Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 199: 108161, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39079595

RESUMO

The Salicaceae includes approximately 54 genera and over 1,400 species with a cosmopolitan distribution. Members of the family are well-known for their diverse secondary plant metabolites, and they play crucial roles in tropical and temperate forest ecosystems. Phylogenetic reconstruction of the Salicaceae has been historically challenging due to the limitations of molecular markers and the extensive history of hybridization and polyploidy within the family. Our study employs whole-genome sequencing of 74 species to generate an extensive phylogeny of the Salicaceae. We generated two RAD-Seq enriched whole-genome sequence datasets and extracted two additional gene sets corresponding to the universal Angiosperms353 and Salicaceae-specific targeted-capture arrays. We reconstructed maximum likelihood-based molecular phylogenies using supermatrix and coalescent-based supertree approaches. Our fossil-calibrated phylogeny estimates that the Salicaceae originated around 128 million years ago and unravels the complex taxonomic relationships within the family. Our findings confirm the non-monophyly of the subgenus Salix s.l. and further support the merging of subgenera Chamaetia and Vetrix, both of which exhibit intricate patterns within and among different sections. Overall, our study not only enhances our understanding of the evolution of the Salicaceae, but also provides valuable insights into the complex relationships within the family.


Assuntos
Filogenia , Salicaceae , Salicaceae/genética , Salicaceae/classificação , Salix/genética , Salix/classificação , Genoma de Planta , Evolução Molecular , Evolução Biológica , Funções Verossimilhança
2.
Cell Rep ; 43(3): 113909, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38451814

RESUMO

The deciduous tree Idesia polycarpa can provide premium edible oil with high polyunsaturated fatty acid contents. Here, we generate its high-quality reference genome, which is ∼1.21 Gb, comprising 21 pseudochromosomes and 42,086 protein-coding genes. Phylogenetic and genomic synteny analyses show that it diverged with Populus trichocarpa about 16.28 million years ago. Notably, most fatty acid biosynthesis genes are not only increased in number in its genome but are also highly expressed in the fruits. Moreover, we identify, through genome-wide association analysis and RNA sequencing, the I. polycarpa SUGAR TRANSPORTER 5 (IpSTP5) gene as a positive regulator of high oil accumulation in the fruits. Silencing of IpSTP5 by virus-induced gene silencing causes a significant reduction of oil content in the fruits, suggesting it has the potential to be used as a molecular marker to breed the high-oil-content cultivars. Our results collectively lay the foundation for breeding the elite cultivars of I. polycarpa.


Assuntos
Estudo de Associação Genômica Ampla , Salicaceae , Filogenia , Melhoramento Vegetal , Salicaceae/genética , Sequência de Bases
3.
BMC Plant Biol ; 21(1): 535, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34773988

RESUMO

BACKGROUNDS: Populus and Salix belong to Salicaceae and are used as models to investigate woody plant physiology. The variation of karyotype and nuclear DNA content can partly reflect the evolutionary history of the whole genome, and can provide critical information for understanding, predicting, and potentially ameliorating the woody plant traits. Therefore, it is essential to study the chromosome number (CN) and genome size in detail to provide information for revealing the evolutionary process of Salicaceae. RESULTS: In this study, we report the somatic CNs of seventeen species from eight genera in Salicaceae. Of these, CNs for twelve species and for five genera are reported for the first time. Among the three subfamilies of Salicaceae, the available data indicate CN in Samydoideae is n = 21, 22, 42. The only two genera, Dianyuea and Scyphostegia, in Scyphostegioideae respectively have n = 9 and 18. In Salicoideae, Populus, Salix and five genera closely related to them (Bennettiodendron, Idesia, Carrierea, Poliothyrsis, Itoa) are based on relatively high CNs from n = 19, 20, 21, 22 to n = 95 in Salix. However, the other genera of Salicoideae are mainly based on relatively low CNs of n = 9, 10, 11. The genome sizes of 35 taxa belonging to 14 genera of Salicaceae were estimated. Of these, the genome sizes of 12 genera and all taxa except Populus euphratica are first reported. Except for Dianyuea, Idesia and Bennettiodendron, all examined species have relatively small genome sizes of less than 1 pg, although polyploidization exists. CONCLUSIONS: The variation of CN and genome size across Salicaceae indicates frequent ploidy changes and a widespread sharing of the salicoid whole genome duplication (WGD) by the relatives of Populus and Salix. The shrinkage of genome size after WGD indicates massive loss of genomic components. The phylogenetic asymmetry in clade of Populus, Salix, and their close relatives suggests that there is a lag-time for the subsequent radiations after the salicoid WGD event. Our results provide useful data for studying the evolutionary events of Salicaceae.


Assuntos
Populus/metabolismo , Salicaceae/metabolismo , Salix/metabolismo , Duplicação Gênica/genética , Duplicação Gênica/fisiologia , Genoma de Planta/genética , Filogenia , Populus/genética , Salicaceae/genética , Salix/genética , Sequenciamento Completo do Genoma
4.
Electron. j. biotechnol ; 29: 39-46, sept. 2017. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1017082

RESUMO

Background: Idesia polycarpa Maxim. var. vestita Diels, a dioecious plant, is widely used for biodiesel due to the high oil content of its fruits. However, it is hard to distinguish its sex in the seedling stage, which makes breeding and production problematic as only the female tree can produce fruits, and the mechanisms underlying sex determination and differentiation remain unknown due to the lack of available genomic and transcriptomic information. To begin addressing this issue, we performed the transcriptome analysis of its female and male flower. Results: 28,668,977 and 22,227,992 clean reads were obtained from the female and male cDNA libraries, respectively. After quality checks and de novo assembly, a total of 84,213 unigenes with an average length of 1179 bp were generated and 65,972 unigenes (78.34%) could be matched in at least one of the NR, NT, Swiss-Prot, COG, KEGG and GO databases. Functional annotation of the unigenes uncovered diverse biological functions and processes, including reproduction and developmental process, which may play roles in sex determination and differentiation. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed many unigenes annotated as metabolic pathways, biosynthesis of secondary metabolites pathways, plant­ pathogen interaction, and plant hormone signal transduction. Moreover, 29,953 simple sequence repeats were identified using the microsatellite software. Conclusion: This work provides the first detailed transcriptome analysis of female and male flower of I. polycarpa and lays foundations for future studies on the molecular mechanisms underlying flower bud development of I. polycarpa.


Assuntos
Reprodução/genética , Salicaceae/genética , Transcriptoma , Análise de Sequência de RNA , Genes de Plantas , Repetições de Microssatélites , Salicaceae/crescimento & desenvolvimento , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular
5.
Sci Rep ; 7: 39740, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071760

RESUMO

miR1444s are functionally significant miRNAs targeting polyphenol oxidase (PPO) genes for cleavage. MIR1444 genes were reported only in Populus trichocarpa. Through the computational analysis of 215 RNA-seq data, four whole genome sequences of Salicaceae species and deep sequencing of six P. trichocarpa small RNA libraries, we investigated the origin and evolution history of MIR1444s. A total of 23 MIR1444s were identified. Populus and Idesia species contain two MIR1444 genes, while Salix includes only one. Populus and Idesia MIR1444b genes and Salix MIR1444s were phylogenetically separated from Populus and Idesia MIR1444a genes. Ptr-miR1444a and ptr-miR1444b showed sequence divergence. Compared with ptr-miR1444b, ptr-miR1444a started 2 nt upstream of precursor, resulting in differential regulation of PPO targets. Sequence alignments showed that MIR1444 genes exhibited extensive similarity to their PPO targets, the characteristics of MIRs originated from targets through an inverted gene duplication event. Genome sequence comparison showed that MIR1444 genes in Populus and Idesia were expanded through the Salicoid genome duplication event. A copy of MIR1444 gene was lost in Salix through DNA segment deletion during chromosome rearrangements. The results provide significant information for the origin of plant miRNAs and the mechanism of Salicaceae gene evolution and divergence.


Assuntos
Catecol Oxidase/metabolismo , MicroRNAs/genética , Populus/genética , Salicaceae/genética , Salix/genética , Catecol Oxidase/genética , Biologia Computacional , Evolução Molecular , Genes de Plantas/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Alinhamento de Sequência
6.
Plant Physiol ; 127(3): 1299-309, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11706208

RESUMO

A sequence coding for a peroxiredoxin (Prx) was isolated from a xylem/phloem cDNA library from Populus trichocarpa and subsequently inserted into an expression plasmid yielding the construction pET-Prx. The recombinant protein was produced in Escherichia coli cells and purified to homogeneity with a high yield. The poplar Prx is composed of 162 residues, a property that makes it the shortest plant Prx sequence isolated so far. It was shown that the protein is monomeric and possesses two conserved cysteines (Cys). The Prx degrades hydrogen peroxide and alkyl hydroperoxides in the presence of an exogenous proton donor that can be either thioredoxin or glutaredoxin (Grx). Based on this finding, we propose that the poplar protein represents a new type of Prx that differs from the so-called 2-Cys and 1-Cys Prx, a suggestion supported by the existence of natural fusion sequences constituted of a Prx motif coupled to a Grx motif. The protein was shown to be highly expressed in sieve tubes where thioredoxin h and Grx are also major proteins.


Assuntos
Oxirredutases , Peroxidases/metabolismo , Proteínas/metabolismo , Salicaceae/metabolismo , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Transporte Biológico Ativo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Glutarredoxinas , Dados de Sequência Molecular , Oxirredução , Peroxidase/metabolismo , Peroxidases/genética , Peroxidases/isolamento & purificação , Peroxirredoxinas , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/ultraestrutura , Prótons , Salicaceae/genética , Salicaceae/ultraestrutura , Alinhamento de Sequência , Compostos de Sulfidrila/análise
7.
Environ Pollut ; 115(3): 473-81, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11789927

RESUMO

To determine whether elevated CO2 reduces or exacerbates the detrimental effects of O3 on aspen (Populus tremuloides Michx.). aspen clones 216 and 271 (O3 tolerant), and 259 (O3 sensitive) were exposed to ambient levels of CO2 and O3 or elevated levels of CO2, O3, or CO2 + O3 in the FACTS II (Aspen FACE) experiment, and physiological and molecular responses were measured and compared. Clone 259. the most O3-sensitive clone, showed the greatest amount of visible foliar symptoms as well as significant decreases in chlorophyll, carotenoid, starch, and ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) concentrations and transcription levels for the Rubisco small subunit. Generally, the constitutive (basic) transcript levels for phenylalanine ammonialyase (PAL) and chalcone synthase (CHS) and the average antioxidant activities were lower for the ozone sensitive clone 259 as compared to the more tolerant 216 and 271 clones. A significant decrease in chlorophyll a, b and total (a + b) concentrations in CO2, O3, and CO2 + O3 plants was observed for all clones. Carotenoid concentrations were also significantly lower in all clones; however. CHS transcript levels were not significantly affected, suggesting a possible degradation of carotenoid pigments in O3-stressed plants. Antioxidant activities and PAL and 1-aminocyclopropane-l-carboxylic acid (ACC)-oxidase transcript levels showed a general increase in all O3 treated clones, while remaining low in CO2 and CO2 + O3 plants (although not all differences were significant). Our results suggest that the ascorbate-glutathione and phenylpropanoid pathways were activated under ozone stress and suppressed during exposure to elevated CO2. Although CO2 + O2 treatment resulted in a slight reduction of O3-induced leaf injury, it did not appear to ameliorate all of the harmful affects of O3 and, in fact. may have contributed to an increase in chloroplast damage in all three aspen clones.


Assuntos
Poluentes Atmosféricos/farmacologia , Dióxido de Carbono/farmacologia , Ozônio/farmacologia , Folhas de Planta/efeitos dos fármacos , Salicaceae/efeitos dos fármacos , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Câmaras de Exposição Atmosférica , Carotenoides/metabolismo , Clorofila/metabolismo , Clonagem de Organismos , Interações Medicamentosas , Perfilação da Expressão Gênica , Glutationa/metabolismo , Fenilpropionatos/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Salicaceae/genética , Salicaceae/metabolismo , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA