID-19, 32 had cancer, 5 were hospitalized in ICU, 2 had chronic obstructive pulmonary disease)COPD(, and others were patients with combination diseases. From these samples, a total of 334 yeast strains were identified. C. albicans (n=132, 39.52%) was the most common species, followed by C. tropicalis (n=67, 20%), C. glabrata (n=56, 16.76%), C. krusei (n=18, 5.4%), C. parapsilosis (n=17, 5.08%), Saccharomyces cerevisiae (n=10, 3%), C. kefyr (n=9, 2.6%), C. dubliniensis (n=7, 2.1%), C. lusitaniae (n=5, 1.5%), C. auris (n=3, 0.9%), C. guilliermondii (n=2, 0.6%), C. rugosa (n=1, 0.3%), C. intermedia (n=1, 0.3%), and Trichosporon spp. (n=1, 0.3%). C. auris was detected in a patient in ICU and two COVID-19 patients. While its presence was confirmed through sequence analysis, our extensive efforts to isolate C. auris were unsuccessful. Conclusion: While C. albicans colonization remains prevalent, our study found no evidence of Candida lung infection. Since the role of Candida colonization in airway secretions remains ambiguous due to limited research, further studies are imperative to shed light on this matter.


Assuntos
COVID-19 , Candida auris , Candidíase , SARS-CoV-2 , Humanos , COVID-19/microbiologia , Idoso , Pessoa de Meia-Idade , Feminino , Masculino , Idoso de 80 Anos ou mais , Adulto , Pré-Escolar , Candidíase/microbiologia , Criança , Adolescente , Adulto Jovem , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Lactente , Candida auris/genética , Candida auris/isolamento & purificação , Candida/isolamento & purificação , Candida/classificação , Candida/genética , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia , Reação em Cadeia da Polimerase Multiplex
10.
Sci Rep ; 14(1): 10157, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698072

RESUMO

Extraction of nucleic acids (NAs) is critical for many methods in molecular biology and bioanalytical chemistry. NA extraction has been extensively studied and optimized for a wide range of applications and its importance to society has significantly increased. The COVID-19 pandemic highlighted the importance of early and efficient NA testing, for which NA extraction is a critical analytical step prior to the detection by methods like polymerase chain reaction. This study explores simple, new approaches to extraction using engineered smart nanomaterials, namely NA-binding, intrinsically disordered proteins (IDPs), that undergo triggered liquid-liquid phase separation (LLPS). Two types of NA-binding IDPs are studied, both based on genetically engineered elastin-like polypeptides (ELPs), model IDPs that exhibit a lower critical solution temperature in water and can be designed to exhibit LLPS at desired temperatures in a variety of biological solutions. We show that ELP fusion proteins with natural NA-binding domains can be used to extract DNA and RNA from physiologically relevant solutions. We further show that LLPS of pH responsive ELPs that incorporate histidine in their sequences can be used for both binding, extraction and release of NAs from biological solutions, and can be used to detect SARS-CoV-2 RNA in samples from COVID-positive patients.


Assuntos
COVID-19 , Elastina , Peptídeos , SARS-CoV-2 , Elastina/química , Concentração de Íons de Hidrogênio , Peptídeos/química , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Humanos , Proteínas Intrinsicamente Desordenadas/química , Extração Líquido-Líquido/métodos , Ácidos Nucleicos/isolamento & purificação , Ácidos Nucleicos/química , DNA/química , DNA/isolamento & purificação , Polipeptídeos Semelhantes à Elastina , Separação de Fases
11.
Nat Commun ; 15(1): 4162, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755139

RESUMO

The multibasic furin cleavage site at the S1/S2 boundary of the spike protein is a hallmark of SARS-CoV-2 and plays a crucial role in viral infection. However, the mechanism underlying furin activation and its regulation remain poorly understood. Here, we show that GalNAc-T3 and T7 jointly initiate clustered O-glycosylations in the furin cleavage site of the SARS-CoV-2 spike protein, which inhibit furin processing, suppress the incorporation of the spike protein into virus-like-particles and affect viral infection. Mechanistic analysis reveals that the assembly of the spike protein into virus-like particles relies on interactions between the furin-cleaved spike protein and the membrane protein of SARS-CoV-2, suggesting a possible mechanism for furin activation. Interestingly, mutations in the spike protein of the alpha and delta variants of the virus confer resistance against glycosylation by GalNAc-T3 and T7. In the omicron variant, additional mutations reverse this resistance, making the spike protein susceptible to glycosylation in vitro and sensitive to GalNAc-T3 and T7 expression in human lung cells. Our findings highlight the role of glycosylation as a defense mechanism employed by host cells against SARS-CoV-2 and shed light on the evolutionary interplay between the host and the virus.


Assuntos
COVID-19 , Furina , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Glicosilação , Furina/metabolismo , Furina/genética , COVID-19/virologia , COVID-19/metabolismo , Células HEK293 , N-Acetilgalactosaminiltransferases/metabolismo , N-Acetilgalactosaminiltransferases/genética , Animais , Chlorocebus aethiops , Polipeptídeo N-Acetilgalactosaminiltransferase
12.
Cell Transplant ; 33: 9636897241248956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715279

RESUMO

Heart failure remains the leading cause of human death worldwide. After a heart attack, the formation of scar tissue due to the massive death of cardiomyocytes leads to heart failure and sudden death in most cases. In addition, the regenerative ability of the adult heart is limited after injury, partly due to cell-cycle arrest in cardiomyocytes. In the current post-COVID-19 era, urgently authorized modified mRNA (modRNA) vaccines have been widely used to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Therefore, modRNA-based protein replacement may act as an alternative strategy for improving heart disease. It is a safe, effective, transient, low-immunogenic, and integration-free strategy for in vivo protein expression, in addition to recombinant protein and stem-cell regenerative therapies. In this review, we provide a summary of various cardiac factors that have been utilized with the modRNA method to enhance cardiovascular regeneration, cardiomyocyte proliferation, fibrosis inhibition, and apoptosis inhibition. We further discuss other cardiac factors, modRNA delivery methods, and injection methods using the modRNA approach to explore their application potential in heart disease. Factors for promoting cardiomyocyte proliferation such as a cocktail of three genes comprising FoxM1, Id1, and Jnk3-shRNA (FIJs), gp130, and melatonin have potential to be applied in the modRNA approach. We also discuss the current challenges with respect to modRNA-based cardiac regenerative medicine that need to be overcome to apply this approach to heart disease. This review provides a short description for investigators interested in the development of alternative cardiac regenerative medicines using the modRNA platform.


Assuntos
Miócitos Cardíacos , RNA Mensageiro , Regeneração , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , COVID-19/terapia , SARS-CoV-2/genética , Insuficiência Cardíaca/terapia
13.
Sci Rep ; 14(1): 10923, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740976

RESUMO

Though pooling samples for SARS-CoV-2 detection has effectively met the need for rapid diagnostic and screening tests, many factors can influence the sensitivity of a pooled test. In this study, we conducted a simulation experiment to evaluate modes of pooling specimens and aimed at formulating an optimal pooling strategy. We focussed on the type of swab, their solvent adsorption ability, pool size, pooling volume, and different factors affecting the quality of preserving RNA by different virus solutions. Both quantitative PCR and digital PCR were used to evaluate the sampling performance. In addition, we determined the detection limit by sampling which is simulated from the virus of different titers and evaluated the effect of sample-storage conditions by determining the viral load after storage. We found that flocked swabs were better than fibre swabs. The RNA-preserving ability of the non-inactivating virus solution was slightly better than that of the inactivating virus solution. The optimal pooling strategy was a pool size of 10 samples in a total volume of 9 mL. Storing the collected samples at 4 °C or 25 °C for up to 48 h had little effect on the detection sensitivity. Further, we observed that our optimal pooling strategy performed equally well as the single-tube test did. In clinical applications, we recommend adopting this pooling strategy for low-risk populations to improve screening efficiency and shape future strategies for detecting and managing other respiratory pathogens, thus contributing to preparedness for future public health challenges.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Manejo de Espécimes , Humanos , COVID-19/diagnóstico , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Manejo de Espécimes/métodos , RNA Viral/genética , Teste de Ácido Nucleico para COVID-19/métodos , Carga Viral/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Teste para COVID-19/métodos
14.
Front Immunol ; 15: 1374486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745651

RESUMO

A universal recombinant adenovirus type-5 (Ad5) vaccine against COVID19 (Ad-US) was constructed, and immunogenicity and broad-spectrum of Ad5-US were evaluated with both intranasal and intramuscular immunization routes. The humoral immune response of Ad5-US in serum and bronchoalveolar lavage fluid were evaluated by the enzyme-linked immunosorbent assay (ELISA), recombinant vesicular stomatitis virus based pseudovirus neutralization assay, and angiotensin-converting enzyme-2 (ACE2) -binding inhibition assay. The cellular immune response and Th1/Th2 biased immune response of Ad5-US were evaluated by the IFN-γ ELISpot assay, intracellular cytokine staining, and Meso Scale Discovery (MSD) profiling of Th1/Th2 cytokines. Intramuscular priming followed by an intranasal booster with Ad5-US elicited the broad-spectrum and high levels of IgG, IgA, pseudovirus neutralizing antibody (PNAb), and Th1-skewing of the T-cell response. Overall, the adenovirus type-5 vectored universal SARS-CoV-2 vaccine Ad5-US was successfully constructed, and Ad5-US was highly immunogenic and broad spectrum. Intramuscular priming followed by an intranasal booster with Ad5-US induced the high and broad spectrum systemic immune responses and local mucosal immune responses.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Vetores Genéticos , SARS-CoV-2 , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Camundongos , Humanos , Feminino , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Adenoviridae/genética , Adenoviridae/imunologia , Camundongos Endogâmicos BALB C , Administração Intranasal , Injeções Intramusculares , Imunidade Humoral , Citocinas/metabolismo , Imunidade Celular
15.
Cell Rep ; 43(4): 114076, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607917

RESUMO

The severe acute respiratory syndrome coronavirus 2 pandemic is characterized by the emergence of novel variants of concern (VOCs) that replace ancestral strains. Here, we dissect the complex selective pressures by evaluating variant fitness and adaptation in human respiratory tissues. We evaluate viral properties and host responses to reconstruct forces behind D614G through Omicron (BA.1) emergence. We observe differential replication in airway epithelia, differences in cellular tropism, and virus-induced cytotoxicity. D614G accumulates the most mutations after infection, supporting zoonosis and adaptation to the human airway. We perform head-to-head competitions and observe the highest fitness for Gamma and Delta. Under these conditions, RNA recombination favors variants encoding the B.1.617.1 lineage 3' end. Based on viral growth kinetics, Alpha, Gamma, and Delta exhibit increased fitness compared to D614G. In contrast, the global success of Omicron likely derives from increased transmission and antigenic variation. Our data provide molecular evidence to support epidemiological observations of VOC emergence.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiologia , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/transmissão , Replicação Viral , Mutação/genética , Mucosa Respiratória/virologia , Aptidão Genética , Animais , Células Epiteliais/virologia , Chlorocebus aethiops , Adaptação Fisiológica/genética , Células Vero
16.
Comput Biol Med ; 175: 108485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653063

RESUMO

Various studies have linked several diseases, including cancer and COVID-19, to single nucleotide variations (SNV). Although single-cell RNA sequencing (scRNA-seq) technology can provide SNV and gene expression data, few studies have integrated and analyzed these multimodal data. To address this issue, we introduce Interpretable Single-cell Multimodal Data Integration Based on Variational Autoencoder (ISMI-VAE). ISMI-VAE leverages latent variable models that utilize the characteristics of SNV and gene expression data to overcome high noise levels and uses deep learning techniques to integrate multimodal information, map them to a low-dimensional space, and classify disease cells. Moreover, ISMI-VAE introduces an attention mechanism to reflect feature importance and analyze genetic features that could potentially cause disease. Experimental results on three cancer data sets and one COVID-19 data set demonstrate that ISMI-VAE surpasses the baseline method in terms of both effectiveness and interpretability and can effectively identify disease-causing gene features.


Assuntos
COVID-19 , Aprendizado Profundo , Neoplasias , SARS-CoV-2 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Neoplasias/genética , Análise de Célula Única/métodos , Polimorfismo de Nucleotídeo Único , Pandemias , Pneumonia Viral/genética , Infecções por Coronavirus/genética , Betacoronavirus/genética
17.
Water Res ; 256: 121612, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642537

RESUMO

Genomic surveillance of SARS-CoV-2 has given insight into the evolution and epidemiology of the virus and its variant lineages during the COVID-19 pandemic. Expanding this approach to include a range of respiratory pathogens can better inform public health preparedness for potential outbreaks and epidemics. Here, we simultaneously sequenced 38 pathogens including influenza viruses, coronaviruses and bocaviruses, to examine the abundance and seasonality of respiratory pathogens in urban wastewater. We deployed a targeted bait capture method and short-read sequencing (Illumina Respiratory Virus Oligos Panel; RVOP) on composite wastewater samples from 8 wastewater treatment plants (WWTPs) and one associated hospital site. By combining seasonal sampling with whole genome sequencing, we were able to concurrently detect and characterise a range of common respiratory pathogens, including SARS-CoV-2, adenovirus and parainfluenza virus. We demonstrated that 38 respiratory pathogens can be detected at low abundances year-round, that hospital pathogen diversity is higher in winter vs. summer sampling events, and that significantly more viruses are detected in raw influent compared to treated effluent samples. Finally, we compared detection sensitivity of RT-qPCR vs. next generation sequencing for SARS-CoV-2, enteroviruses, influenza A/B, and respiratory syncytial viruses. We conclude that both should be used in combination; RT-qPCR allowed accurate quantification, whilst genomic sequencing detected pathogens at lower abundance. We demonstrate the valuable role of wastewater genomic surveillance and its contribution to the field of wastewater-based epidemiology, gaining rapid understanding of the seasonal presence and persistence for common respiratory pathogens. By simultaneously monitoring seasonal trends and early warning signs of many viruses circulating in communities, public health agencies can implement targeted prevention and rapid response plans.


Assuntos
Águas Residuárias , Águas Residuárias/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , COVID-19/virologia , COVID-19/epidemiologia , Estações do Ano
18.
Biomolecules ; 14(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672516

RESUMO

Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.


Assuntos
Trifosfato de Adenosina , Proteoma , Humanos , Trifosfato de Adenosina/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , Proteostase , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Homeostase , Dobramento de Proteína , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética
19.
Nat Microbiol ; 9(5): 1293-1311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622380

RESUMO

Children infected with SARS-CoV-2 rarely progress to respiratory failure. However, the risk of mortality in infected people over 85 years of age remains high. Here we investigate differences in the cellular landscape and function of paediatric (<12 years), adult (30-50 years) and older adult (>70 years) ex vivo cultured nasal epithelial cells in response to infection with SARS-CoV-2. We show that cell tropism of SARS-CoV-2, and expression of ACE2 and TMPRSS2 in nasal epithelial cell subtypes, differ between age groups. While ciliated cells are viral replication centres across all age groups, a distinct goblet inflammatory subtype emerges in infected paediatric cultures and shows high expression of interferon-stimulated genes and incomplete viral replication. In contrast, older adult cultures infected with SARS-CoV-2 show a proportional increase in basaloid-like cells, which facilitate viral spread and are associated with altered epithelial repair pathways. We confirm age-specific induction of these cell types by integrating data from in vivo COVID-19 studies and validate that our in vitro model recapitulates early epithelial responses to SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Células Epiteliais , Mucosa Nasal , SARS-CoV-2 , Serina Endopeptidases , Humanos , COVID-19/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Adulto , Pessoa de Meia-Idade , Idoso , Células Epiteliais/virologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Mucosa Nasal/virologia , Criança , Fatores Etários , Replicação Viral , Pré-Escolar , Tropismo Viral , Masculino , Feminino , Idoso de 80 Anos ou mais , Células Cultivadas , Adolescente , Lactente
20.
J Cell Sci ; 137(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682259

RESUMO

SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.


Assuntos
Antígenos de Histocompatibilidade Classe II , Histona Desacetilase 2 , Proteínas Nucleares , Regiões Promotoras Genéticas , SARS-CoV-2 , Transativadores , Humanos , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Transativadores/metabolismo , Transativadores/genética , Regiões Promotoras Genéticas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , COVID-19/virologia , COVID-19/imunologia , COVID-19/genética , COVID-19/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células HEK293 , Regulação para Baixo/genética , Apresentação de Antígeno/genética , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA