Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Exp Cell Res ; 399(1): 112423, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338480

RESUMO

Nano-sized Gram-negative bacterial outer membrane vesicles possess unique structural and immunostimulatory effects that could be exploited to regress tumors by alerting the host immune system and reversing the immunosuppressive tumor microenvironment. The current study was conducted to investigate the antitumor activity of the outer membrane vesicles (ST-OMVs) of Salmonella Typhimurium ATCC 14028, in vitro in human colorectal carcinoma (HTC116), breast cancer (MCF-7), and hepatocellular carcinoma (HepG2) cell lines and in vivo in Ehrlich solid carcinoma-bearing mice model either as a mono-immunotherapy or as an adjuvant to a commonly used conventional chemotherapy. In addition, we investigated the safety of ST-OMVs. Adult Swiss albino female mice with transplanted Ehrlich solid carcinoma were treated with either ST-OMVs, paclitaxel or a combination of both. Tumor volume, growth inhibition rate, quantitative RT-PCR of Bax and VEGF genes expression, histopathology and immune-expression of caspase-3, Beclin-1, CD49b and Ki-67 were all analyzed. Our results showed that ST-OMVs significantly decreased tumor volume, significantly increased tumor growth inhibition rate, up-regulated the immunohistochemical expression of caspase-3, Beclin-1, and CD49b (enhanced recruitment of NK cells). Furthermore, ST-OMVs down-regulated the expression of Ki-67, increased Bax gene expression and decreased VEGF gene expression as detected by qRT-PCR analysis. Histologically, ST-OMVs promoted apoptosis, decreased tumor invasion and mitotic activities. Moreover, ST-OMVs showed a remarkable cytotoxic activity in various investigated in vitro cancer cell lines. Our findings demonstrate potential antitumor activity of ST-OMVs that might be used as a promising safe antitumor immunotherapy or an adjuvant to conventional chemotherapeutic drugs, resolving some of their problems.


Assuntos
Antineoplásicos/farmacologia , Proteínas da Membrana Bacteriana Externa/farmacologia , Vesículas Extracelulares , Salmonella typhimurium/química , Animais , Antineoplásicos/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Vesículas Extracelulares/química , Vesículas Extracelulares/fisiologia , Vesículas Extracelulares/ultraestrutura , Feminino , Células HCT116 , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Neoplasias/patologia , Salmonella typhimurium/ultraestrutura
2.
Cell Rep ; 32(12): 108161, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966796

RESUMO

Sensing stressful conditions and adjusting the cellular metabolism to adapt to the environment are essential activities for bacteria to survive in variable situations. Here, we describe a stress-related protein, YdiU, and characterize YdiU as an enzyme that catalyzes the covalent attachment of uridine-5'-monophosphate to a protein tyrosine/histidine residue, an unusual modification defined as UMPylation. Mn2+ serves as an essential co-factor for YdiU-mediated UMPylation. UTP and Mn2+ binding converts YdiU to an aggregate-prone state facilitating the recruitment of chaperones. The UMPylation of chaperones prevents them from binding co-factors or clients, thereby impairing their function. Consistent with the recent finding that YdiU acts as an AMPylator, we further demonstrate that the self-AMPylation of YdiU padlocks its chaperone-UMPylation activity. A detailed mechanism is proposed based on the crystal structures of Apo-YdiU and YdiU-AMPNPP-Mn2+ and on molecular dynamics simulation models of YdiU-UTP-Mn2+ and YdiU-UTP-peptide. In vivo data demonstrate that YdiU effectively protects Salmonella from stress-induced ATP depletion through UMPylation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Manganês/metabolismo , Transdução de Sinais , Estresse Fisiológico , Uridina Monofosfato/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Agregados Proteicos , Domínios Proteicos , Salmonella typhimurium/metabolismo , Salmonella typhimurium/ultraestrutura , Relação Estrutura-Atividade , Especificidade por Substrato , Uridina Trifosfato/metabolismo
3.
Foodborne Pathog Dis ; 17(6): 396-403, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31755743

RESUMO

Polyphenols are a group of active ingredients in olive oil, and have been reported to exhibit antioxidant activity. Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella Typhimurium) and Staphylococcus aureus are common foodborne pathogens causing serious infections and food poisoning in humans. This study was conducted to analyze the antibacterial activity of olive oil polyphenol extract (OOPE) against Salmonella Typhimurium and S. aureus, and reveal the possible antibacterial mechanism. The antibacterial activity was estimated using minimum inhibitory concentration (MIC) values and bacterial survival rates when treated with OOPE. The antibacterial mechanism was revealed through determinations of changes in intracellular ATP concentration and cell membrane potential, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transmission electron microscopy analysis. The results showed the MICs of OOPE against Salmonella Typhimurium and S. aureus were 0.625 and 0.625-1.25 mg/mL, respectively. The growth of Salmonella Typhimurium and S. aureus (∼8 log CFU/mL) was completely inhibited after treatments with 0.625 mg/mL of OOPE for 3 h and 0.625-1.25 mg/mL for 5 h, respectively. When Salmonella Typhimurium and S. aureus were exposed to OOPE, the physiological functions associated with cell activity were destroyed, as manifested by reduction of intracellular ATP concentrations, cell membrane depolarization, lower bacterial protein content, and leakage of cytoplasm. These findings suggested a strong antibacterial effect of OOPE against Salmonella Typhimurium and S. aureus, and provided a possible strategy of controlling contamination by these two pathogens in food products.


Assuntos
Trifosfato de Adenosina/metabolismo , Azeite de Oliva/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Contaminação de Alimentos , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Olea/química , Salmonella typhimurium/ultraestrutura , Staphylococcus aureus/ultraestrutura
4.
J Microbiol ; 58(4): 245-251, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31760612

RESUMO

The bacterial flagellum is an appendage structure that provides a means for motility to promote survival in fluctuating environments. For the intracellular pathogen Salmonella enterica serovar Typhimurium to survive within macrophages, flagellar gene expression must be tightly regulated, and thus, is controlled at multiple levels, including DNA recombination, transcription, post-transcription, protein synthesis, and assembly within host cells. To understand the contribution of flagella to Salmonella pathogenesis within the host, it is critical to detect flagella production within macrophages via microscopy. In this paper, we describe two methods for detecting bacterial flagella by microscopy both in vitro and in vivo infection models.


Assuntos
Flagelos/ultraestrutura , Salmonella typhimurium/ultraestrutura , Animais , Linhagem Celular , Macrófagos/microbiologia , Camundongos , Microscopia Eletrônica de Transmissão , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade
5.
Mater Sci Eng C Mater Biol Appl ; 104: 109932, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499934

RESUMO

Nanomaterial based paints are in current demand in the area of surface protective coatings due to the significant advances made to improve their antibacterial and anticorrosion characteristics. In this work, we have developed magnetic graphene oxide (MGO) paint with the incorporation of cobalt ferrite (CF) and graphene oxide (GO) along with paint materials by using high energy ball milling (HEBM). Morphological, elemental and functional analysis of the MGO paint is studied with ESEM, AFM, Raman, FTIR spectroscopy. EDS and PIXE methods are used for elemental analysis. Thermal analysis shows that the MGO film was stable up to 100 °C. The saturation magnetization of CF MNP is observed as 76 emu/g and it is reduced to 12 emu/g for MGP paint. The detailed antibacterial study of the prepared MGO paint has performed with S. typhimurium and E. coli. The dead-live assessment shows the dead population for S. typhimurium is superior up to 82% whereas it is 20% for E. coli. The morphological damage of bacterial cells is studied using SEM technique. Flow cytometry analysis of reactive oxygen species (ROS) generation experiments and computational analysis supported the proposed mechanism of induced ROS for the damage of bacterial membrane via interaction of GO and CF with bacterial proteins leading to alteration in their functionality. The observed results indicate that the prepared MGO paint could be a better candidate in the area of nano paint for surface protective coatings.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/síntese química , Compostos Férricos/síntese química , Grafite/síntese química , Nanopartículas de Magnetita/química , Via Secretória/efeitos dos fármacos , Antibacterianos/síntese química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/farmacologia , Cobalto/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Compostos Férricos/farmacologia , Grafite/farmacologia , Humanos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Propriedades de Superfície , Temperatura , Termogravimetria , Vibração
6.
Biotechniques ; 64(1): 6-8, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29384070
7.
J Exp Med ; 213(10): 2113-28, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27573815

RESUMO

Inflammasomes activate caspase-1 in response to cytosolic contamination or perturbation. This inflammatory caspase triggers the opening of the GSDMD pore in the plasma membrane, resulting in lytic cell death called pyroptosis. We had previously assumed that pyroptosis releases intracellular bacteria to the extracellular space. Here, we find that viable bacteria instead remain trapped within the cellular debris of pyroptotic macrophages. This trapping appears to be an inevitable consequence of how osmotic lysis ruptures the plasma membrane, and may also apply to necroptosis and some forms of nonprogrammed necrosis. Although membrane tears release soluble cytosolic contents, they are small enough to retain organelles and bacteria. We call this structure the pore-induced intracellular trap (PIT), which is conceptually parallel to the neutrophil extracellular trap (NET). The PIT coordinates innate immune responses via complement and scavenger receptors to drive recruitment of and efferocytosis by neutrophils. Ultimately, this secondary phagocyte kills the bacteria. Hence, caspase-1-driven pore-induced cell death triggers a multifaceted defense against intracellular bacteria facilitated by trapping the pathogen within the cellular debris. Bona fide intracellular bacterial pathogens, such as Salmonella, must prevent or delay pyroptosis to avoid being trapped in the PIT and subsequently killed by neutrophils.


Assuntos
Espaço Intracelular/metabolismo , Fagocitose , Piroptose , Salmonella typhimurium/fisiologia , Animais , Proteínas do Sistema Complemento/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Necrose , Neutrófilos/metabolismo , Receptores Depuradores/metabolismo , Salmonella typhimurium/ultraestrutura , Solubilidade
8.
Proc Natl Acad Sci U S A ; 113(35): 9798-803, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27528687

RESUMO

The flagellum is a complex bacterial nanomachine that requires the proper assembly of several different proteins for its function. Dedicated chaperones are central in preventing aggregation or undesired interactions of flagellar proteins, including their targeting to the export gate. FliT is a key flagellar chaperone that binds to several flagellar proteins in the cytoplasm, including its cognate filament-capping protein FliD. We have determined the solution structure of the FliT chaperone in the free state and in complex with FliD and the flagellar ATPase FliI. FliT adopts a four-helix bundle and uses a hydrophobic surface formed by the first three helices to recognize its substrate proteins. We show that the fourth helix constitutes the binding site for FlhA, a membrane protein at the export gate. In the absence of a substrate protein FliT adopts an autoinhibited structure wherein both the binding sites for substrates and FlhA are occluded. Substrate binding to FliT activates the complex for FlhA binding and thus targeting of the chaperone-substrate complex to the export gate. The activation and targeting mechanisms reported for FliT appear to be shared among the other flagellar chaperones.


Assuntos
Proteínas de Bactérias/química , Flagelos/química , Proteínas de Membrana/química , Chaperonas Moleculares/química , ATPases Translocadoras de Prótons/química , Salmonella typhimurium/química , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos/metabolismo , Flagelos/ultraestrutura , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/ultraestrutura , Especificidade por Substrato
9.
Food Microbiol ; 47: 69-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25583339

RESUMO

Although antimicrobial activities of plant essential oils are well documented, challenges remain as to their application in fresh produce due to the hydrophobic nature of essential oils. Oregano oil nanoemulsions were formulated with a food-grade emulsifier and evaluated for their efficacy in inactivating the growth of foodborne bacteria on fresh lettuce. Lettuce was artificially inoculated with Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli O157:H7, followed by a one-minute dipping in oregano oil nanoemulsions (0.05% or 0.1%). Samples were stored at 4 °C and enumerated for bacteria at fixed intervals (0 h, 3 h, 24 h, and 72 h). Compared to control, 0.05% nanoemulsion showed an up to 3.44, 2.31, and 3.05 log CFU/g reductions in L. monocytogenes, S. Typhimurium, and E. coli O157:H7, respectively. Up to 3.57, 3.26, and 3.35 log CFU/g reductions were observed on the same bacteria by the 0.1% treatment. Scanning Electron Microscopy (SEM) demonstrated disrupted bacterial membranes due to the oregano oil treatment. The data suggest that applying oregano oil nanoemulsions to fresh produce may be an effective antimicrobial control strategy.


Assuntos
Antibacterianos , Bactérias/crescimento & desenvolvimento , Lactuca/microbiologia , Óleos Voláteis , Origanum , Contagem de Colônia Microbiana , Desinfetantes , Emulsões , Escherichia coli/crescimento & desenvolvimento , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/ultraestrutura , Manipulação de Alimentos , Microbiologia de Alimentos , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/ultraestrutura , Microscopia Eletrônica de Varredura , Origanum/química , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/ultraestrutura
10.
Res Microbiol ; 165(7): 559-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25049168

RESUMO

Salmonella is a common bacterial enteropathogen responsible for many deaths every year. In the present study, we evaluated the mechanism of action of thymol against Salmonella ser. typhimurium, as well as its potential to induce intracellular killing and recovery from oxidative stress in macrophages. The minimum inhibitory concentration (MIC) of thymol against S. typhimurium was found to be 750 mg/l, and the CFU count decreased in a time-dependent manner. Excessive release of cellular materials and potassium ion also occurred in a time-dependent manner. Scanning electron microscopy showed disruption of membrane integrity. Intracellular killing capacity of macrophages was enhanced upon thymol treatment compared to control untreated cells. Thymol significantly reduced production of nitric oxide in a time-dependent manner, as well as the glutathione level. Disruption of membrane integrity was confirmed as the principle mechanism of action of thymol against S. typhimurium. Further, its potent role in inducing intracellular killing of S. typhimurium and recovery from oxidative stress in macrophages suggests that thymol can be applied as a naturally occurring drug against S. typhimurium in place of synthetic drugs.


Assuntos
Membrana Celular/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/fisiologia , Estresse Oxidativo , Salmonella typhimurium/efeitos dos fármacos , Timol/metabolismo , Timol/toxicidade , Membrana Celular/ultraestrutura , Contagem de Colônia Microbiana , Glutationa/metabolismo , Macrófagos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Óxido Nítrico/metabolismo , Salmonella typhimurium/ultraestrutura , Fatores de Tempo
11.
Appl Environ Microbiol ; 79(21): 6568-75, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23956394

RESUMO

This study was conducted to investigate the efficacy of the simultaneous application of near-infrared (NIR) heating and UV irradiation for reducing populations of food-borne pathogens, including Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 in red pepper powder and to clarify the mechanisms of the lethal effect of the NIR-UV combined treatment. Also, the effect of the combination treatment on quality was determined by measuring changes in color and pungency constituents. Simultaneous NIR-UV combined treatment for 5 min achieved 3.34- and 2.78-log CFU reductions in S. Typhimurium and E. coli O157:H7, respectively, which involved 1.86- and 1.31-log CFU reductions, respectively, which were attributed to the synergistic effect. Through qualitative and quantitative analyses, damage to the cell envelope was identified as the main factor contributing to the synergistic lethal effect of NIR-UV combined treatment. Color values and capsaicin and dihydrocapsaicin content of NIR-UV simultaneously treated red pepper powder were not significantly (P > 0.05) different from those of untreated samples. These results suggest that simultaneous application of NIR and UV treatment can be effectively used to control food-borne pathogens in powdered red pepper without affecting quality.


Assuntos
Capsicum/microbiologia , Escherichia coli O157/efeitos da radiação , Contaminação de Alimentos/prevenção & controle , Temperatura Alta , Salmonella typhimurium/efeitos da radiação , Raios Ultravioleta , Contagem de Colônia Microbiana , Cor , Escherichia coli O157/ultraestrutura , Qualidade dos Alimentos , Microscopia Eletrônica de Transmissão , Propídio , Salmonella typhimurium/ultraestrutura , Temperatura
12.
Placenta ; 34(9): 765-74, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23834952

RESUMO

INTRODUCTION: Salmonella enterica Typhimurium (ST) is a phagosomal pathogen that can infect placental trophoblast cells leading to abortion and severe maternal illness. It is unclear how the trophoblast cells promote profound bacterial proliferation. METHODS: The mechanism of internalization, intracellular growth and phagosomal biogenesis in ST-infected human epithelial (HeLa), macrophage (THP-1) and trophoblast-derived cell lines (JEG-3, BeWo and HTR-8) was studied. Specific inhibitors were used to block bacterial internalization. Phagosomal maturation was determined by confocal microscopy, Western-blotting and release of lysosomal ß-galactosidase by infected cells. Bacterial colony forming units were determined by plating infected cell lysates on agar plates. RESULTS: ST proliferated minimally in macrophages but replicated profoundly within trophoblast cells. The ST-ΔinvA (a mutant of Salmonella pathogenicity island-1 gene effector proteins) was unable to infect epithelial cells, but was internalized by scavenger receptors on trophoblasts and macrophages. However, ST was contrastingly localized in early (Rab5⁺) or late (LAMP1⁺) phagosomes within trophoblast cells and macrophages respectively. Furthermore trophoblast cells (unlike macrophages) did not exhibit phagoso-lysosomal fusion. ST-infected macrophages produced IL-6 whereas trophoblast cells produced IL-10. Neutralizing IL-10 in JEG-3 cells accelerated phagolysomal fusion and reduced proliferation of ST. Placental bacterial burden was curtailed in vivo in anti-IL-10 antibody treated and IL-10-deficient mice. DISCUSSION: Macrophages phagocytose but curtail intracellular replication of ST in late phagosomes. In contrast, phagocytosis by trophoblast cells results in an inappropriate cytokine response and proliferation of ST in early phagosomes. CONCLUSION: IL-10 production by trophoblast cells that delays phagosomal maturation may facilitate proliferation of pathogens in placental cells.


Assuntos
Interleucina-10/metabolismo , Lisossomos/imunologia , Fagocitose , Fagossomos/imunologia , Salmonella typhimurium/crescimento & desenvolvimento , Trofoblastos/imunologia , Regulação para Cima , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células , Contagem de Colônia Microbiana , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Humanos , Interleucina-10/antagonistas & inibidores , Proteína 1 de Membrana Associada ao Lisossomo/genética , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Lisossomos/microbiologia , Lisossomos/ultraestrutura , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Fusão de Membrana , Viabilidade Microbiana , Mutação , Fagossomos/metabolismo , Fagossomos/microbiologia , Fagossomos/ultraestrutura , Salmonella typhimurium/imunologia , Salmonella typhimurium/metabolismo , Salmonella typhimurium/ultraestrutura , Trofoblastos/metabolismo , Trofoblastos/microbiologia , Trofoblastos/ultraestrutura , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
13.
Methods ; 62(3): 241-5, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23619567

RESUMO

Zebrafish have been extensively used in biomedical research as a model to study vertebrate development but it is only recently that it has also been adopted into varied fields such as immunology and host-pathogen interactions. Zebrafish have a rapid life cycle, small size and the adults exhibit no territorial behavior in relatively dense cages. Under standard conditions each female lays an average of a hundred eggs per clutch, providing a large number of larvae per week. Their transparency during early life stages allows real time visualization of the different organs, which makes them especially suitable for the study of bacterial host-pathogen interactions. Traditionally, these studies have been technically challenging in higher organisms, given the loss of control over the bacteria once the pathogen infects its host. Here we describe an emerging approach to monitor Salmonella typhimurium infection progression using in vivo fluorescence upon parenteral infection. We have engineered Salmonella with the Cascade expression system; an efficient method to voluntarily activate bacterial heterologous gene expression at any point during infection once inside the Zebrafish macrophages, using a non-toxic inducer.


Assuntos
Embrião não Mamífero/imunologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Macrófagos/imunologia , Salmonella typhimurium/genética , Peixe-Zebra/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Embrião não Mamífero/microbiologia , Engenharia Genética , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Microinjeções , Microscopia de Fluorescência , Regiões Promotoras Genéticas/efeitos dos fármacos , Ácido Salicílico/farmacologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/ultraestrutura , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Transcrição Gênica , Peixe-Zebra/microbiologia
14.
Science ; 337(6093): 477-81, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22722251

RESUMO

Defensins are antimicrobial peptides that contribute broadly to innate immunity, including protection of mucosal tissues. Human α-defensin (HD) 6 is highly expressed by secretory Paneth cells of the small intestine. However, in contrast to the other defensins, it lacks appreciable bactericidal activity. Nevertheless, we report here that HD6 affords protection against invasion by enteric bacterial pathogens in vitro and in vivo. After stochastic binding to bacterial surface proteins, HD6 undergoes ordered self-assembly to form fibrils and nanonets that surround and entangle bacteria. This self-assembly mechanism occurs in vivo, requires histidine-27, and is consistent with x-ray crystallography data. These findings support a key role for HD6 in protecting the small intestine against invasion by diverse enteric pathogens and may explain the conservation of HD6 throughout Hominidae evolution.


Assuntos
Imunidade Inata , Imunidade nas Mucosas , Intestino Delgado/imunologia , alfa-Defensinas/química , alfa-Defensinas/metabolismo , Adesinas Bacterianas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/ultraestrutura , Intestino Delgado/microbiologia , Intestino Delgado/ultraestrutura , Substâncias Macromoleculares/química , Substâncias Macromoleculares/imunologia , Substâncias Macromoleculares/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Modelos Moleculares , Nanoestruturas , Celulas de Paneth/imunologia , Celulas de Paneth/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/ultraestrutura , Yersinia enterocolitica/imunologia , Yersinia enterocolitica/patogenicidade , alfa-Defensinas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
15.
Infect Immun ; 80(7): 2454-63, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22473607

RESUMO

Invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is an energetically demanding process, involving the transfer of effector proteins from invading bacteria into host cells via a specialized organelle known as the Salmonella pathogenicity island 1 (SPI-1) type 3 secretion system (T3SS). By a mechanism that remains poorly understood, entry of S. Typhimurium into epithelial cells is inhibited by Sal4, a monoclonal, polymeric IgA antibody that binds an immunodominant epitope within the O-antigen (O-Ag) component of lipopolysaccharide. In this study, we investigated how the binding of Sal4 to the surface of S. Typhimurium influences T3SS activity, bacterial energetics, and outer membrane integrity. We found that Sal4 treatment impaired T3SS-mediated translocon formation and attenuated the delivery of tagged effector proteins into epithelial cells. Sal4 treatment coincided with a partial reduction in membrane energetics and intracellular ATP levels, possibly explaining the impairment in T3SS activity. Sal4's effects on bacterial secretion and energetics occurred concurrently with an increase in O-Ag levels in culture supernatants, alterations in outer membrane permeability, and changes in surface ultrastructure, as revealed by transmission electron microscopy and cryo-electron microscopy. We propose that Sal4, by virtue of its ability to bind and cross-link the O-Ag, induces a form of outer membrane stress that compromises the integrity of the S. Typhimurium cell envelope and temporarily renders the bacterium avirulent.


Assuntos
Anticorpos Antibacterianos/metabolismo , Endocitose , Células Epiteliais/microbiologia , Imunoglobulina A/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Antígenos O/imunologia , Salmonella typhimurium/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Humanos , Microscopia Eletrônica , Ligação Proteica , Salmonella typhimurium/ultraestrutura
16.
J Bacteriol ; 193(6): 1385-92, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21239588

RESUMO

Hundreds of bacterial species use microcompartments (MCPs) to optimize metabolic pathways that have toxic or volatile intermediates. MCPs consist of a protein shell encapsulating specific metabolic enzymes. In Salmonella, an MCP is used for 1,2-propanediol utilization (Pdu MCP). The shell of this MCP is composed of eight different types of polypeptides, but their specific functions are uncertain. Here, we individually deleted the eight genes encoding the shell proteins of the Pdu MCP. The effects of each mutation on 1,2-PD degradation and MCP structure were determined by electron microscopy and growth studies. Deletion of the pduBB', pduJ, or pduN gene severely impaired MCP formation, and the observed defects were consistent with roles as facet, edge, or vertex protein, respectively. Metabolite measurements showed that pduA, pduBB', pduJ, or pduN deletion mutants accumulated propionaldehyde to toxic levels during 1,2-PD catabolism, indicating that the integrity of the shell was disrupted. Deletion of the pduK, pduT, or pduU gene did not substantially affect MCP structure or propionaldehyde accumulation, suggesting they are nonessential to MCP formation. However, the pduU or pduT deletion mutants grew more slowly than the wild type on 1,2-PD at saturating B(12), indicating that they are needed for maximal activity of the 1,2-PD degradative enzymes encased within the MCP shell. Considering recent crystallography studies, this suggests that PduT and PduU may mediate the transport of enzyme substrates/cofactors across the MCP shell. Interestingly, a pduK deletion caused MCP aggregation, suggesting a role in the spatial organization of MCP within the cytoplasm or perhaps in segregation at cell division.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobamidas/metabolismo , Propilenoglicol/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Aldeídos/metabolismo , Aldeídos/toxicidade , Deleção de Genes , Microscopia Eletrônica , Organelas/metabolismo , Organelas/ultraestrutura , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/ultraestrutura
17.
J Basic Microbiol ; 50 Suppl 1: S37-45, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20967788

RESUMO

Plantaricin MG is a 2,180-Da bacteriocin produced by Lactobacillus plantarum KLDS1.0391, which was isolated from Chinese traditional fermented cream. Plantaricin MG showed a broad inhibitory activity against not only Gram-positive bacteria but also Gram-negative bacteria including Listeria monocytogenes and Salmonella typhimurium. The mode of action of plantaricin MG on S. typhimurium was reported in this article. The addition of plantaricin MG to energized cells of S. typhimurium dissipated both, the transmembrane potential (Δψ) and the pH gradient (ΔpH). Energized membrane, obtained after the addition of glucose, was more susceptible to plantaricin MG action, leading to the release of intracellular K(+)ions, inorganic phosphate, ATP and UV-absorbing materials. These data suggest that the presence of a proton motive force promotes the interaction of plantaricin MG with the cytoplasmic membrane of energized cells, leading to pores formation which allows the efflux of ions, thereby ensuring efficient killing of target bacteria.


Assuntos
Bacteriocinas/farmacologia , Lactobacillus plantarum/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Força Próton-Motriz , Salmonella typhimurium/efeitos dos fármacos , Trifosfato de Adenosina/análise , Membrana Celular/efeitos dos fármacos , Fosfatos/análise , Potássio/análise , Salmonella typhimurium/ultraestrutura
18.
J Bacteriol ; 191(19): 6186-91, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19648242

RESUMO

The flagellar cytoplasmic ring (C ring), which consists of three proteins, FliG, FliM, and FliN, is located on the cytoplasmic side of the flagellum. The C ring is a multifunctional structure necessary for flagellar protein secretion, torque generation, and switching of the rotational direction of the motor. The deletion of any one of the fliG, fliM, and fliN genes results in a Fla(-) phenotype. Here, we show that the overproduction of the flagellum-specific ATPase FliI overcomes the inability of basal bodies with partial C-ring structures to produce complete flagella. Flagella made upon FliI overproduction were paralyzed, indicating that an intact C ring is essential for motor function. In FliN- or FliM-deficient mutants, flagellum production was about 10% of the wild-type level, while it was only a few percent in FliG-deficient mutants, suggesting that the size of partial C rings affects the extent of flagellation. For flagella made in C-ring mutants, the hook length varied considerably, with many being markedly shorter or longer than that of the wild type. The broad distribution of hook lengths suggests that defective C rings cannot control the hook length as tightly as the wild type even though FliK and FlhB are both intact.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Mutação/genética , ATPases Translocadoras de Prótons/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Flagelos/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Microscopia Eletrônica de Varredura , ATPases Translocadoras de Prótons/genética , Salmonella typhimurium/ultraestrutura
19.
Vet Microbiol ; 136(1-2): 69-75, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19019577

RESUMO

Defensins are important antimicrobial effector peptides of the innate immune system, which provides protection against bacterial infections in the intestine. Salmonella Choleraesuis and Salmonella Typhimurium are the most commonly isolated serovars in pig, but disease outcome is dependent on the Salmonella serovar. These infections are a serious problem for the swine industry and are also posing a major threat to public health because of Salmonella-related food-borne illnesses in human. To understand the innate immune response of pigs upon Salmonella infections, we studied the effect of these Salmonella serovars on defensin gene expression in the porcine ileal epithelial cell line IPEC-J2. With the use of scanning electron microscopy, we first visualized the surface characteristics of this cell line, and captured the invasion of Salmonella into the epithelial cell. Gene expression levels of porcine beta-defensin 1 and 2 were both induced upon S. Typhimurium infection but S. Choleraesuis had no effect. Invasion, adhesion and defensin susceptibility of both serovars were similar, which could not explain the observed difference in host response to these Salmonellae. In addition, induction of defensins was dependent on viability of S. Typhimurium, since Salmonella cell- or secreted components had no effect on defensin gene expression. These results provide further insight into the porcine innate immune response towards Salmonella infections, and could partially explain the different epidemiology of Salmonella infections in pig.


Assuntos
Defensinas/genética , Regulação da Expressão Gênica/imunologia , Enteropatias/veterinária , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Doenças dos Suínos/microbiologia , Sequência de Aminoácidos , Animais , Aderência Bacteriana/imunologia , Linhagem Celular , Defensinas/biossíntese , Defensinas/imunologia , Células Epiteliais/citologia , Enteropatias/imunologia , Enteropatias/microbiologia , Jejuno/imunologia , Jejuno/microbiologia , Jejuno/ultraestrutura , Microscopia Eletrônica de Varredura/veterinária , Dados de Sequência Molecular , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Salmonelose Animal/genética , Salmonelose Animal/microbiologia , Salmonella typhimurium/ultraestrutura , Suínos , Doenças dos Suínos/imunologia , Regulação para Cima/imunologia
20.
Cell Microbiol ; 10(4): 958-84, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18031307

RESUMO

The biogenesis of the Salmonella-containing vacuole within mammalian cells has been intensively studied over recent years. However, the ability of Salmonella to sense and adapt to the intracellular environment of different types of host cells has received much less attention. To address this issue, we report the transcriptome of Salmonella enterica serovar Typhimurium SL1344 within epithelial cells and show comparisons with Salmonella gene expression inside macrophages. We report that S. Typhimurium expresses a characteristic intracellular transcriptomic signature in response to the environments it encounters within different cell types. The signature involves the upregulation of the mgtBC, pstACS and iro genes for magnesium, phosphate and iron uptake, and Salmonella pathogenicity island 2 (SPI2). Surprisingly, in addition to SPI2, the invasion-associated SPI1 pathogenicity island and the genes involved in flagellar biosynthesis were expressed inside epithelial cells at later stages of the infection, while they were constantly downregulated in macrophage-like cells. To our knowledge, this is the first report of the simultaneous transcription of all three Type Three Secretion Systems (T3SS) within an intracellular Salmonella population. We discovered that S. Typhimurium strain SL1344 was strongly cytotoxic to epithelial cells after 6 h of infection and hypothesize that the time-dependent changes in Salmonella gene expression within epithelial cells reflects the bacterial response to host cells that have been injured by the infection process.


Assuntos
Células Epiteliais/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/genética , Transcrição Gênica , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células CACO-2 , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Células HeLa , Humanos , Imuno-Histoquímica , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salmonella typhimurium/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA