Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.025
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 15: 1448717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372404

RESUMO

Infection by Salmonella enterica serovar Typhi (S. Typhi), the cause of enteric fevers, is low in high-income countries but persistent in low- and middle-income countries, resulting in 65,400-187,700 deaths yearly. Drug resistance, including in the United States, exacerbates this issue. Evidence indicates that innate lymphocytes (INLs), such as natural killer (NK) cells, and unconventional T lymphocytes (e.g., Mucosal-associated invariant T (MAIT) cells and T-cell receptor gamma delta (TCR-γδ) cells) can impact the intestinal epithelial barrier, the primary site of exposure to S. Typhi. Moreover, INL production of IFN-γ is central in controlling S. Typhi infection. However, the impact of epithelial cells (EC) on the secretion of IFN-γ by INLs and the relationship between these events and epigenetic changes remains unknown. Epigenetic modifications in host cells are fundamental for their differentiation and function, including IFN-γ production. Herein, using a human organoid-derived polarized intestinal epithelial cell monolayer, we investigated the role of H3K4me3 and H3K27me3 epigenetic marks in intestinal immunity, focusing on the function of EC, NK, MAIT, and TCR-γδ cells in response to S. Typhi. This study builds on our previous findings that MAIT subsets exhibiting specific IFN-γ pattern signatures were associated with protection against typhoid fever and that S. Typhi infection regulates changes in chromatin marks that depend on individual cell subsets. Here, we show that cultures exposed to S. Typhi without EC exhibit a significant increase in NK and MAIT cells, and, to a lesser extent, TCR-γδ cells, expressing IFN-γ and H3K4me3 but not H3K27me3 marks, contrasting with cultures where EC is present. The influence of EC on INL H3K4me3 marks might be indirectly mediated through the modulation of IL-18 secretion via the Histone Deacetylase 6 gene during S. Typhi infection.


Assuntos
Epigênese Genética , Células Epiteliais , Imunidade Inata , Interferon gama , Salmonella typhi , Febre Tifoide , Humanos , Interferon gama/metabolismo , Febre Tifoide/imunologia , Salmonella typhi/imunologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo
2.
Front Immunol ; 15: 1454857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263222

RESUMO

An oral Controlled Human Infection Model (CHIM) with wild-type S. Typhi was re-established allowing us to explore the development of immunity. In this model, ~55% of volunteers who received the challenge reached typhoid diagnosis criteria (TD), while ~45% did not (NoTD). Intestinal macrophages are one of the first lines of defense against enteric pathogens. Most organs have self-renewing macrophages derived from tissue-resident progenitor cells seeded during the embryonic stage; however, the gut lacks these progenitors, and all intestinal macrophages are derived from circulating monocytes. After infecting gut-associated lymphoid tissues underlying microfold (M) cells, S. Typhi causes a primary bacteremia seeding organs of the reticuloendothelial system. Following days of incubation, a second bacteremia and clinical disease ensue. S. Typhi likely interacts with circulating monocytes or their progenitors in the bone marrow. We assessed changes in circulating monocytes after CHIM. The timepoints studied included 0 hours (pre-challenge) and days 1, 2, 4, 7, 9, 14, 21 and 28 after challenge. TD participants provided extra samples at the time of typhoid diagnosis, and 48-96 hours later (referred as ToD). We report changes in Classical Monocytes -CM-, Intermediate Monocytes -IM- and Non-classical Monocytes -NCM-. Changes in monocyte activation markers were identified only in TD participants and during ToD. CM and IM upregulated molecules related to interaction with bacterial antigens (TLR4, TLR5, CD36 and CD206). Of importance, CM and IM showed enhanced binding of S. Typhi. Upregulation of inflammatory molecules like TNF-α were detected, but mechanisms involved in limiting inflammation were also activated (CD163 and CD354 downregulation). CM upregulated molecules to interact/modulate cells of the adaptive immunity, including T cells (HLA-DR, CD274 and CD86) and B cells (CD257). Both CM and IM showed potential to migrate to the gut as integrin α4ß7 was upregulated. Unsupervised analysis revealed 7 dynamic cell clusters. Five of these belonged to CM showing that this is the main population activated during ToD. Overall, we provide new insights into the changes that diverse circulating monocyte subsets undergo after typhoid diagnosis, which might be important to control this disease since these cells will ultimately become intestinal macrophages once they reach the gut.


Assuntos
Monócitos , Salmonella typhi , Febre Tifoide , Humanos , Febre Tifoide/diagnóstico , Febre Tifoide/imunologia , Salmonella typhi/imunologia , Monócitos/imunologia , Masculino , Adulto , Feminino , Adulto Jovem , Macrófagos/imunologia
3.
Nat Commun ; 15(1): 8414, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341826

RESUMO

Typhoidal Salmonella enterica serovars, such as Typhi and Paratyphi A, cause severe systemic infections, thereby posing a significant threat as human-adapted pathogens. This study focuses on cytolysin A (ClyA), a virulence factor essential for bacterial dissemination within the human body. We show that ClyA is exclusively expressed by intracellular S. Paratyphi A within the Salmonella-containing vacuole (SCV), regulated by the PhoP/Q system and SlyA. ClyA localizes in the bacterial periplasm, suggesting potential secretion. Deletion of TtsA, an essential Type 10 Secretion System component, completely abolishes intracellular ClyA detection and its presence in host cell supernatants. Host cells infected with wild-type S. Paratyphi A contain substantial ClyA, with supernatants capable of lysing neighboring cells. Notably, ClyA selectively lyses macrophages and erythrocytes while sparing epithelial cells. These findings identify ClyA as an intracellularly induced cytolysin, dependent on the SCV environment and secreted via a Type 10 Secretion System, with specific cytolytic activity.


Assuntos
Proteínas de Bactérias , Salmonella paratyphi A , Vacúolos , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Animais , Camundongos , Vacúolos/metabolismo , Salmonella paratyphi A/metabolismo , Macrófagos/microbiologia , Macrófagos/metabolismo , Perforina/metabolismo , Perforina/genética , Salmonella typhi/metabolismo , Fatores de Virulência/metabolismo , Eritrócitos/metabolismo , Citotoxinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Sistemas de Secreção Bacterianos/metabolismo , Sistemas de Secreção Bacterianos/genética , Regulação Bacteriana da Expressão Gênica
4.
BMJ Case Rep ; 17(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39306340

RESUMO

A woman in her early 20's presented with fever and unintentional weight loss of 4 kg over a period of 1 month and abdominal pain for 10 days. Empirical antibiotic therapy administered prior to hospitalisation was not successful. Evaluation for fever was unrewarding except for an abnormal ultrasound which showed two cysts with the largest dimension of 9 cm in the right adnexal region. All blood cultures were sterile. She underwent laparoscopic cystectomy. Bacterial culture of cyst fluid grew Salmonella enterica subspecies enterica serotype Typhi which was found to be resistant to fluoroquinolones. The case emphasises the fact that localised infection of the ovarian cyst can occur in extraintestinal salmonellosis that can have a negative blood culture and can mimic ovarian malignancy.


Assuntos
Cistos Ovarianos , Humanos , Feminino , Cistos Ovarianos/microbiologia , Cistos Ovarianos/diagnóstico , Cistos Ovarianos/complicações , Cistos Ovarianos/cirurgia , Antibacterianos/uso terapêutico , Adulto Jovem , Infecções por Salmonella/diagnóstico , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/microbiologia , Diagnóstico Diferencial , Salmonella typhi/isolamento & purificação , Ultrassonografia , Dor Abdominal/etiologia
5.
Virulence ; 15(1): 2395831, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39185619

RESUMO

Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a systemic infection that affects millions of people worldwide. S. Typhi can invade and survive within host cells, such as intestinal epithelial cells and macrophages, by modulating their immune responses. However, the immunomodulatory capability of S. Typhi in relation to TolC-facilitated efflux pump function remains unclear. The role of TolC, an outer membrane protein that facilitates efflux pump function, in the invasion and immunomodulation of S. Typhi, was studied in human intestinal epithelial cells and macrophages. The tolC deletion mutant of S. Typhi was compared with the wild-type and its complemented strain in terms of their ability to invade epithelial cells, survive and induce cytotoxicity in macrophages, and elicit proinflammatory cytokine production in macrophages. The tolC mutant, which has a defective outer membrane, was impaired in invading epithelial cells compared to the wild-type strain, but the intracellular presence of the tolC mutant exhibited greater cytotoxicity and induced higher levels of proinflammatory cytokines (IL-1ß and IL-8) in macrophages compared to the wild-type strain. These effects were reversed by complementing the tolC mutant with a functional tolC gene. Our results suggest that TolC plays a role in S. Typhi to efficiently invade epithelial cells and suppress host immune responses during infection. TolC may be a potential target for the development of novel therapeutics against typhoid fever.


Assuntos
Proteínas da Membrana Bacteriana Externa , Células Epiteliais , Macrófagos , Salmonella typhi , Febre Tifoide , Salmonella typhi/patogenicidade , Salmonella typhi/imunologia , Salmonella typhi/genética , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Febre Tifoide/imunologia , Febre Tifoide/microbiologia , Imunomodulação , Citocinas/metabolismo , Citocinas/imunologia , Viabilidade Microbiana , Interleucina-8/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Linhagem Celular
6.
Clin Lab ; 70(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38965941

RESUMO

BACKGROUND: Salmonella typhi is a specific strain of the Salmonella bacterium, responsible for triggering typhoid fever; a significant public health concern in developing nations. OBJECTIVE: The current study aimed to identify the bacteria from the gallbladder, taken during cholecystectomies of patients, by isolating Salmonella typhi and by using microscopic characteristics, biochemical and polymerase chain reaction (PCR) tests. METHODS: A total of 120 specimens were collected from the Baghdad Teaching Hospital, Iraq. A cross-sectional descriptive study was carried out from October, 2021, to July, 2022. During that study, 26 (54.2%) male patient tested positive for Salmonella typhias well as 22 (45.8%) female patients. The age of the patients varied from < 30 to > 60 years. p-value > 0.05 was considered significant to confirm a relationship between age and Salmonella typhi effect for patients. RESULTS: Out of the 120 blood samples taken for this study, 48 (40%) tested positive by use of PCR test, 40 (33.3%) tested positive by use of the Widal test, 35 (29.1%) were positive for biopsy culture, and 35 (29.1%) were positive for blood culture. All Salmonella typhi isolates were found to be sensitive to the imipenem, cefepime, and ceftriaxone, but were resistant to gentamycin, ciprofloxacin, amikacin, erythromycin, and tetracycline (72%, 29%, 43%, 100%, 100%, respectively). CONCLUSIONS: The real time polymerase chain reaction (RT-PCR) tests and the Vitek 2 compact system showed a high level of accuracy in the detection of Salmonella typhi. Multidrug resistance was observed, which should be a signal to reduce antibiotic consumption.


Assuntos
Colecistectomia , Vesícula Biliar , Salmonella typhi , Febre Tifoide , Humanos , Salmonella typhi/isolamento & purificação , Salmonella typhi/genética , Feminino , Masculino , Iraque , Adulto , Pessoa de Meia-Idade , Estudos Transversais , Febre Tifoide/microbiologia , Febre Tifoide/diagnóstico , Vesícula Biliar/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase/métodos , Adulto Jovem
7.
Sci Rep ; 14(1): 12811, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834738

RESUMO

Macrophages provide a crucial environment for Salmonella enterica serovar Typhi (S. Typhi) to multiply during typhoid fever, yet our understanding of how human macrophages and S. Typhi interact remains limited. In this study, we delve into the dynamics of S. Typhi replication within human macrophages and the resulting heterogeneous transcriptomic responses of macrophages during infection. Our study reveals key factors that influence macrophage diversity, uncovering distinct immune and metabolic pathways associated with different stages of S. Typhi intracellular replication in macrophages. Of note, we found that macrophages harboring replicating S. Typhi are skewed towards an M1 pro-inflammatory state, whereas macrophages containing non-replicating S. Typhi exhibit neither a distinct M1 pro-inflammatory nor M2 anti-inflammatory state. Additionally, macrophages with replicating S. Typhi were characterized by the increased expression of genes associated with STAT3 phosphorylation and the activation of the STAT3 transcription factor. Our results shed light on transcriptomic pathways involved in the susceptibility of human macrophages to intracellular S. Typhi replication, thereby providing crucial insight into host phenotypes that restrict and support S. Typhi infection.


Assuntos
Macrófagos , Fator de Transcrição STAT3 , Salmonella typhi , Febre Tifoide , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Salmonella typhi/genética , Febre Tifoide/microbiologia , Febre Tifoide/imunologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Perfilação da Expressão Gênica , Fenótipo , Transcriptoma , Fosforilação
8.
Am J Trop Med Hyg ; 111(2): 297-299, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38917785

RESUMO

Iliopsoas abscess is an infrequent condition characterized by the collection of pus in the iliopsoas compartment. The prevalence of the disease has been increasing in recent years with the emergence of various comorbidities and risk factors. The availability of newer imaging modalities has also improved the detection of new cases. Salmonellosis is an uncommon etiology in iliopsoas abscess and sacroiliitis. Most cases reported in the literature are associated with Staphylococcus aureus, Streptococci species, and Escherichia coli. Diabetes, hematological malignancies, HIV, and other immunocompromised states are important comorbidities/risk factors for iliopsoas abscess. We report a case of an 18-year-old male who presented with a history of fever and right hip pain for 10 days. Radioimaging revealed right sacroiliitis and iliopsoas abscess. Blood culture revealed pan-sensitive Salmonella typhi. After the prolonged course of antibiotics (intravenous ceftriaxone followed by oral levofloxacin), the patient improved with no further relapse in symptoms. Salmonella typhi should be an important differential of iliopsoas abscess in endemic regions after ruling out the common etiology such as S. aureus and Mycobacterium tuberculosis.


Assuntos
Antibacterianos , Ceftriaxona , Abscesso do Psoas , Sacroileíte , Salmonella typhi , Humanos , Masculino , Abscesso do Psoas/microbiologia , Abscesso do Psoas/tratamento farmacológico , Abscesso do Psoas/diagnóstico por imagem , Adolescente , Sacroileíte/microbiologia , Sacroileíte/tratamento farmacológico , Sacroileíte/diagnóstico por imagem , Salmonella typhi/isolamento & purificação , Antibacterianos/uso terapêutico , Ceftriaxona/uso terapêutico , Febre Tifoide/tratamento farmacológico , Febre Tifoide/complicações , Febre Tifoide/diagnóstico , Febre Tifoide/microbiologia , Levofloxacino/uso terapêutico , Imunocompetência
9.
ACS Infect Dis ; 10(6): 1990-2001, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38815059

RESUMO

Conserved molecular signatures in multidrug-resistant Salmonella typhi can serve as novel therapeutic targets for mitigation of infection. In this regard, we present the S. typhi cell division activator protein (StCAP) as a conserved target across S. typhi variants. From in silico and fluorimetric assessments, we found that StCAP is a DNA-binding protein. Replacement of the identified DNA-interacting residue Arg34 of StCAP with Ala34 showed a dramatic (15-fold) increase in Kd value compared to the wild type (Kd 546 nm) as well as a decrease in thermal stability (10 °C shift). Out of the two screened molecules against the DNA-binding pocket of StCAP, eltrombopag, and nilotinib, the former displayed better binding. Eltrombopag inhibited the stand-alone S. typhi culture with an IC50 of 38 µM. The effect was much more pronounced on THP-1-derived macrophages (T1Mac) infected with S. typhi where colony formation was severely hindered with IC50 reduced further to 10 µM. Apoptotic protease activating factor1 (Apaf1), a key molecule for intrinsic apoptosis, was identified as an StCAP-interacting partner by pull-down assay against T1Mac. Further, StCAP-transfected T1Mac showed a significant increase in LC3 II (autophagy marker) expression and downregulation of caspase 3 protein. From these experiments, we conclude that StCAP provides a crucial survival advantage to S. typhi during infection, thereby making it a potent alternative therapeutic target.


Assuntos
Proteínas de Bactérias , Salmonella typhi , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/genética , Salmonella typhi/patogenicidade , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Apoptose/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/efeitos dos fármacos , Células THP-1 , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Autofagia/efeitos dos fármacos , Febre Tifoide/microbiologia , Divisão Celular/efeitos dos fármacos
10.
J Infect Dev Ctries ; 18(4): 550-555, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38728649

RESUMO

INTRODUCTION: Pakistan has been experiencing an extensively drug-resistant (XDR) outbreak of typhoid for some years. We sought to evaluate how the COVID-19 pandemic impacted typhoid epidemiology in Pakistan, from the beginning of the pandemic in 2020 through the end of 2022, and the reduction of COVID-19 cases. METHODOLOGY: We compared national public COVID-19 data with retrospectively obtained patient data of confirmed S. Typhi isolates between January 2019 and December 2022 from Shaukat Khanum Memorial Cancer Hospital and Research Centre and the hospital's extended network of laboratory collection centers across Pakistan. RESULTS: We observed that during the early onset of the COVID-19 pandemic and COVID-19 peaks, typhoid positivity generally decreased. This suggests that restrictions and non-pharmaceutical interventions that limited social interactions and promoted good sanitation and hygiene practices had a positive secondary effect on typhoid. This led to an overall yearly decrease in typhoid positivity between 2019 to 2021. However, the percentage of S. Typhi cases isolated that were ceftriaxone-resistant continued to increase, suggesting the continued dominance of XDR typhoid in Pakistan. In 2022, with the alleviation of pandemic restrictions, we observed increased typhoid positivity and COVID-19 and typhoid positivity started to follow similar trends. CONCLUSIONS: Given the continued presence of COVID-19 along with XDR typhoid in Pakistan, it will be imperative to use differential testing to ensure that the epidemiology of each reported is accurate, the spread of each it contained, and that antibiotics are not misused. The use of approved vaccinations will lessen the burden of both diseases.


Assuntos
COVID-19 , Salmonella typhi , Febre Tifoide , Febre Tifoide/epidemiologia , Paquistão/epidemiologia , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/isolamento & purificação , Estudos Retrospectivos , SARS-CoV-2 , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia
11.
mBio ; 15(4): e0045424, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38497655

RESUMO

Salmonella serovars Typhi and Paratyphi cause a prolonged illness known as enteric fever, whereas other serovars cause acute gastroenteritis. Mechanisms responsible for the divergent clinical manifestations of nontyphoidal and enteric fever Salmonella infections have remained elusive. Here, we show that S. Typhi and S. Paratyphi A can persist within human macrophages, whereas S. Typhimurium rapidly induces apoptotic macrophage cell death that is dependent on Salmonella pathogenicity island 2 (SPI2). S. Typhi and S. Paratyphi A lack 12 specific SPI2 effectors with pro-apoptotic functions, including nine that target nuclear factor κB (NF-κB). Pharmacologic inhibition of NF-κB or heterologous expression of the SPI2 effectors GogA or GtgA restores apoptosis of S. Typhi-infected macrophages. In addition, the absence of the SPI2 effector SarA results in deficient signal transducer and activator of transcription 1 (STAT1) activation and interleukin 12 production, leading to impaired TH1 responses in macrophages and humanized mice. The absence of specific nontyphoidal SPI2 effectors may allow S. Typhi and S. Paratyphi A to cause chronic infections. IMPORTANCE: Salmonella enterica is a common cause of gastrointestinal infections worldwide. The serovars Salmonella Typhi and Salmonella Paratyphi A cause a distinctive systemic illness called enteric fever, whose pathogenesis is incompletely understood. Here, we show that enteric fever Salmonella serovars lack 12 specific virulence factors possessed by nontyphoidal Salmonella serovars, which allow the enteric fever serovars to persist within human macrophages. We propose that this fundamental difference in the interaction of Salmonella with human macrophages is responsible for the chronicity of typhoid and paratyphoid fever, suggesting that targeting the nuclear factor κB (NF-κB) complex responsible for macrophage survival could facilitate the clearance of persistent bacterial infections.


Assuntos
Salmonella typhi , Salmonella , Febre Tifoide , Humanos , Animais , Camundongos , Salmonella typhi/genética , Febre Tifoide/microbiologia , NF-kappa B , Macrófagos/microbiologia
12.
Front Immunol ; 15: 1334762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533492

RESUMO

Salmonella enterica serovar Typhi (S. Typhi), a human-restricted pathogen, invades the host through the gut to cause typhoid fever. Recent calculations of the typhoid fever burden estimated that more than 10 million new typhoid fever cases occur in low and middle-income countries, resulting in 65,400-187,700 deaths yearly. Interestingly, if not antibiotic-treated, upon the resolution of acute disease, 1%-5% of patients become asymptomatic chronic carriers. Chronically infected hosts are not only critical reservoirs of infection that transmit the disease to naive individuals but are also predisposed to developing gallbladder carcinoma. Nevertheless, the molecular mechanisms involved in the early interactions between gallbladder epithelial cells and S. Typhi remain largely unknown. Based on our previous studies showing that closely related S. Typhi strains elicit distinct innate immune responses, we hypothesized that host molecular pathways activated by S. Typhi strains derived from acutely and chronically infected patients would differ. To test this hypothesis, we used a novel human organoid-derived polarized gallbladder monolayer model, and S. Typhi strains derived from acutely and chronically infected patients. We found that S. Typhi strains derived from acutely and chronically infected patients differentially regulate host mitogen-activated protein kinase (MAPK) and S6 transcription factors. These variations might be attributed to differential cytokine signaling, predominantly via TNF-α and IL-6 production and appear to be influenced by the duration the isolate was subjected to selective pressures in the gallbladder. These findings represent a significant leap in understanding the complexities behind chronic S. Typhi infections in the gallbladder and may uncover potential intervention targets.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Vesícula Biliar/patologia , Infecção Persistente , Imunidade
13.
Microbiol Spectr ; 12(3): e0310223, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289090

RESUMO

Tomatoes are readily available and affordable vegetables that offer a range of health benefits due to their bioactive molecules, such as antioxidants and antimicrobials. In contrast to the widely recognized antioxidant properties of tomatoes, their antimicrobial properties remain largely unexplored. Here, we present our findings on the antimicrobial properties of tomato juice and peptides, namely, tomato-derived antimicrobial peptides (tdAMPs), in relation to their effectiveness against typhoidal Salmonella. Our research has revealed that tomato juice demonstrates significant antimicrobial properties against Salmonella Typhi, a pathogen that specifically affects humans and is responsible for causing typhoid fever. By employing computational analysis of the tomato genome sequence, conducting molecular dynamics simulation, and performing functional analyses, we have successfully identified two tdAMPs, namely, tdAMP-1 and tdAMP-2. These tdAMPs have demonstrated potent antimicrobial properties by effectively disrupting bacterial membranes. The efficacy of tdAMP-2 is shown to be more effective than tdAMP-1. The efficacy of tdAMP-1 and tdAMP-2 has been demonstrated against drug-resistant S. Typhi, as well as hyper-capsular S. Typhi variants that possess hypervirulent characteristics, which are presently circulating in countries with endemicity. Tomato juice, along with the two tdAMPs, has demonstrated effectiveness against uropathogenic Escherichia coli as well. This underscores their potential as viable agents in combating certain Gram-negative pathogens. This study provides valuable insights into the development of effective and sustainable public health strategies that utilize tomato and its derivatives as lifestyle interventions.IMPORTANCEIn this study, we investigate the antimicrobial properties of tomato juice, the most widely consumed affordable vegetables, as well as tomato-derived antimicrobial peptides, in relation to their effectiveness against foodborne pathogens with an emphasis on Salmonella Typhi, a deadly human-specific pathogen.


Assuntos
Anti-Infecciosos , Solanum lycopersicum , Febre Tifoide , Humanos , Febre Tifoide/microbiologia , Salmonella/genética , Salmonella typhi/genética , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos/farmacologia , Peptídeos Antimicrobianos
14.
Microbiology (Reading) ; 169(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37862087

RESUMO

The Salmonella pathogenicity island 2 (SPI-2)-encoded type III secretion system (injectisome) is assembled following uptake of bacteria into vacuoles in mammalian cells. The injectisome translocates virulence proteins (effectors) into infected cells. Numerous studies have established the requirement for a functional SPI-2 injectisome for growth of Salmonella Typhimurium in mouse macrophages, but the results of similar studies involving Salmonella Typhi and human-derived macrophages are not consistent. It is important to clarify the functions of the S. Typhi SPI-2 injectisome, not least because an inactivated SPI-2 injectisome forms the basis for live attenuated S. Typhi vaccines that have undergone extensive trials in humans. Intracellular expression of injectisome genes and effector delivery take longer in the S. Typhi/human macrophage model than for S. Typhimurium and we propose that this could explain the conflicting results. Furthermore, strains of both S. Typhimurium and S. Typhi contain intact genes for several 'core' effectors. In S. Typhimurium these cooperate to regulate the vacuole membrane and contribute to intracellular bacterial replication; similar functions are therefore likely in S. Typhi.


Assuntos
Ilhas Genômicas , Salmonella typhi , Camundongos , Animais , Humanos , Salmonella typhi/genética , Salmonella typhi/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Salmonella typhimurium/metabolismo , Macrófagos/microbiologia , Mamíferos/genética , Mamíferos/metabolismo
15.
Braz J Microbiol ; 54(4): 2807-2815, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801221

RESUMO

The rate of infectious diseases started to be one of the major mortality agents in the healthcare sector. Exposed to increased bacterial infection by antibiotic-resistant bacteria became one of the complications that occurred for bone marrow transplant patients. Nanotechnology may provide clinicians and patients with the key to overcoming multidrug-resistant bacteria. Therefore, this study was conducted to clarify the prevalence of MDR bacteria in bone marrow transplant recipients and the use of Ag2O/ZnO nanocomposites to treat participants of diarrhea brought on by MDR bacteria following bone marrow transplantation (BMT). Present results show that pathogenic bacteria were present in 100 of 195 stool samples from individuals who had diarrhea. Phenotypic, biochemical, and molecular analysis clarify that Proteus mirabilis and Salmonella typhi were detected in 21 and 25 samples, respectively. Successful synthesis of Ag2O/ZnO nanocomposites with a particle enables to inhibition of both pathogens. The maximum inhibitory impact was seen on Salmonella typhi. At low doses (10-5 g/l), it prevented the growth by 53.4%, while at higher concentrations (10-1 g/l), Salmonella typhi was inhibited by 95.5%. Regarding Proteus mirabilis, at (10-5 g/l) Ag2O/ZnO, it was inhabited by 78.7%, but at higher concentrations (10-1 g/l), it was inhibited the growth by 94.6%. Ag2O/ZnO nanocomposite was therefore found to be the most effective therapy for MDR-isolated bacteria and offered promise for the treatment of MDR bacterial infections that cause diarrhea.


Assuntos
Proteus mirabilis , Óxido de Zinco , Humanos , Salmonella typhi , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Medula Óssea , Transplante de Medula Óssea , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Diarreia
16.
mBio ; 14(4): e0113723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37341487

RESUMO

Salmonella enterica serovar Typhi (S. Typhi) is a human-restricted pathogen that replicates in macrophages. In this study, we investigated the roles of the S. Typhi type 3 secretion systems (T3SSs) encoded on Salmonella pathogenicity islands (SPI)-1 (T3SS-1) and SPI-2 (T3SS-2) during human macrophage infection. We found that mutants of S. Typhi deficient for both T3SSs were defective for intramacrophage replication as measured by flow cytometry, viable bacterial counts, and live time-lapse microscopy. T3SS-secreted proteins PipB2 and SifA contributed to S. Typhi replication and were translocated into the cytosol of human macrophages through both T3SS-1 and T3SS-2, demonstrating functional redundancy for these secretion systems. Importantly, an S. Typhi mutant strain that is deficient for both T3SS-1 and T3SS-2 was severely attenuated in the ability to colonize systemic tissues in a humanized mouse model of typhoid fever. Overall, this study establishes a critical role for S. Typhi T3SSs during its replication within human macrophages and during systemic infection of humanized mice. IMPORTANCE Salmonella enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Understanding the key virulence mechanisms that facilitate S. Typhi replication in human phagocytes will enable rational vaccine and antibiotic development to limit the spread of this pathogen. While S. Typhimurium replication in murine models has been studied extensively, there is limited information available about S. Typhi replication in human macrophages, some of which directly conflict with findings from S. Typhimurium murine models. This study establishes that both of S. Typhi's two type 3 secretion systems (T3SS-1 and T3SS-2) contribute to intramacrophage replication and virulence.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Animais , Camundongos , Salmonella typhi/genética , Febre Tifoide/microbiologia , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Salmonella/metabolismo , Macrófagos/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
Microb Pathog ; 178: 106078, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965832

RESUMO

Propionate, a major constituent of short chain fatty acids, has recently been reported to be involved in both prokaryotic and eukaryotic lysine propionylation (Kpr). However, the propionylation characteristics of the enteric pathogen Salmonella enterica serovar Typhi (S. Typhi) following invasion of the human gut under the influence of propionate, whether virulence is affected, and the underlying mechanisms are not yet known. In the present study, we report that propionate significantly reduces the viability of S. Typhi in macrophages through intra-macrophage survival assays. We also demonstrate that the concentration of propionate and the propionate metabolic intermediate propionyl coenzyme A can affect the level of modification of PhoP by propionylation, which is tightly linked to intracellular survival. By expressing and purifying PhoP protein in vitro and performing EMSA and protein phosphorylation analyses, We provide evidence that K102 of PhoP is modified by Kpr propionate, which regulates S. Typhi viability in macrophages by decreasing the phosphorylation and DNA-binding ability of PhoP. In conclusion, our study reveals a potential molecular mechanism by which propionate reduces the viability of S. Typhi in macrophages via Kpr.


Assuntos
Propionatos , Salmonella typhi , Humanos , Salmonella typhi/metabolismo , Propionatos/farmacologia , Propionatos/metabolismo , Macrófagos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
18.
Food Chem ; 408: 135226, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549156

RESUMO

The quantitative detection of pathogens in milliliters of beverage sample requires complex preprocessing. To achieve rapid and ultrasensitive quantification of pathogens in large volume food sample, we developed a filtration-based interfacial digital LAMP (idLAMP) system, which consists of a nanoporous membrane for filtration and nanoporous hydrogel for digital amplification. Digital counting of single bacteria at the membrane surface under nanoconfinement could be achieved. The idLAMP successfully accomplished the quantitative detection of Escherichia coli in 100 mL water samples within 30 min, with wide dynamic range from 0.09 to 900 cells/mL. This technique could also be well applied to the quantification of Escherichia coli and Salmonella typhi in real beverage samples (juice, tea drinks, carbonated drinks and alcoholic drinks) without tedious sample pretreatments. With facile operation, higher specificity and sensitivity and better end-point analysis capabilities, the system has great potential in quantitative counting of single bacteria in large-volume food samples.


Assuntos
Escherichia coli , Salmonella typhi , Bebidas , Bactérias , Alimentos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
19.
BMC Infect Dis ; 22(1): 766, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184614

RESUMO

BACKGROUND: We aimed to assess the prevalence of Salmonella Typhi through DNA and IgM-antibody detection methods as a prelude to extended surveillance activities at sites in Ghana, Madagascar, and Ethiopia. METHODS: We performed species-specific real-time polymerase reaction (RT-PCR) to identify bacterial nucleic acid, and enzyme-linked immunosorbent assay (ELISA) for detecting HlyE/STY1498-, CdtB/STY1886-, pilL/STY4539- and Vi-antigens in blood and biopsy specimens of febrile and non-febrile subjects. We generated antigen-specific ELISA proxy cut-offs by change-point analyses, and utilized cumulative sum as detection method coupled with 1000 repetitive bootstrap analyses. We computed prevalence rates in addition to odds ratios to assess correlations between ELISA outcomes and participant characteristics. RESULTS: Definitive positive RT-PCR results were obtained from samples of febrile subjects originating from Adama Zuria/Ethiopia (1.9%, 2/104), Wolayita Sodo/Ethiopia (1.0%, 1/100), Diego/Madagascar (1.0%, 1/100), and Kintampo/Ghana (1.0%, 1/100), and from samples of non-febrile subjects from Wolayita Sodo/Ethiopia (1%, 2/201). While IgM antibodies against all antigens were identified across all sites, prevalence rates were highest at all Ethiopian sites, albeit in non-febrile populations. Significant correlations in febrile subjects aged < 15 years versus ≥ 15 years were detected for Vi (Odds Ratio (OR): 8.00, p = 0.034) in Adama Zuria/Ethiopia, STY1498 (OR: 3.21, p = 0.008), STY1886 (OR: 2.31, p = 0.054) and STY4539 (OR: 2.82, p = 0.022) in Diego/Madagascar, and STY1498 (OR: 2.45, p = 0.034) in Kintampo/Ghana. We found statistical significance in non-febrile male versus female subjects for STY1498 (OR: 1.96, p = 0.020) in Adama Zuria/Ethiopia, Vi (OR: 2.84, p = 0.048) in Diego/Madagascar, and STY4539 (OR: 0.46, p = 0.009) in Kintampo/Ghana. CONCLUSIONS: Findings indicate non-discriminatory stages of acute infections, though with site-specific differences. Immune responses among non-febrile, presumably healthy participants may mask recall and/or reporting bias leading to misclassification, or asymptomatic, subclinical infection signs induced by suppression of inflammatory responses. As most Ethiopian participants were ≥ 15 years of age and not at high-risk, the true S. Typhi burden was likely missed. Change-point analyses for generating ELISA proxy cut-offs appeared robust, though misclassification is possible. Our findings provided important information that may be useful to assess sites prior to implementing surveillance for febrile illness including Salmonella disease.


Assuntos
Ácidos Nucleicos , Febre Tifoide , Adolescente , Distrofias Hereditárias da Córnea , Ensaio de Imunoadsorção Enzimática , Etiópia/epidemiologia , Feminino , Febre/microbiologia , Gana/epidemiologia , Humanos , Imunoglobulina M , Madagáscar , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salmonella , Salmonella typhi/genética , Febre Tifoide/diagnóstico , Febre Tifoide/epidemiologia , Febre Tifoide/microbiologia
20.
mBio ; 13(6): e0273322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286551

RESUMO

Capsular polysaccharides are common virulence factors of extracellular, but not intracellular bacterial pathogens, due to the antiphagocytic properties of these surface structures. It is therefore paradoxical that Salmonella enterica subspecies enterica serovar Typhi, an intracellular pathogen, synthesizes a virulence-associated (Vi) capsule, which exhibits antiphagocytic properties. Here, we show that the Vi capsular polysaccharide has different functions when S. Typhi interacts with distinct subsets of host phagocytes. The Vi capsular polysaccharide allowed S. Typhi to selectively evade phagocytosis by human neutrophils while promoting human macrophage phagocytosis. A screen of C-type lectin receptors identified human DC-SIGN as the receptor involved in macrophage binding and phagocytosis of capsulated S. Typhi. Consistent with the anti-inflammatory activity of DC-SIGN, purified Vi capsular polysaccharide reduced inflammatory responses in macrophages. These data suggest that binding of the human C-type lectin receptor DC-SIGN by the Vi capsular polysaccharide contributes to the pathogenesis of typhoid fever. IMPORTANCE Salmonella enterica subspecies enterica serovar Typhi is the causative agent of typhoid fever. The recent emergence of S. Typhi strains which are resistant to antibiotic therapy highlights the importance of vaccination in managing typhoid fever. The virulence-associated (Vi) capsular polysaccharide is an effective vaccine against typhoid fever, but the role the capsule plays during pathogenesis remains incompletely understood. Here, we identify the human C-type lectin receptor DC-SIGN as the receptor for the Vi capsular polysaccharide. Binding of capsulated S. Typhi to DC-SIGN resulted in phagocytosis of the pathogen by macrophages and induction of an anti-inflammatory cytokine response. Thus, the interaction of the Vi capsular polysaccharide with human DC-SIGN contributes to the pathogenesis of typhoid fever and should be further investigated in the context of vaccine development.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Febre Tifoide/microbiologia , Polissacarídeos Bacterianos/metabolismo , Lectinas Tipo C/metabolismo , Fagocitose , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA