Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Sports Med ; 40(4): 253-262, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30836391

RESUMO

Consequences of running mountain races on muscle damage were investigated by analysing serum muscle enzymes and fibre-type-specific sarcomere proteins. We studied 10 trained amateur and 6 highly trained runners who ran a 35 km and 55 km mountain trail race (MTR), respectively. Levels of creatine kinase (CK), CK-MB isoform (CK-MB), sarcomeric mitochondrial CK (sMtCK), transaminases (AST and ALT), cardiac troponin I (cTnI) and fast (FM) and slow myosin (SM) isoforms, were assessed before, 1 h, 24 h and 48 h after the beginning of MTR. Significant SM increases were found at 24 h in the 55 km group. Levels of CK, CK-MB, AST and cTnI were significantly elevated in both groups following MTR, but in the 55 km group they tended to stabilize in at 48 h. Using pooled data, time-independent serum peaks of SM and CK-MB were significantly correlated. Moreover, concentration of sMtCK was significantly elevated at 1 and 24 h after the race in the 35 km group. Although training volume could confer protection on the mitochondria, the increase in serum CK-MB and SM in the 55 km group might be related to damage to the contractile apparatus type I fibres. Competing in long-distance MTRs might be related to deeper type I muscle fibre damage, even in highly trained individuals.


Assuntos
Mitocôndrias Musculares/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Resistência Física/fisiologia , Corrida/lesões , Adulto , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Comportamento Competitivo/fisiologia , Creatina Quinase/sangue , Creatina Quinase Forma MB/sangue , Creatina Quinase Mitocondrial , Humanos , Masculino , Mitocôndrias Musculares/enzimologia , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Lenta/enzimologia , Miosinas/metabolismo , Condicionamento Físico Humano , Isoformas de Proteínas/metabolismo , Sarcômeros/enzimologia , Troponina I/metabolismo
2.
Cardiovasc Res ; 114(11): 1474-1486, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29648621

RESUMO

Aims: The pathology of heart failure is characterized by poorly contracting and dilated ventricles. At the cellular level, this is associated with lengthening of individual cardiomyocytes and loss of sarcomeres. While it is known that the transcription factor myocyte enhancer factor-2 (MEF2) is involved in this cardiomyocyte remodelling, the underlying mechanism remains to be elucidated. Here, we aim to mechanistically link MEF2 target genes with loss of sarcomeres during cardiomyocyte remodelling. Methods and results: Neonatal rat cardiomyocytes overexpressing MEF2 elongated and lost their sarcomeric structure. We identified myotonic dystrophy protein kinase (DMPK) as direct MEF2 target gene involved in this process. Adenoviral overexpression of DMPK E, the isoform upregulated in heart failure, resulted in severe loss of sarcomeres in vitro, and transgenic mice overexpressing DMPK E displayed disruption of sarcomere structure and cardiomyopathy in vivo. Moreover, we found a decreased expression of sarcomeric genes following DMPK E gain-of-function. These genes are targets of the transcription factor serum response factor (SRF) and we found that DMPK E acts as inhibitor of SRF transcriptional activity. Conclusion: Our data indicate that MEF2-induced loss of sarcomeres is mediated by DMPK via a decrease in sarcomeric gene expression by interfering with SRF transcriptional activity. Together, these results demonstrate an unexpected role for DMPK as a direct mediator of adverse cardiomyocyte remodelling and heart failure.


Assuntos
Cardiomiopatias/enzimologia , Insuficiência Cardíaca/enzimologia , Fatores de Transcrição MEF2/metabolismo , Miócitos Cardíacos/enzimologia , Miotonina Proteína Quinase/metabolismo , Sarcômeros/enzimologia , Remodelação Ventricular , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Células HEK293 , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Fatores de Transcrição MEF2/genética , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/ultraestrutura , Miotonina Proteína Quinase/genética , Fosforilação , Ratos Wistar , Sarcômeros/genética , Sarcômeros/ultraestrutura , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Am J Physiol Heart Circ Physiol ; 311(1): H125-36, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199124

RESUMO

Familial hypertrophic cardiomyopathy (HCM) is a disease of the sarcomere and may lead to hypertrophic, dilated, restrictive, and/or arrhythmogenic cardiomyopathy, congestive heart failure, or sudden cardiac death. We hypothesized that hearts from transgenic HCM mice harboring a mutant myosin heavy chain increase the energetic cost of contraction in a sex-specific manner. To do this, we assessed Ca(2+) sensitivity of tension and crossbridge kinetics in demembranated cardiac trabeculas from male and female wild-type (WT) and HCM hearts at an early time point (2 mo of age). We found a significant effect of sex on Ca(2+) sensitivity such that male, but not female, HCM mice displayed a decrease in Ca(2+) sensitivity compared with WT counterparts. The HCM transgene and sex significantly impacted the rate of force redevelopment by a rapid release-restretch protocol and tension cost by the ATPase-tension relationship. In each of these measures, HCM male trabeculas displayed a gain-of-function when compared with WT counterparts. In addition, cardiac remodeling measured by echocardiography, histology, morphometry, and posttranslational modifications demonstrated sex- and HCM-specific effects. In conclusion, female and male HCM mice display sex dimorphic crossbridge kinetics accompanied by sex- and HCM-dependent cardiac remodeling at the morphometric, histological, and cellular level.


Assuntos
Sinalização do Cálcio , Cardiomiopatia Hipertrófica Familiar/enzimologia , Contração Miocárdica , Miocárdio/enzimologia , Cadeias Pesadas de Miosina/metabolismo , Sarcômeros/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/patologia , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Predisposição Genética para Doença , Hidrólise , Cinética , Masculino , Camundongos Transgênicos , Mutação , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Fenótipo , Fosforilação , Caracteres Sexuais , Fatores Sexuais , Remodelação Ventricular
4.
Biochim Biophys Acta ; 1853(11 Pt A): 2870-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26260012

RESUMO

The importance of the oncogene Ras in cardiac hypertrophy is well appreciated. The hypertrophic effects of the constitutively active mutant Ras-Val12 are revealed by clinical syndromes due to the Ras mutations and experimental studies. We examined the possible anti-hypertrophic effect of Ras inhibition in vitro using rat neonatal cardiomyocytes (NRCM) and in vivo in the setting of pressure-overload left ventricular (LV) hypertrophy (POH) in rats. Ras functions were modulated via adenovirus directed gene transfer of active mutant Ras-Val12 or dominant negative mutant N17-DN-Ras (DN-Ras). Ras-Val12 expression in vitro activates NFAT resulting in pro-hypertrophic and cardio-toxic effects on NRCM beating and Z-line organization. In contrast, the DN-Ras was antihypertrophic on NRCM, inhibited NFAT and exerted cardio-protective effects attested by preserved NRCM beating and Z line structure. Additional experiments with silencing H-Ras gene strategy corroborated the antihypertrophic effects of siRNA-H-Ras on NRCM. In vivo, with the POH model, both Ras mutants were associated with similar hypertrophy two weeks after simultaneous induction of POH and Ras-mutant gene transfer. However, LV diameters were higher and LV fractional shortening lower in the Ras-Val12 group compared to control and DN-Ras. Moreover, DN-Ras reduced the cross-sectional area of cardiomyocytes in vivo, and decreased the expression of markers of pathologic cardiac hypertrophy. In isolated adult cardiomyocytes after 2 weeks of POH and Ras-mutant gene transfer, DN-Ras improved sarcomere shortening and calcium transients compared to Ras-Val12. Overall, DN-Ras promotes a more physiological form of hypertrophy, suggesting an interesting therapeutic target for pathological cardiac hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Mutação de Sentido Incorreto , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Remodelação Ventricular , Substituição de Aminoácidos , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Sarcômeros/enzimologia , Sarcômeros/genética
5.
J Mol Cell Cardiol ; 86: 1-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26116865

RESUMO

Our objective was to investigate the role of creatine kinase in the contractile dysfunction of right ventricular failure caused by pulmonary artery hypertension. Pulmonary artery hypertension and right ventricular failure were induced in rats by monocrotaline and compared to saline-injected control animals. In vivo right ventricular diastolic pressure-volume relationships were measured in anesthetized animals; diastolic force-length relationships in single enzymatically dissociated myocytes and myocardial creatine kinase levels by Western blot. We observed diastolic dysfunction in right ventricular failure indicated by significantly steeper diastolic pressure-volume relationships in vivo and diastolic force-length relationships in single myocytes. There was a significant reduction in creatine kinase protein expression in failing right ventricle. Dysfunction also manifested as a shorter diastolic sarcomere length in failing myocytes. This was associated with a Ca(2+)-independent mechanism that was sensitive to cross-bridge cycling inhibition. In saponin-skinned failing myocytes, addition of exogenous creatine kinase significantly lengthened sarcomeres, while in intact healthy myocytes, inhibition of creatine kinase significantly shortened sarcomeres. Creatine kinase inhibition also changed the relatively flat contraction amplitude-stimulation frequency relationship of healthy myocytes into a steeply negative, failing phenotype. Decreased creatine kinase expression leads to diastolic dysfunction. We propose that this is via local reduction in ATP:ADP ratio and thus to Ca(2+)-independent force production and diastolic sarcomere shortening. Creatine kinase inhibition also mimics a definitive characteristic of heart failure, the inability to respond to increased demand. Novel therapies for pulmonary artery hypertension are needed. Our data suggest that cardiac energetics would be a potential ventricular therapeutic target.


Assuntos
Creatina Quinase/metabolismo , Insuficiência Cardíaca/enzimologia , Hipertensão Pulmonar/enzimologia , Disfunção Ventricular Direita/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Creatina Quinase/biossíntese , Diástole , Insuficiência Cardíaca/patologia , Humanos , Hipertensão Pulmonar/patologia , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Ratos , Sarcômeros/enzimologia , Sarcômeros/patologia , Disfunção Ventricular Direita/patologia
6.
J Biol Chem ; 288(44): 31952-62, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24047955

RESUMO

It is unclear why mutations in the filament-forming tail of myosin heavy chain (MHC) cause hypertrophic or dilated cardiomyopathy as these mutations should not directly affect contraction. To investigate this, we first investigated the impact of five hypertrophic cardiomyopathy-causing (N1327K, E1356K, R1382W, E1555K, and R1768K) and one dilated cardiomyopathy-causing (R1500W) tail mutations on their ability to incorporate into muscle sarcomeres in vivo. We used adenoviral delivery to express full-length wild type or mutant enhanced GFP-MHC in isolated adult cardiomyocytes. Three mutations (N1327K, E1356K, and E1555K) reduced enhanced GFP-MHC incorporation into muscle sarcomeres, whereas the remainder had no effect. No mutations significantly affected contraction. Fluorescence recovery after photobleaching showed that fluorescence recovery for the mutation that incorporated least well (N1327K) was significantly faster than that of WT with half-times of 25.1 ± 1.8 and 32.2 ± 2.5 min (mean ± S.E.), respectively. Next, we determined the effects of each mutation on the helical properties of wild type and seven mutant peptides (7, 11, or 15 heptads long) from the myosin tail by circular dichroism. R1382W and E1768K slightly increased the α-helical nature of peptides. The remaining mutations reduced α-helical content, with N1327K showing the greatest reduction. Only peptides containing residues 1301-1329 were highly α-helical suggesting that this region helps in initiation of coiled coil. These results suggest that small effects of mutations on helicity translate into a reduced ability to incorporate into sarcomeres, which may elicit compensatory hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Doenças Genéticas Inatas/enzimologia , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/metabolismo , Sarcômeros/enzimologia , Substituição de Aminoácidos , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Estrutura Secundária de Proteína , Ratos , Sarcômeros/patologia
7.
Biochim Biophys Acta ; 1833(4): 812-22, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23047121

RESUMO

Protein lysine methylation controls gene expression and repair of deoxyribonucleic acid in the nucleus but also occurs in the cytoplasm, where the role of this posttranslational modification is less understood. Members of the Smyd protein family of lysine methyltransferases are particularly abundant in the cytoplasm, with Smyd1 and Smyd2 being most highly expressed in the heart and in skeletal muscles. Smyd1 is a crucial myogenic regulator with histone methyltransferase activity but also associates with myosin, which promotes sarcomere assembly. Smyd2 methylates histones and non-histone proteins, such as the tumor suppressors, p53 and retinoblastoma protein, RB. Smyd2 has an intriguing function in the cytoplasm of skeletal myocytes, where it methylates the chaperone Hsp90, thus promoting the interaction of a Smyd2-methyl-Hsp90 complex with the N2A-domain of titin. This complex protects the sarcomeric I-band region and myocyte organization. We briefly summarize some novel functions of Smyd family members, with a focus on Smyd2, and highlight their role in striated muscles and cytoplasmic actions. We then provide experimental evidence that Smyd2 is also important for cardiac function. In the cytoplasm of cardiomyocytes, Smyd2 was found to associate with the sarcomeric I-band region at the titin N2A-domain. Binding to N2A occurred in vitro and in yeast via N-terminal and extreme C-terminal regions of Smyd2. Smyd2-knockdown in zebrafish using an antisense oligonucleotide morpholino approach strongly impaired cardiac performance. We conclude that Smyd2 and presumably several other Smyd family members are lysine methyltransferases which have, next to their nuclear activity, specific regulatory functions in the cytoplasm of heart and skeletal muscle cells. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.


Assuntos
Citoplasma/enzimologia , Histona-Lisina N-Metiltransferase/genética , Proteínas Musculares/metabolismo , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Sarcômeros/enzimologia , Actinina/genética , Actinina/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Celular/enzimologia , Embrião de Galinha , Conectina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/genética , Lisina/metabolismo , Camundongos , Modelos Moleculares , Proteínas Musculares/genética , Miocárdio/citologia , Miócitos Cardíacos/citologia , Ligação Proteica , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Cardiovasc Res ; 92(3): 409-19, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21937583

RESUMO

AIMS: Tyrosine-phosphorylated focal adhesion kinase (FAK) is required for the hypertrophic response of cardiomyocytes to growth factors and mechanical load, but the role of FAK serine phosphorylation in this process is unknown. The aims of the present study were to characterize FAK serine phosphorylation in cultured neonatal rat ventricular myocytes (NRVM), analyse its functional significance during hypertrophic signalling, and examine its potential role in the pathogenesis of human dilated cardiomyopathy (DCM). METHODS AND RESULTS: Endothelin-1 (ET-1) and other hypertrophic factors induced a time- and dose-dependent increase in FAK-S910 phosphorylation. ET-1-induced FAK-S910 phosphorylation required ET(A)R-dependent activation of PKCδ and Src via parallel Raf-1 → MEK1/2 → ERK1/2 and MEK5 → ERK5 signalling pathways. Replication-deficient adenoviruses expressing wild-type (WT) FAK and a non-phosphorylatable, S910A-FAK mutant were then used to examine the functional significance of FAK-S910 phosphorylation. Unlike WT-FAK, S910A-FAK increased the half-life of GFP-tagged paxillin within costameres (as determined by total internal reflection fluorescence microscopy and fluorescence recovery after photobleaching) and increased the steady-state FAK-paxillin interaction (as determined by co-immunoprecipitation and western blotting). These alterations resulted in reduced NRVM sarcomere reorganization and cell spreading. Finally, we found that FAK was serine-phosphorylated at multiple sites in non-failing, human left ventricular tissue. FAK-S910 phosphorylation and ERK5 expression were dramatically reduced in patients undergoing heart transplantation for end-stage DCM. CONCLUSION: FAK undergoes S910 phosphorylation via PKCδ and Src-dependent pathways that are important for cell spreading and sarcomere reorganization. Reduced FAK-S910 phosphorylation may contribute to sarcomere disorganization in DCM.


Assuntos
Cardiomiopatia Dilatada/enzimologia , Quinase 1 de Adesão Focal/metabolismo , Insuficiência Cardíaca/enzimologia , Miócitos Cardíacos/enzimologia , Sarcômeros/enzimologia , Angiotensina II/farmacologia , Animais , Animais Recém-Nascidos , Western Blotting , Cardiomiopatia Dilatada/patologia , Células Cultivadas , Relação Dose-Resposta a Droga , Endotelina-1/farmacologia , Ativação Enzimática , Recuperação de Fluorescência Após Fotodegradação , Quinase 1 de Adesão Focal/genética , Insuficiência Cardíaca/patologia , Humanos , Imunoprecipitação , Fator de Crescimento Insulin-Like I/farmacologia , Microscopia de Fluorescência , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Paxilina/genética , Paxilina/metabolismo , Fenilefrina/farmacologia , Fosforilação , Proteína Quinase C-delta/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Sarcômeros/efeitos dos fármacos , Sarcômeros/patologia , Serina , Transdução de Sinais , Fatores de Tempo , Transfecção , Quinases da Família src/metabolismo
9.
Clin Exp Pharmacol Physiol ; 38(4): 278-84, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21314842

RESUMO

1. Cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific kinase gene. Quantitative real-time reverse transcription polymerase chain reaction analysis showed a significant increase in TNNI3K mRNA expression in hypertrophic cardiomyocytes induced by endothelin-1 (ET-1). The aim of the present study was to investigate the effects of TNNI3K on neonate rat cardiomyocyte hypertrophy induced by ET-1. 2. Adenoviruses were amplified in 293A cells. To determine a reasonable adenovirus infection dose cardiomyocytes were infected with an adenovirus carrying human TNNI3K (Ad-TNNI3K) at varying multiplicity of infection (MOI) and the expression of TNNI3K was analysed by western blot. 3. Cardiomyocytes were infected with either a control adenovirus carrying green fluorescent protein (Ad-GFP) or Ad-TNNI3K. Compared with Ad-GFP, the Ad-TNNI3K induced an increase in sarcomere organization, cell surface area, (3) H-leucine incorporation and ß-MHC re-expression. This type of hypertrophic phenomenon is similar to that observed in Ad-GFP-infected hypertrophic cardiomyocytes induced by ET-1. To determine the functional role of TNNI3K in ET-1-induced hypertrophic cardiomyocytes, the cells were infected with Ad-GFP or Ad-TNNI3K. Ad-TNNI3K induced an increase in sarcomere organization, cell surface area and (3) H-leucine incorporation compared with Ad-GFP. 4. These results suggest that TNNI3K overexpression induces cardiomyocytes hypertrophy and accelerates hypertrophy in hypertrophic cardiomyocytes. Therefore, TNNI3K might be an interesting target for the clinical treatment of hypertrophy.


Assuntos
Cardiomegalia/enzimologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Miócitos Cardíacos/enzimologia , Adenoviridae/genética , Animais , Células Cultivadas , Endotelina-1/farmacologia , Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Leucina/metabolismo , MAP Quinase Quinase Quinases/biossíntese , Proteínas Serina-Treonina Quinases , Ratos , Ratos Sprague-Dawley , Sarcômeros/efeitos dos fármacos , Sarcômeros/enzimologia , Miosinas Ventriculares/biossíntese , Miosinas Ventriculares/genética
10.
J Biol Chem ; 286(7): 5300-10, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21148481

RESUMO

In myocardium, the 90-kDa ribosomal S6 kinase (RSK) is activated by diverse stimuli and regulates the sarcolemmal Na(+)/H(+) exchanger through direct phosphorylation. Only limited information is available on other cardiac RSK substrates and functions. We evaluated cardiac myosin-binding protein C (cMyBP-C), a sarcomeric regulatory phosphoprotein, as a potential RSK substrate. In rat ventricular myocytes, RSK activation by endothelin 1 (ET1) increased cMyBP-C phosphorylation at Ser(282), which was inhibited by the selective RSK inhibitor D1870. Neither ET1 nor D1870 affected the phosphorylation status of Ser(273) or Ser(302), cMyBP-C residues additionally targeted by cAMP-dependent protein kinase (PKA). Complementary genetic gain- and loss-of-function experiments, through the adenoviral expression of wild-type or kinase-inactive RSK isoforms, confirmed RSK-mediated phosphorylation of cMyBP-C at Ser(282). Kinase assays utilizing as substrate wild-type or mutated (S273A, S282A, S302A) recombinant cMyBP-C fragments revealed direct and selective Ser(282) phosphorylation by RSK. Immunolabeling with a Ser(P)(282) antibody and confocal fluorescence microscopy showed RSK-mediated phosphorylation of cMyBP-C across the C-zones of sarcomeric A-bands. In chemically permeabilized mouse ventricular muscles, active RSK again induced selective Ser(282) phosphorylation in cMyBP-C, accompanied by significant reduction in Ca(2+) sensitivity of force development and significant acceleration of cross-bridge cycle kinetics, independently of troponin I phosphorylation at Ser(22)/Ser(23). The magnitudes of these RSK-induced changes were comparable with those induced by PKA, which phosphorylated cMyBP-C additionally at Ser(273) and Ser(302). We conclude that Ser(282) in cMyBP-C is a novel cardiac RSK substrate and its selective phosphorylation appears to regulate cardiac myofilament function.


Assuntos
Citoesqueleto de Actina/enzimologia , Proteínas de Transporte/metabolismo , Ventrículos do Coração/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sarcômeros/enzimologia , Citoesqueleto de Actina/genética , Animais , Proteínas de Transporte/genética , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ventrículos do Coração/citologia , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Fosforilação/fisiologia , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
11.
Cardiovasc Res ; 88(2): 334-43, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20615916

RESUMO

AIMS: Recombinant human neuregulin-1 (rhNRG-1) improves cardiac function in experimental heart failure models, but the underlying mechanism remains largely unknown. In this study, we evaluated whether rhNRG-1 could improve cardiac function via the cardiac myosin light chain kinase/myosin light chain 2 ventricular (cMLCK/MLC-2v) pathway in rats with myocardial infarction (MI). METHODS AND RESULTS: Rats with MI were intravenously infused with rhNRG-1 (5 µg/kg/h) for 7 days through osmotic pumps. The mechanism of action of rhNRG-1 was investigated by assaying the non-infarcted myocardium with gene chips. The cMLCK expression, phosphorylated MLC-2v and cardiac function were significantly up-regulated, as assessed by real-time PCR, Western blot and echocardiography, in those animals treated with rhNRG-1. Moreover, the restoration of rhNRG-1-induced sarcomeric organization in serum-free cultured neonatal rat cardiomyocytes with rhNRG-1 was inhibited by cMLCK RNA interference or ML-7, an inhibitor of MLCKs. Adenovirus containing the rat cMLCK coding region was injected into non-infarcted myocardium, and cardiac function was monitored using echocardiography and a haemodynamic machine. The dP/dt and fractional shortening decreasing significantly after MI, and improved by 15.7 and 32.1%, respectively, following local cMLCK application (all P < 0.05). CONCLUSION: Our results suggest that cMLCK is a downstream effector of rhNRG-1 involved in rhNRG-1-induced cardiac function improvement, and that myocardial cMLCK up-regulation can improve cardiac function in rats with MI.


Assuntos
Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/enzimologia , Quinase de Cadeia Leve de Miosina/metabolismo , Neuregulina-1/administração & dosagem , Função Ventricular Esquerda/efeitos dos fármacos , Adenoviridae/genética , Animais , Western Blotting , Miosinas Cardíacas/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Terapia Genética/métodos , Vetores Genéticos , Humanos , Bombas de Infusão , Infusões Intravenosas , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Ratos , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Recuperação de Função Fisiológica , Sarcômeros/enzimologia , Transfecção , Ultrassonografia , Regulação para Cima
12.
Ann N Y Acad Sci ; 1188: 165-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20201900

RESUMO

Left ventricular (LV) wall motion abnormalities reflect regional nonuniform contraction which may be arrhythmogenic. We studied sarcomere mechanics and force development (F) in uniform and nonuniform trabeculae using a model in which half of the muscle can be rendered weak by exposure to low [Ca2+]o. Stretch allowed the weak muscle segment to generate a force that was four-fold higher than force when the whole muscle was exposed to low [Ca2+]o. The sarcomere force-velocity relationships (FSVR) and the force-sarcomere-length relationships (FSLR) explained the force increase in the weak segment and the decrease of force in the strong segment such that both carried the same force. Correction for muscle stiffness converted the FSVR into a [Ca2+]o-independent linear FVRXB for "the single cross-bridge (XB)." Stretch increased XB force<10% above FXB-max, but recruited more XBs by feedback of V to the rate of XB, weakening (g=g0+g1V). The g1 here was indistinguishable from g1 of XBs in slow myosin of aged animals. The mechanics of nonuniform muscle can be explained by a linear FVRXB combined with the effect of V on the XB weakening rate.


Assuntos
Miocárdio/enzimologia , Miosinas/metabolismo , Estresse Mecânico , Animais , Peso Corporal , Ativação Enzimática , Miocárdio/citologia , Tamanho do Órgão , Multimerização Proteica , Ratos , Sarcômeros/enzimologia , Fatores de Tempo
13.
J Biol Chem ; 285(8): 5674-82, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20018870

RESUMO

Protein kinase D (PKD), a serine/threonine kinase with emerging cardiovascular functions, phosphorylates cardiac troponin I (cTnI) at Ser(22)/Ser(23), reduces myofilament Ca(2+) sensitivity, and accelerates cross-bridge cycle kinetics. Whether PKD regulates cardiac myofilament function entirely through cTnI phosphorylation at Ser(22)/Ser(23) remains to be established. To determine the role of cTnI phosphorylation at Ser(22)/Ser(23) in PKD-mediated regulation of cardiac myofilament function, we used transgenic mice that express cTnI in which Ser(22)/Ser(23) are substituted by nonphosphorylatable Ala (cTnI-Ala(2)). In skinned myocardium from wild-type (WT) mice, PKD increased cTnI phosphorylation at Ser(22)/Ser(23) and decreased the Ca(2+) sensitivity of force. In contrast, PKD had no effect on the Ca(2+) sensitivity of force in myocardium from cTnI-Ala(2) mice, in which Ser(22)/Ser(23) were unavailable for phosphorylation. Surprisingly, PKD accelerated cross-bridge cycle kinetics similarly in myocardium from WT and cTnI-Ala(2) mice. Because cardiac myosin-binding protein C (cMyBP-C) phosphorylation underlies cAMP-dependent protein kinase (PKA)-mediated acceleration of cross-bridge cycle kinetics, we explored whether PKD phosphorylates cMyBP-C at its PKA sites, using recombinant C1C2 fragments with or without site-specific Ser/Ala substitutions. Kinase assays confirmed that PKA phosphorylates Ser(273), Ser(282), and Ser(302), and revealed that PKD phosphorylates only Ser(302). Furthermore, PKD phosphorylated Ser(302) selectively and to a similar extent in native cMyBP-C of skinned myocardium from WT and cTnI-Ala(2) mice, and this phosphorylation occurred throughout the C-zones of sarcomeric A-bands. In conclusion, PKD reduces myofilament Ca(2+) sensitivity through cTnI phosphorylation at Ser(22)/Ser(23) but accelerates cross-bridge cycle kinetics by a distinct mechanism. PKD phosphorylates cMyBP-C at Ser(302), which may mediate the latter effect.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Proteína Quinase C/metabolismo , Sarcômeros/enzimologia , Citoesqueleto de Actina/genética , Substituição de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cinética , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Proteína Quinase C/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sarcômeros/genética , Troponina I/genética , Troponina I/metabolismo
14.
J Biol Chem ; 284(23): 15692-700, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19339242

RESUMO

Glycogen synthase (GS) is considered the rate-limiting enzyme in glycogenesis but still today there is a lack of understanding on its regulation. We have previously shown phosphorylation-dependent GS intracellular redistribution at the start of glycogen re-synthesis in rabbit skeletal muscle (Prats, C., Cadefau, J. A., Cussó, R., Qvortrup, K., Nielsen, J. N., Wojtaszewki, J. F., Wojtaszewki, J. F., Hardie, D. G., Stewart, G., Hansen, B. F., and Ploug, T. (2005) J. Biol. Chem. 280, 23165-23172). In the present study we investigate the regulation of human muscle GS activity by glycogen, exercise, and insulin. Using immunocytochemistry we investigate the existence and relevance of GS intracellular compartmentalization during exercise and during glycogen re-synthesis. The results show that GS intrinsic activity is strongly dependent on glycogen levels and that such regulation involves associated dephosphorylation at sites 2+2a, 3a, and 3a + 3b. Furthermore, we report the existence of several glycogen metabolism regulatory mechanisms based on GS intracellular compartmentalization. After exhausting exercise, epinephrine-induced protein kinase A activation leads to GS site 1b phosphorylation targeting the enzyme to intramyofibrillar glycogen particles, which are preferentially used during muscle contraction. On the other hand, when phosphorylated at sites 2+2a, GS is preferentially associated with subsarcolemmal and intermyofibrillar glycogen particles. Finally, we verify the existence in human vastus lateralis muscle of the previously reported mechanism of glycogen metabolism regulation in rabbit tibialis anterior muscle. After overnight low muscle glycogen level and/or in response to exhausting exercise-induced glycogenolysis, GS is associated with spherical structures at the I-band of sarcomeres.


Assuntos
Glicogênio Sintase/metabolismo , Músculo Esquelético/fisiologia , Sarcômeros/enzimologia , Adulto , Sequência de Aminoácidos , Biópsia , Glicemia/metabolismo , Ativação Enzimática , Epinefrina/sangue , Glicogênio/metabolismo , Glicogênio Sintase/química , Humanos , Insulina/sangue , Cinética , Perna (Membro) , Proteínas Musculares/isolamento & purificação , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Fragmentos de Peptídeos/química , Fosforilação , Valores de Referência
15.
Am J Physiol Cell Physiol ; 296(5): C1034-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19295171

RESUMO

One of the unanswered questions in muscle hypertrophy is how new contractile units are inserted into a stable existing cytoskeletal meshwork. Regulation of actin capping by CapZ may play a role in remodeling processes, therefore, CapZ dynamics are determined during rapid growth of cardiac cells in vitro. Neonatal rat ventricular myocytes were infected with adenovirus expressing green fluorescent protein-CapZ beta1 and responded normally to hypertrophic stimuli. CapZ dynamics were analyzed by fluorescence recovery after photobleaching in cultured myocytes treated with endothelin-1 (100 nM) or phenylephrine (10 muM). Recovery by 30 s was greater with endothelin treatment. Analysis 30 min postbleach showed CapZ-infected cells treated with endothelin recovered more completely than controls (77 +/- 9% vs. 50 +/- 6%, P < 0.001). Similar results were found with phenylephrine (77 +/- 5%, P < 0.05). A potential mechanism for phosphatidylinositol bisphosphate (PIP2) mediation of increased CapZ exchange in endothelin- and phenylephrine-treated cells was tested. PIP2 sequestration with neomycin (500 muM) blocked both endothelin- (43 +/- 6%, P < 0.001) and phenylephrine (36 +/- 4%, P < 0.001)-mediated recovery. The protein kinase C inhibitor chelerythrine chloride (10 muM) also blocked endothelin- (53 +/- 10%, P < 0.001) and phenylephrine (42 +/- 3%, P < 0.001)-mediated recovery. This study demonstrates for the first time that endothelin and phenylephrine alter CapZ dynamics through PIP2- and PKC-dependent pathways, which might destabilize the existing framework and permit sarcomeric remodelling to proceed.


Assuntos
Proteína de Capeamento de Actina CapZ/metabolismo , Endotelina-1/farmacologia , Miócitos Cardíacos/enzimologia , Fenilefrina/farmacologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína Quinase C/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Benzofenantridinas/farmacologia , Proteína de Capeamento de Actina CapZ/genética , Cardiomegalia/metabolismo , Cardiotônicos/farmacologia , Células Cultivadas , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Neomicina/farmacologia , Fosfatidilinositol 4,5-Difosfato/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Proteína Quinase C/antagonistas & inibidores , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Sprague-Dawley , Sarcômeros/enzimologia
16.
Am J Physiol Heart Circ Physiol ; 296(5): H1524-31, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19252095

RESUMO

The Frank-Starling relationship of the heart yields increased stroke volume with greater end-diastolic volume, and this relationship is steeper after beta-adrenergic stimulation. The underlying basis for the Frank-Starling mechanism involves length-dependent changes in both Ca(2+) sensitivity of myofibrillar force and power output. In this study, we tested the hypothesis that PKA-induced phosphorylation of myofibrillar proteins would increase the length dependence of myofibrillar power output, which would provide a myofibrillar basis to, in part, explain the steeper Frank-Starling relations after beta-adrenergic stimulation. For these experiments, adult rat left ventricles were mechanically disrupted, permeabilized cardiac myocyte preparations were attached between a force transducer and position motor, and the length dependence of loaded shortening and power output were measured before and after treatment with PKA. PKA increased the phosphorylation of myosin binding protein C and cardiac troponin I, as assessed by autoradiography. In terms of myocyte mechanics, PKA decreased the Ca(2+) sensitivity of force and increased loaded shortening and power output at all relative loads when the myocyte preparations were at long sarcomere length ( approximately 2.30 mum). PKA had less of an effect on loaded shortening and power output at short sarcomere length ( approximately 2.0 mum). These changes resulted in a greater length dependence of myocyte power output after PKA treatment; peak normalized power output increased approximately 20% with length before PKA and approximately 40% after PKA. These results suggest that PKA-induced phosphorylation of myofibrillar proteins explains, in part, the steeper ventricular function curves (i.e., Frank-Starling relationship) after beta-adrenergic stimulation of the left ventricle.


Assuntos
Forma Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Força Muscular , Contração Miocárdica , Miócitos Cardíacos/enzimologia , Miofibrilas/metabolismo , Sarcômeros/enzimologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Técnicas In Vitro , Masculino , Modelos Cardiovasculares , Força Muscular/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley , Sarcômeros/efeitos dos fármacos , Troponina I/metabolismo
17.
Cardiovasc Res ; 81(3): 439-48, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18974044

RESUMO

The assembly and maintenance of the cardiac sarcomere, which contains the basic contractile components of actin and myosin, are essential for cardiac function. While often described as a static structure, the sarcomere is actually dynamic and undergoes constant turnover, allowing it to adapt to physiological changes while still maintaining function. A host of new factors have been identified that play a role in the regulation of protein quality control in the sarcomere, including chaperones that mediate the assembly of sarcomere components and ubiquitin ligases that control their specific degradation. There is clear evidence of sarcomere disorganization in animal models lacking muscle-specific chaperone proteins, illustrating the importance of these molecules in sarcomere structure and function. Although ubiquitin ligases have been found within the sarcomere structure itself, the role of the ubiquitin proteasome system in cardiac sarcomere regulation, and the factors that control its activity, are only just now being elucidated. The number of ubiquitin ligases identified with specificity for sarcomere proteins, each with distinct target substrates, is growing, allowing for tight regulation of this system. In this review, we highlight the dynamic interplay between sarcomere-specific chaperones and ubiquitin-dependent degradation of sarcomere proteins that is necessary in order to maintain structure and function of the cardiac sarcomere.


Assuntos
Cardiomiopatias/metabolismo , Contração Muscular , Proteínas Musculares/sangue , Miocárdio/metabolismo , Sarcômeros/metabolismo , Actinas/metabolismo , Adaptação Fisiológica , Animais , Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Calpaína/metabolismo , Cardiomiopatias/fisiopatologia , Desmina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Miocárdio/enzimologia , Miosinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sarcômeros/enzimologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Cadeia B de alfa-Cristalina/metabolismo
18.
Am J Physiol Cell Physiol ; 296(2): C363-71, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19109522

RESUMO

Recent reports suggest numerous roles for cysteine proteases in the progression of skeletal muscle atrophy due to disuse or disease. Nonetheless, a specific requirement for these proteases in the progression of skeletal muscle atrophy has not been demonstrated. Therefore, this investigation determined whether calpains or caspase-3 is required for oxidant-induced C2C12 myotube atrophy. We demonstrate that exposure to hydrogen peroxide (25 microM H2O2) induces myotube oxidative damage and atrophy, with no evidence of cell death. Twenty-four hours of exposure to H2O2 significantly reduced both myotube diameter and the abundance of numerous proteins, including myosin (-81%), alpha-actinin (-40%), desmin (-79%), talin (-37%), and troponin I (-80%). Myotube atrophy was also characterized by increased cleavage of the cysteine protease substrate alphaII-spectrin following 4 h and 24 h of H2O2 treatment. This degradation was blocked by administration of the protease inhibitor leupeptin (10 microM). Using small interfering RNA transfection of mature myotubes against the specific proteases calpain-1, calpain-2, and caspase-3, we demonstrated that calpain-1 is required for H2O2-induced myotube atrophy. Collectively, our data provide the first evidence for an absolute requirement for calpain-1 in the development of skeletal muscle myotube atrophy in response to oxidant-induced cellular stress.


Assuntos
Calpaína/metabolismo , Peróxido de Hidrogênio/metabolismo , Atrofia Muscular/enzimologia , Mioblastos Esqueléticos/enzimologia , Estresse Oxidativo , Animais , Calpaína/antagonistas & inibidores , Calpaína/genética , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular , Inibidores de Cisteína Proteinase/farmacologia , Leupeptinas/farmacologia , Camundongos , Proteínas Musculares/metabolismo , Atrofia Muscular/patologia , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/patologia , Estresse Oxidativo/efeitos dos fármacos , Interferência de RNA , Sarcômeros/enzimologia , Superóxido Dismutase/metabolismo , Fatores de Tempo , Transfecção
19.
Curr Biol ; 18(24): R1141-2, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19108772

RESUMO

Recent studies at the single-molecule level show how signaling from the giant protein titin can be triggered by direct mechanical activation of its kinase domain.


Assuntos
Proteínas Musculares/química , Proteínas Musculares/fisiologia , Proteínas Quinases/química , Proteínas Quinases/fisiologia , Sarcômeros/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Fenômenos Biomecânicos , Conectina , Microscopia de Força Atômica , Contração Muscular/fisiologia , Sarcômeros/enzimologia , Transdução de Sinais
20.
Biofizika ; 53(5): 772-7, 2008.
Artigo em Russo | MEDLINE | ID: mdl-18954004

RESUMO

Using the immunofluorescence approach, we have determined that the recently detected protein kinases, among which are RhoA-activated kinase, integrin-linked kinase, zipper interacting protein kinase, and death-associated protein kinase, which are capable of phosphorylating myosin, are localized in the Z-lines sarcomeres of human myocardium. Additionally, we studied the content of integrin-linked and zipper interacting protein kinases in human embryonic myocardium, as well as in normal and hypertrophic adult human heart. The content of these protein kinases in adult normal myocardium increases in comparison with the embryonic heart. The content of integrin-linked and zipper interacting protein kinases in hypertrophic myocardium is higher compared with the normal adult heart. The data obtained suggest the involvement of these protein kinases in the development and hypertrophy of human heart.


Assuntos
Cardiomegalia/enzimologia , Miocárdio/enzimologia , Miosinas/metabolismo , Proteínas Quinases/metabolismo , Sarcômeros/enzimologia , Adulto , Cardiomegalia/patologia , Coração/embriologia , Humanos , Miocárdio/patologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA