Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Eur Radiol ; 34(2): 1026-1036, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37635167

RESUMO

OBJECTIVES: Left atrial (LA) myopathy, characterized by LA enlargement and mechanical dysfunction, is associated with worse prognosis in hypertrophic cardiomyopathy (HCM) while the impact of sarcomere mutation on LA myopathy remains unclear. We aimed to assess the association between LA myopathy and sarcomere mutation and to explore the incremental utility of LA strain in mutation prediction. METHODS: A total of 105 consecutive HCM patients (mean age 47.8 ± 11.9 years, 71% male) who underwent HCM-related gene screening and cardiac MRI were retrospectively enrolled. LA volume, ejection fraction and strain indices in reservoir, conduit, and booster-pump phases were investigated respectively. RESULTS: Fifty mutation-positive patients showed higher LA maximal volume index (59.4 ± 28.2 vs 43.8 ± 18.1 mL/m2, p = 0.001), lower reservoir (21.3 ± 7.9 vs 26.2 ± 6.6%, p < 0.001), and booster-pump strain (12.1 ± 5.4 vs 17.1 ± 5.0%, p < 0.001) but similar conduit strain (9.2 ± 4.5 vs 9.1 ± 4.5%, p = 0.909) compared with mutation-negative patients. In multivariate logistic regression, LA booster-pump strain was associated with sarcomere mutation (odds ratio = 0.86, 95% confidence interval: 0.77-0.96, p = 0.010) independent of maximal wall thickness, late gadolinium enhancement, and LA volume. Furthermore, LA booster-pump strain showed incremental value for mutation prediction added to Mayo II score (AUC 0.798 vs 0.709, p = 0.024). CONCLUSIONS: In HCM, mutation-positive patients suffered worse LA enlargement and worse reservoir and booster-pump functions. LA booster-pump strain was a strong factor for sarcomere mutation prediction added to Mayo II score. CLINICAL RELEVANCE STATEMENT: The independent association between sarcomere mutation and left atrial mechanical dysfunction provide new insights into the pathogenesis of atrial myopathy and is helpful to understand the adverse prognosis regarding atrial fibrillation and stroke in mutation-positive patients. KEY POINTS: • In patients with hypertrophic cardiomyopathy, left atrial (LA) reservoir and booster-pump function, but not conduit function, were significantly impaired in mutation-positive patients compared with mutation-negative patients. • LA booster-pump strain measured by MRI-derived feature tracking is feasible to predict sarcomere mutation with high incremental value added to Mayo II score.


Assuntos
Cardiomiopatia Hipertrófica , Doenças Musculares , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Sarcômeros/genética , Sarcômeros/patologia , Meios de Contraste , Gadolínio , Átrios do Coração , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/complicações , Imageamento por Ressonância Magnética , Doenças Musculares/complicações , Doenças Musculares/patologia , Mutação
2.
J Am Heart Assoc ; 12(24): e029938, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38108245

RESUMO

BACKGROUND: Mutations to the co-chaperone protein BAG3 (B-cell lymphoma-2-associated athanogene-3) are a leading cause of dilated cardiomyopathy (DCM). These mutations often impact the C-terminal BAG domain (residues 420-499), which regulates heat shock protein 70-dependent protein turnover via autophagy. While mutations in other regions are less common, previous studies in patients with DCM found that co-occurrence of 2 BAG3 variants (P63A, P380S) led to worse prognosis. However, the underlying mechanism for dysfunction is not fully understood. METHODS AND RESULTS: In this study, we used proteomics, Western blots, and myofilament functional assays on left ventricular tissue from patients with nonfailing, DCM, and DCM with BAG363/380 to determine how these mutations impact protein quality control and cardiomyocyte contractile function. We found dysregulated autophagy and increased protein ubiquitination in patients with BAG363/380 compared with nonfailing and DCM, suggesting impaired protein turnover. Expression and myofilament localization of BAG3-binding proteins were also uniquely altered in the BAG3,63/380 including abolished localization of the small heat shock protein CRYAB (alpha-crystallin B chain) to the sarcomere. To determine whether these variants impacted sarcomere function, we used cardiomyocyte force-calcium assays and found reduced maximal calcium-activated force in DCM and BAG363/380. Interestingly, myofilament calcium sensitivity was increased in DCM but not with BAG363/380, which was not explained by differences in troponin I phosphorylation. CONCLUSIONS: Together, our data support that the disease-enhancing mechanism for BAG3 variants outside of the BAG domain is through disrupted protein turnover leading to compromised sarcomere function. These findings suggest a shared mechanism of disease among pathogenic BAG3 variants, regardless of location.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Sarcômeros/genética , Sarcômeros/metabolismo , Cálcio/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Insuficiência Cardíaca/genética , Autofagia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
Anatol J Cardiol ; 27(11): 628-638, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37466024

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy is a common genetic heart disease and up to 40%-60% of patients have mutations in cardiac sarcomere protein genes. This genetic diagnosis study aimed to detect pathogenic or likely pathogenic sarcomeric and non-sarcomeric gene mutations and to confirm a final molecular diagnosis in patients diagnosed with hypertrophic cardiomyopathy. METHODS: A total of 392 patients with hypertrophic cardiomyopathy were included in this nationwide multicenter study conducted at 23 centers across Türkiye. All samples were analyzed with a 17-gene hypertrophic cardiomyopathy panel using next-generation sequencing technology. The gene panel includes ACTC1, DES, FLNC, GLA, LAMP2, MYBPC3, MYH7, MYL2, MYL3, PLN, PRKAG2, PTPN11, TNNC1, TNNI3, TNNT2, TPM1, and TTR genes. RESULTS: The next-generation sequencing panel identified positive genetic variants (variants of unknown significance, likely pathogenic or pathogenic) in 12 genes for 121 of 392 samples, including sarcomeric gene mutations in 30.4% (119/392) of samples tested, galactosidase alpha variants in 0.5% (2/392) of samples and TTR variant in 0.025% (1/392). The likely pathogenic or pathogenic variants identified in 69 (57.0%) of 121 positive samples yielded a confirmed molecular diagnosis. The diagnostic yield was 17.1% (15.8% for hypertrophic cardiomyopathy variants) for hypertrophic cardiomyopathy and hypertrophic cardiomyopathy phenocopies and 0.5% for Fabry disease. CONCLUSIONS: Our study showed that the distribution of genetic mutations, the prevalence of Fabry disease, and TTR amyloidosis in the Turkish population diagnosed with hypertrophic cardiomyopathy were similar to the other populations, but the percentage of sarcomeric gene mutations was slightly lower.


Assuntos
Cardiomiopatia Hipertrófica , Doença de Fabry , Humanos , Sarcômeros/genética , Sarcômeros/metabolismo , Sarcômeros/patologia , Mutação , Cardiomiopatia Hipertrófica/genética , Fenótipo
4.
Nat Rev Cardiol ; 19(6): 353-363, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304599

RESUMO

Variants in >12 genes encoding sarcomeric proteins can cause various cardiomyopathies. The two most common are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Current therapeutics do not target the root causes of these diseases, but attempt to prevent disease progression and/or to manage symptoms. Accordingly, novel approaches are being developed to treat the cardiac muscle dysfunction directly. Challenges to developing therapeutics for these diseases include the diverse mechanisms of pathogenesis, some of which are still being debated and defined. Four small molecules that modulate the myosin motor protein in the cardiac sarcomere have shown great promise in the settings of HCM and DCM, regardless of the underlying genetic pathogenesis, and similar approaches are being developed to target other components of the sarcomere. In the setting of HCM, mavacamten and aficamten bind to the myosin motor and decrease the ATPase activity of myosin. In the setting of DCM, omecamtiv mecarbil and danicamtiv increase myosin activity in cardiac muscle (but omecamtiv mecarbil decreases myosin activity in vitro). In this Review, we discuss the therapeutic strategies to alter sarcomere contractile activity and summarize the data indicating that targeting one protein in the sarcomere can be effective in treating patients with genetic variants in other sarcomeric proteins, as well as in patients with non-sarcomere-based disease.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Cardiomiopatias/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/genética , Humanos , Mutação , Miocárdio/metabolismo , Miosinas/genética , Miosinas/metabolismo , Sarcômeros/genética , Sarcômeros/metabolismo
5.
ESC Heart Fail ; 8(6): 5178-5191, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34486814

RESUMO

AIMS: The aim of the present study was to consider whether the ultrastructural features of cardiomyocytes in dilated cardiomyopathy can be used to guide genetic testing. METHODS AND RESULTS: Endomyocardial biopsy and whole-exome sequencing were performed in 32 consecutive sporadic dilated cardiomyopathy patients [51.0 (40.0-64.0) years, 75% men] in initial phases of decompensated heart failure. The predicted pathogenicity of ultrarare (minor allele frequency ≤0.0005), non-synonymous variants was determined using the American College of Medical Genetics guidelines. Focusing on 75 cardiomyopathy-susceptibility and 41 arrhythmia-susceptibility genes, we identified 404 gene variants, of which 15 were considered pathogenic or likely pathogenic in 14 patients (44% of 32). There were five sarcomeric gene variants (29% of 17 variants) found in five patients (16% of 32), involving a variant of MYBPC3 and four variants of TTN. A patient with an MYBPC3 variant showed disorganized sarcomeres, three patients with TTN variants located in the region encoding the A-band domain showed sparse sarcomeres, and a patient with a TTN variant in encoding the I-band domain showed disrupted sarcomeres. The distribution of diffuse myofilament lysis depended on the causal genes; three patients with the same TMEM43 variant had diffuse myofilament lysis near nuclei (P = 0.011), while two patients with different DSP variants had lysis in the peripheral areas of cardiomyocytes (P = 0.033). CONCLUSIONS: Derangement patterns of myofilament and subcellular distribution of myofilament lysis might implicate causal genes. Large-scale studies are required to confirm whether these ultrastructural findings are related to the causative genes.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Miocárdio , Adulto , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Proteínas de Transporte/genética , Conectina/genética , Desmoplaquinas/genética , Feminino , Testes Genéticos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/ultraestrutura , Miofibrilas/patologia , Sarcômeros/genética , Sarcômeros/patologia
6.
J Am Heart Assoc ; 10(15): e020227, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34310159

RESUMO

Background Impaired myocardial blood flow (MBF) in the absence of epicardial coronary disease is a feature of hypertrophic cardiomyopathy (HCM). Although most evident in hypertrophied or scarred segments, reduced MBF can occur in apparently normal segments. We hypothesized that impaired MBF and myocardial perfusion reserve, quantified using perfusion mapping cardiac magnetic resonance, might occur in the absence of overt left ventricular hypertrophy (LVH) and late gadolinium enhancement, in mutation carriers without LVH criteria for HCM (genotype-positive, left ventricular hypertrophy-negative). Methods and Results A single center, case-control study investigated MBF and myocardial perfusion reserve (the ratio of MBF at stress:rest), along with other pre-phenotypic features of HCM. Individuals with genotype-positive, left ventricular hypertrophy-negative (n=50) with likely pathogenic/pathogenic variants and no evidence of LVH, and matched controls (n=28) underwent cardiac magnetic resonance. Cardiac magnetic resonance identified LVH-fulfilling criteria for HCM in 5 patients who were excluded. Individuals with genotype-positive, left ventricular hypertrophy-negative had longer indexed anterior mitral valve leaflet length (12.52±2.1 versus 11.55±1.6 mm/m2, P=0.03), lower left ventricular end-systolic volume (21.0±6.9 versus 26.7±6.2 mm/m2, P≤0.005) and higher left ventricular ejection fraction (71.9±5.5 versus 65.8±4.4%, P≤0.005). Maximum wall thickness was not significantly different (9.03±1.95 versus 8.37±1.2 mm, P=0.075), and no subject had significant late gadolinium enhancement (minor right ventricle‒insertion point late gadolinium enhancement only). Perfusion mapping demonstrated visual perfusion defects in 9 (20%) carriers versus 0 controls (P=0.011). These were almost all septal or near right ventricle insertion points. Globally, myocardial perfusion reserve was lower in carriers (2.77±0.83 versus 3.24±0.63, P=0.009), with a subendocardial:subepicardial myocardial perfusion reserve gradient (2.55±0.75 versus 3.2±0.65, P=<0.005; 3.01±0.96 versus 3.47±0.75, P=0.026) but equivalent MBF (2.75±0.82 versus 2.65±0.69 mL/g per min, P=0.826). Conclusions Regional and global impaired myocardial perfusion can occur in HCM mutation carriers, in the absence of significant hypertrophy or scarring.


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica Familiar , Hipertrofia Ventricular Esquerda , Imagem Cinética por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Adulto , Cardiomiopatia Hipertrófica Familiar/diagnóstico por imagem , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Circulação Coronária/fisiologia , Eletrocardiografia/métodos , Feminino , Testes Genéticos/métodos , Ventrículos do Coração/diagnóstico por imagem , Heterozigoto , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico , Hipertrofia Ventricular Esquerda/etiologia , Angiografia por Ressonância Magnética/métodos , Masculino , Microcirculação , Mutação , Sarcômeros/genética , Sarcômeros/patologia
7.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752103

RESUMO

The flight muscle of Manduca sexta (DLM1) is an emerging model system for biophysical studies of muscle contraction. Unlike the well-studied indirect flight muscle of Lethocerus and Drosophila, the DLM1 of Manduca is a synchronous muscle, as are the vertebrate cardiac and skeletal muscles. Very little has been published regarding the ultrastructure and protein composition of this muscle. Previous studies have demonstrated that DLM1 express two projectin isoform, two kettin isoforms, and two large Salimus (Sls) isoforms. Such large Sls isoforms have not been observed in the asynchronous flight muscles of Lethocerus and Drosophila. The spatial localization of these proteins was unknown. Here, immuno-localization was used to show that the N-termini of projectin and Salimus are inserted into the Z-band. Projectin spans across the I-band, and the C-terminus is attached to the thick filament in the A-band. The C-terminus of Sls was also located in the A-band. Using confocal microscopy and experimental force-length curves, thin filament lengths were estimated as ~1.5 µm and thick filament lengths were measured as ~2.5 µm. This structural information may help provide an interpretive framework for future studies using this muscle system.


Assuntos
Conectina/genética , Manduca/fisiologia , Contração Muscular/fisiologia , Proteínas Musculares/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Sequência de Aminoácidos/genética , Animais , Fenômenos Biofísicos/genética , Drosophila/genética , Voo Animal/fisiologia , Manduca/genética , Contração Muscular/genética , Músculo Esquelético/fisiologia , Músculo Esquelético/ultraestrutura , Miofibrilas/genética , Miofibrilas/fisiologia , Miofibrilas/ultraestrutura , Sarcômeros/genética , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura
8.
Dis Markers ; 2020: 8885286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670437

RESUMO

The sarcomeric proteins control the movement of cells in diverse species, whereas the deregulation can induce tumours in model organisms and occurs in human carcinomas. Sarcomeric proteins are recognized as oncogene and related to tumor cell metastasis. Recent insights into their expressions and functions have led to new cancer therapeutic opportunities. In this review, we appraise the evidence for the sarcomeric proteins as cancer genes and discuss cancer-relevant biological functions, potential mechanisms by which sarcomeric proteins activity is altered in cancer.


Assuntos
Proteínas Musculares/genética , Neoplasias/genética , Sarcômeros/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Musculares/metabolismo , Metástase Neoplásica , Neoplasias/metabolismo , Sarcômeros/genética
9.
FEBS J ; 287(11): 2176-2190, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32096922

RESUMO

Skeletal muscles constitute roughly 40% of human body mass. Muscles are specialized tissues that generate force to drive movements through ATP-driven cyclic interactions between the protein filaments, namely actin and myosin filaments. The filaments are organized in an intricate structure called the 'sarcomere', which is a fundamental contractile unit of striated skeletal and cardiac muscle, hosting a fine assembly of macromolecular protein complexes. The micrometer-sized sarcomere units are arranged in a reiterated array within myofibrils of muscle cells. The precise spatial organization of sarcomere is tightly controlled by several molecular mechanisms, indispensable for its force-generating function. Disorganized sarcomeres, either due to erroneous molecular signaling or due to mutations in the sarcomeric proteins, lead to human diseases such as cardiomyopathies and muscle atrophic conditions prevalent in cachexia. Protein post-translational modifications (PTMs) of the sarcomeric proteins serve a critical role in sarcomere formation (sarcomerogenesis), as well as in the steady-state maintenance of sarcomeres. PTMs such as phosphorylation, acetylation, ubiquitination, and SUMOylation provide cells with a swift and reversible means to adapt to an altered molecular and therefore cellular environment. Over the past years, SUMOylation has emerged as a crucial modification with implications for different aspects of cell function, including organizing higher-order protein assemblies. In this review, we highlight the fundamentals of the small ubiquitin-like modifiers (SUMO) pathway and its link specifically to the mechanisms of sarcomere assembly. Furthermore, we discuss recent studies connecting the SUMO pathway-modulated protein homeostasis with sarcomere organization and muscle-related pathologies.


Assuntos
Diferenciação Celular/genética , Morfogênese/genética , Sarcômeros/genética , Sumoilação/genética , Citoesqueleto de Actina/genética , Animais , Citoesqueleto/genética , Humanos , Contração Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Miofibrilas/genética , Sarcômeros/metabolismo , Ubiquitina/genética
10.
Circulation ; 141(10): 828-842, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31983222

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is caused by pathogenic variants in sarcomere protein genes that evoke hypercontractility, poor relaxation, and increased energy consumption by the heart and increased patient risks for arrhythmias and heart failure. Recent studies show that pathogenic missense variants in myosin, the molecular motor of the sarcomere, are clustered in residues that participate in dynamic conformational states of sarcomere proteins. We hypothesized that these conformations are essential to adapt contractile output for energy conservation and that pathophysiology of HCM results from destabilization of these conformations. METHODS: We assayed myosin ATP binding to define the proportion of myosins in the super relaxed state (SRX) conformation or the disordered relaxed state (DRX) conformation in healthy rodent and human hearts, at baseline and in response to reduced hemodynamic demands of hibernation or pathogenic HCM variants. To determine the relationships between myosin conformations, sarcomere function, and cell biology, we assessed contractility, relaxation, and cardiomyocyte morphology and metabolism, with and without an allosteric modulator of myosin ATPase activity. We then tested whether the positions of myosin variants of unknown clinical significance that were identified in patients with HCM, predicted functional consequences and associations with heart failure and arrhythmias. RESULTS: Myosins undergo physiological shifts between the SRX conformation that maximizes energy conservation and the DRX conformation that enables cross-bridge formation with greater ATP consumption. Systemic hemodynamic requirements, pharmacological modulators of myosin, and pathogenic myosin missense mutations influenced the proportions of these conformations. Hibernation increased the proportion of myosins in the SRX conformation, whereas pathogenic variants destabilized these and increased the proportion of myosins in the DRX conformation, which enhanced cardiomyocyte contractility, but impaired relaxation and evoked hypertrophic remodeling with increased energetic stress. Using structural locations to stratify variants of unknown clinical significance, we showed that the variants that destabilized myosin conformations were associated with higher rates of heart failure and arrhythmias in patients with HCM. CONCLUSIONS: Myosin conformations establish work-energy equipoise that is essential for life-long cellular homeostasis and heart function. Destabilization of myosin energy-conserving states promotes contractile abnormalities, morphological and metabolic remodeling, and adverse clinical outcomes in patients with HCM. Therapeutic restabilization corrects cellular contractile and metabolic phenotypes and may limit these adverse clinical outcomes in patients with HCM.


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/metabolismo , Mutação de Sentido Incorreto/genética , Miócitos Cardíacos/fisiologia , Cadeias Pesadas de Miosina/genética , Sarcômeros/metabolismo , Adenosina Trifosfatases , Animais , Cardiomiopatia Hipertrófica/genética , Células Cultivadas , Metabolismo Energético , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Simulação de Dinâmica Molecular , Relaxamento Muscular , Contração Miocárdica , Miócitos Cardíacos/citologia , Conformação Proteica , Sarcômeros/genética
11.
Biochim Biophys Acta Mol Cell Res ; 1867(3): 118440, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30738787

RESUMO

The sarcomere is the basic unit of the myofibrils, which mediate skeletal and cardiac Muscle contraction. Two transverse structures, the Z-disc and the M-band, anchor the thin (actin and associated proteins) and thick (myosin and associated proteins) filaments to the elastic filament system composed of titin. A plethora of proteins are known to be integral or associated proteins of the Z-disc and its structural and signalling role in muscle is better understood, while the molecular constituents of the M-band and its function are less well defined. Evidence discussed here suggests that the M-band is important for managing force imbalances during active muscle contraction. Its molecular composition is fine-tuned, especially as far as the structural linkers encoded by members of the myomesin family are concerned and depends on the specific mechanical characteristics of each particular muscle fibre type. Muscle activity signals from the M-band to the nucleus and affects transcription of sarcomeric genes, especially via serum response factor (SRF). Due to its important role as shock absorber in contracting muscle, the M-band is also more and more recognised as a contributor to muscle disease.


Assuntos
Conectina/genética , Contração Muscular/genética , Sarcômeros/genética , Transcrição Gênica , Actinas/genética , Humanos , Miofibrilas/metabolismo , Miosinas/genética , Sarcômeros/metabolismo , Fator de Resposta Sérica/genética
12.
FEBS J ; 287(4): 659-670, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31411810

RESUMO

Among many essential genes in the nematode Caenorhabditis elegans, let-330 is located on the left arm of chromosome V and was identified as the largest target of a mutagen in this region. However, let-330 gene has not been characterized at the molecular level. Here, we report that two sequenced let-330 alleles are nonsense mutations of ketn-1, a previously characterized gene encoding kettin. Kettin is a large actin-binding protein of 472 kDa with 31 immunoglobulin domains and is expressed in muscle cells in C. elegans. let-330/ketn-1 mutants are homozygous lethal at the first larval stage with mild defects in body elongation. These mutants have severe defects in sarcomeric actin and myosin assembly in striated muscle. However, α-actinin and vinculin, which are components of the dense bodies anchoring actin to the membranes, were not significantly disorganized by let-330/ketn-1 mutation. Kettin localizes to embryonic myofibrils before α-actinin is expressed, and α-actinin deficiency does not affect kettin localization in larval muscle. Depletion of vinculin minimally affects kettin localization but significantly reduces colocalization of actin with kettin in embryonic muscle cells. These results indicate that kettin is an essential protein for sarcomeric assembly of actin filaments in muscle cells.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Conectina/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva/metabolismo , Sarcômeros/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinina/genética , Actinina/metabolismo , Actinas/genética , Actinas/metabolismo , Alelos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromossomos/química , Códon sem Sentido , Conectina/metabolismo , Embrião não Mamífero , Larva/citologia , Larva/crescimento & desenvolvimento , Morfogênese/genética , Miosinas/genética , Miosinas/metabolismo , Ligação Proteica , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Transdução de Sinais , Vinculina/genética , Vinculina/metabolismo , Sequenciamento Completo do Genoma
13.
Mol Cell Proteomics ; 19(1): 114-127, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31243064

RESUMO

Hypertrophic cardiomyopathy (HCM) is defined by pathological left ventricular hypertrophy (LVH). It is the commonest inherited cardiac condition and a significant number of high risk cases still go undetected until a sudden cardiac death (SCD) event. Plasma biomarkers do not currently feature in the assessment of HCM disease progression, which is tracked by serial imaging, or in SCD risk stratification, which is based on imaging parameters and patient/family history. There is a need for new HCM plasma biomarkers to refine disease monitoring and improve patient risk stratification. To identify new plasma biomarkers for patients with HCM, we performed exploratory myocardial and plasma proteomics screens and subsequently developed a multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay to validate the 26 peptide biomarkers that were identified. The association of discovered biomarkers with clinical phenotypes was prospectively tested in plasma from 110 HCM patients with LVH (LVH+ HCM), 97 controls, and 16 HCM sarcomere gene mutation carriers before the development of LVH (subclinical HCM). Six peptides (aldolase fructose-bisphosphate A, complement C3, glutathione S-transferase omega 1, Ras suppressor protein 1, talin 1, and thrombospondin 1) were increased significantly in the plasma of LVH+ HCM compared with controls and correlated with imaging markers of phenotype severity: LV wall thickness, mass, and percentage myocardial scar on cardiovascular magnetic resonance imaging. Using supervised machine learning (ML), this six-biomarker panel differentiated between LVH+ HCM and controls, with an area under the curve of ≥ 0.87. Five of these peptides were also significantly increased in subclinical HCM compared with controls. In LVH+ HCM, the six-marker panel correlated with the presence of nonsustained ventricular tachycardia and the estimated five-year risk of sudden cardiac death. Using quantitative proteomic approaches, we have discovered six potentially useful circulating plasma biomarkers related to myocardial substrate changes in HCM, which correlate with the estimated sudden cardiac death risk.


Assuntos
Cardiomiopatia Hipertrófica/sangue , Hipertrofia Ventricular Esquerda/sangue , Aprendizado de Máquina , Peptídeos/sangue , Proteômica/métodos , Adulto , Idoso , Biomarcadores/sangue , Cardiomiopatia Hipertrófica/diagnóstico , Estudos de Casos e Controles , Feminino , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Valor Preditivo dos Testes , Estudos Prospectivos , Sarcômeros/genética , Índice de Gravidade de Doença , Adulto Jovem
14.
Proc Natl Acad Sci U S A ; 116(48): 24115-24121, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31704768

RESUMO

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. The major AF susceptibility locus 4q25 establishes long-range interactions with the promoter of PITX2, a transcription factor gene with critical functions during cardiac development. While many AF-linked loci have been identified in genome-wide association studies, mechanistic understanding into how genetic variants, including those at the 4q25 locus, increase vulnerability to AF is mostly lacking. Here, we show that loss of pitx2c in zebrafish leads to adult cardiac phenotypes with substantial similarities to pathologies observed in AF patients, including arrhythmia, atrial conduction defects, sarcomere disassembly, and altered cardiac metabolism. These phenotypes are also observed in a subset of pitx2c+/- fish, mimicking the situation in humans. Most notably, the onset of these phenotypes occurs at an early developmental stage. Detailed analyses of pitx2c loss- and gain-of-function embryonic hearts reveal changes in sarcomeric and metabolic gene expression and function that precede the onset of cardiac arrhythmia first observed at larval stages. We further find that antioxidant treatment of pitx2c-/- larvae significantly reduces the incidence and severity of cardiac arrhythmia, suggesting that metabolic dysfunction is an important driver of conduction defects. We propose that these early sarcomere and metabolic defects alter cardiac function and contribute to the electrical instability and structural remodeling observed in adult fish. Overall, these data provide insight into the mechanisms underlying the development and pathophysiology of some cardiac arrhythmias and importantly, increase our understanding of how developmental perturbations can predispose to functional defects in the adult heart.


Assuntos
Arritmias Cardíacas/metabolismo , Proteínas de Homeodomínio/genética , Sarcômeros/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Acetilcisteína/farmacologia , Animais , Animais Geneticamente Modificados , Antioxidantes/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Doença do Sistema de Condução Cardíaco/etiologia , Doença do Sistema de Condução Cardíaco/genética , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Eletrocardiografia , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Larva/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Sarcômeros/genética , Sarcômeros/patologia , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo
15.
J Biol Chem ; 294(40): 14634-14647, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31387947

RESUMO

Mutations in the cardiac thin filament (TF) have highly variable effects on the regulatory function of the cardiac sarcomere. Understanding the molecular-level dysfunction elicited by TF mutations is crucial to elucidate cardiac disease mechanisms. The hypertrophic cardiomyopathy-causing cardiac troponin T (cTnT) mutation Δ160Glu (Δ160E) is located in a putative "hinge" adjacent to an unstructured linker connecting domains TNT1 and TNT2. Currently, no high-resolution structure exists for this region, limiting significantly our ability to understand its role in myofilament activation and the molecular mechanism of mutation-induced dysfunction. Previous regulated in vitro motility data have indicated mutation-induced impairment of weak actomyosin interactions. We hypothesized that cTnT-Δ160E repositions the flexible linker, altering weak actomyosin electrostatic binding and acting as a biophysical trigger for impaired contractility and the observed remodeling. Using time-resolved FRET and an all-atom TF model, here we first defined the WT structure of the cTnT-linker region and then identified Δ160E mutation-induced positional changes. Our results suggest that the WT linker runs alongside the C terminus of tropomyosin. The Δ160E-induced structural changes moved the linker closer to the tropomyosin C terminus, an effect that was more pronounced in the presence of myosin subfragment (S1) heads, supporting previous findings. Our in silico model fully supported this result, indicating a mutation-induced decrease in linker flexibility. Our findings provide a framework for understanding basic pathogenic mechanisms that drive severe clinical hypertrophic cardiomyopathy phenotypes and for identifying structural targets for intervention that can be tested in silico and in vitro.


Assuntos
Cardiomiopatia Hipertrófica/genética , Conformação Proteica , Tropomiosina/química , Troponina T/ultraestrutura , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Animais , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/patologia , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica/genética , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Miosinas/química , Miosinas/genética , Sarcômeros/genética , Sarcômeros/patologia , Tropomiosina/genética , Troponina T/química , Troponina T/genética
16.
Am J Physiol Heart Circ Physiol ; 317(3): H648-H657, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31373515

RESUMO

Alterations in length-dependent activation (LDA) may constitute a mechanism by which cardiomyopathy mutations lead to deleterious phenotypes and compromised heart function, because LDA underlies the molecular basis by which the heart tunes myocardial force production on a beat-to-beat basis (Frank-Starling mechanism). In this study, we investigated the effect of DCM-linked mutation (R173W) in human cardiac troponin T (TnT) on myofilament LDA. R173W mutation is associated with left ventricular dilatation and systolic dysfunction and is found in multiple families. R173W mutation is in the central region (residues 80-180) of TnT, which is known to be important for myofilament cooperativity and cross-bridge (XB) recruitment. Steady-state and dynamic contractile parameters were measured in detergent-skinned guinea pig left ventricular muscle fibers reconstituted with recombinant guinea pig wild-type TnT (TnTWT) or mutant TnT (TnTR174W; guinea pig analog of human R173W mutation) at two different sarcomere lengths (SL): short (1.9 µm) and long (2.3 µm). TnTR174W decreased pCa50 (-log [Ca2+]free required for half-maximal activation) to a greater extent at long than at short SL; for example, pCa50 decreased by 0.12 pCa units at long SL and by 0.06 pCa units at short SL. Differential changes in pCa50 at short and long SL attenuated the SL-dependent increase in myofilament Ca2+ sensitivity (ΔpCa50) in TnTR174W fibers; ΔpCa50 was 0.10 units in TnTWT fibers but only 0.04 units in TnTR174W fibers. Furthermore, TnTR174W blunted the SL-dependent increase in the magnitude of XB recruitment. Our observations suggest that the R173W mutation in human cardiac TnT may impair Frank-Starling mechanism.NEW & NOTEWORTHY This work characterizes the effect of dilated cardiomyopathy mutation in cardiac troponin T (TnTR174W) on myofilament length-dependent activation. TnTR174W attenuates the length-dependent increase in cross-bridge recruitment and myofilament Ca2+ sensitivity.


Assuntos
Sinalização do Cálcio/genética , Cardiomiopatia Dilatada/genética , Mutação/genética , Ponte Miocárdica/genética , Miofibrilas/genética , Troponina T/genética , Adenosina Trifosfatases/metabolismo , Animais , Cobaias , Técnicas In Vitro , Contração Isométrica , Contração Miocárdica/genética , Proteínas Recombinantes , Sarcômeros/genética
17.
Cells ; 8(7)2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323898

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disorder. It is mainly caused by mutations in genes encoding sarcomere proteins. Mutant forms of these highly abundant proteins likely stress the protein quality control (PQC) system of cardiomyocytes. The PQC system, together with a functional microtubule network, maintains proteostasis. We compared left ventricular (LV) tissue of nine donors (controls) with 38 sarcomere mutation-positive (HCMSMP) and 14 sarcomere mutation-negative (HCMSMN) patients to define HCM and mutation-specific changes in PQC. Mutations in HCMSMP result in poison polypeptides or reduced protein levels (haploinsufficiency, HI). The main findings were 1) several key PQC players were more abundant in HCM compared to controls, 2) after correction for sex and age, stabilizing heat shock protein (HSP)B1, and refolding, HSPD1 and HSPA2 were increased in HCMSMP compared to controls, 3) α-tubulin and acetylated α-tubulin levels were higher in HCM compared to controls, especially in HCMHI, 4) myosin-binding protein-C (cMyBP-C) levels were inversely correlated with α-tubulin, and 5) α-tubulin levels correlated with acetylated α-tubulin and HSPs. Overall, carrying a mutation affects PQC and α-tubulin acetylation. The haploinsufficiency of cMyBP-C may trigger HSPs and α-tubulin acetylation. Our study indicates that proliferation of the microtubular network may represent a novel pathomechanism in cMyBP-C haploinsufficiency-mediated HCM.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Microtúbulos/metabolismo , Resposta a Proteínas não Dobradas , Adulto , Idoso , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chaperonina 60/metabolismo , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Masculino , Microtúbulos/genética , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Sarcômeros/genética , Sarcômeros/metabolismo , Tubulina (Proteína)/metabolismo
18.
Cardiovasc Res ; 115(14): 1986-1997, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050699

RESUMO

AIMS: A 25-base pair deletion in the cardiac myosin binding protein-C (cMyBP-C) gene (MYBPC3), proposed to skip exon 33, modifies the C10 domain (cMyBP-CΔC10mut) and is associated with hypertrophic cardiomyopathy (HCM) and heart failure, affecting approximately 100 million South Asians. However, the molecular mechanisms underlying the pathogenicity of cMyBP-CΔC10mutin vivo are unknown. We hypothesized that expression of cMyBP-CΔC10mut exerts a poison polypeptide effect leading to improper assembly of cardiac sarcomeres and the development of HCM. METHODS AND RESULTS: To determine whether expression of cMyBP-CΔC10mut is sufficient to cause HCM and contractile dysfunction in vivo, we generated transgenic (TG) mice having cardiac-specific protein expression of cMyBP-CΔC10mut at approximately half the level of endogenous cMyBP-C. At 12 weeks of age, significant hypertrophy was observed in TG mice expressing cMyBP-CΔC10mut (heart weight/body weight ratio: 4.43 ± 0.11 mg/g non-transgenic (NTG) vs. 5.34 ± 0.25 mg/g cMyBP-CΔC10mut, P < 0.05). Furthermore, haematoxylin and eosin, Masson's trichrome staining, as well as second-harmonic generation imaging revealed the presence of significant fibrosis and a greater relative nuclear area in cMyBP-CΔC10mut hearts compared with NTG controls. M-mode echocardiography analysis revealed hypercontractile hearts (EF: 53.4%±2.9% NTG vs. 66.4% ± 4.7% cMyBP-CΔC10mut; P < 0.05) and early diastolic dysfunction (E/E': 28.7 ± 3.7 NTG vs. 46.3 ± 8.4 cMyBP-CΔC10mut; P < 0.05), indicating the presence of an HCM phenotype. To assess whether these changes manifested at the myofilament level, contractile function of single skinned cardiomyocytes was measured. Preserved maximum force generation and increased Ca2+-sensitivity of force generation were observed in cardiomyocytes from cMyBP-CΔC10mut mice compared with NTG controls (EC50: 3.6 ± 0.02 µM NTG vs. 2.90 ± 0.01 µM cMyBP-CΔC10mut; P < 0.0001). CONCLUSION: Expression of cMyBP-C protein with a modified C10 domain is sufficient to cause contractile dysfunction and HCM in vivo.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Proteínas de Transporte/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Remodelação Ventricular , Animais , Sinalização do Cálcio , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/genética , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/patologia , Domínios Proteicos , Sarcômeros/genética , Sarcômeros/patologia , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
19.
J Mol Cell Cardiol ; 131: 12-19, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30998980

RESUMO

The leading cause of genetic dilated cardiomyopathy (DCM) is due to mutations in the TTN gene, impacting approximately 15-20% of familial and 18% of sporadic DCM cases. Currently, there is potential for a personalized RNA-based therapeutic approach in titin-based DCM, utilizing antisense oligonucleotide (AON) mediated exon-skipping, which attempts to reframe mutated titin transcripts, resulting in shortened, functional protein. However, the TTN gene is massive with 363 exons; each newly identified TTN exon mutation provides a challenge to address when considering the potential application of AON mediated exon skipping. In the initial phase of this strategy, the mutated TTN exon requires specific AON design and evaluation to assess the exon skipping effectiveness for subsequent experiments. Here, we present a detailed protocol to effectively assemble and evaluate AONs for efficient exon-skipping in targeted TTN exons. We chose a previously identified TTN 1-bp deletion mutation in exon 335 as an exemplary target exon, which causes a frameshift mutation leading to truncated A-band titin in DCM. We designed two specific AONs to mask the Ttn exon 335 and confirmed successfully mediated exon skipping without disrupting the Ttn reading frame. In addition, we evaluated and confirmed AON-treated HL-1 cells show maintained store-operated calcium entry, fractional shortening as well as preserved sarcomeric formation in comparison to control samples, indicating the treated cardiomyocytes retain adequate, essential cell function and structure, proving the treated cells can compensate for the loss of exon 335. These results indicate our method offers the first systematic protocol in designing and evaluating AONs specifically for mutated TTN target exons, expanding the framework of future advancements in the therapeutic potential of antisense-mediated exon skipping in titin-based DCM.


Assuntos
Cardiomiopatia Dilatada/genética , Conectina/genética , Éxons/genética , Mutação da Fase de Leitura/genética , Oligonucleotídeos Antissenso/genética , Deleção de Sequência/genética , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Sarcômeros/genética
20.
Int J Cardiol ; 275: 107-113, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30316646

RESUMO

BACKGROUND: Our knowledge of hypertrophic cardiomyopathy (HCM) mainly originates from quarternary centres. The objective is to assess the current management of HCM patients in a large multicentre French register according to the level of expertise. METHODS AND RESULTS: A total of 1431 HCM patients were recruited across 26 (11 expert and 15 non-expert) centres in REMY, a prospective hospital-based register of adult HCM patients. A sarcomeric origin was suspected in 1284 (89.7%) patients [261 (20.3%) with a reported gene mutation, 242 (18.8%) genotype-negative], while 107 (7.5%) had a diagnosis of non-sarcomeric HCM. Patients managed in non-expert centres were older (P < 0.01) and presented more often with NYHA III/IV class dyspnoea (P < 0.01), congestive heart failure (P < 0.01), low LEVF (P < 0.01), less often with a syncope history (P < 0.01) and lower LV obstruction (P < 0.01) than patients in expert centres. Genotype positive sarcomeric aetiologies were less frequent in non-expert centres (P < 0.01). The use of diagnostic and prognostic tests as cardiac MRI (P < 0.001), genetic (P < 0.001) and alpha-galactosidase A enzyme level testing (P < 0.001), Holter ECG (P < 0.001), and exercise test (P < 0.001), was lower in non-expert centres. Septal ablation procedures using alcohol (P < 0.001) or myectomy (P < 0.001) were more frequent in expert centres. CONCLUSION: In real life practice, only a minority of HCM patients are identified as sarcomere positive as per genetic testing. The management of HCM patients varies according to the centre's level of expertise, with less access to diagnostic and prognostic tests in non-expert centres. Non-sarcomeric HCM may therefore be overlooked despite specific treatment in some aetiologies.


Assuntos
Procedimentos Cirúrgicos Cardíacos/métodos , Cardiomiopatia Hipertrófica/diagnóstico , Gerenciamento Clínico , Testes Genéticos/métodos , Imagem Cinética por Ressonância Magnética/métodos , Sistema de Registros , Tomografia Computadorizada por Raios X/métodos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/cirurgia , Análise Mutacional de DNA , Feminino , Seguimentos , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Miosinas/genética , Prognóstico , Estudos Prospectivos , Sarcômeros/genética , Sarcômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA