Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 30(1): 199-206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177855

RESUMO

Limb-girdle muscular dystrophy 2E/R4 is caused by mutations in the ß-sarcoglycan (SGCB) gene, leading to SGCB deficiency and consequent muscle loss. We developed a gene therapy approach based on functional replacement of the deficient SCB protein. Here we report interim results from a first-in-human, open-label, nonrandomized, phase 1/2 trial evaluating the safety and efficacy of bidridistrogene xeboparvovec, an adeno-associated virus-based gene therapy containing a codon-optimized, full-length human SGCB transgene. Patients aged 4-15 years with confirmed SGCB mutations at both alleles received one intravenous infusion of either 1.85 × 1013 vector genome copies kg-1 (Cohort 1, n = 3) or 7.41 × 1013 vector gene copies kg-1 (Cohort 2, n = 3). Primary endpoint was safety, and secondary endpoint was change in SGCB expression in skeletal muscle from baseline to Day 60. We report interim Year 2 results (trial ongoing). The most frequent treatment-related adverse events were vomiting (four of six patients) and gamma-glutamyl transferase increase (three of six patients). Serious adverse events resolved with standard therapies. Robust SGCB expression was observed: Day 60 mean (s.d.) percentage of normal expression 36.2% (2.7%) in Cohort 1 and 62.1% (8.7%) in Cohort 2. Post hoc exploratory analysis showed preliminary motor improvements using the North Star Assessment for Limb-girdle Type Muscular Dystrophies maintained through Year 2. The 2-year safety and efficacy of bidridistrogene xeboparvovec support clinical development advancement. Further studies are necessary to confirm the long-term safety and efficacy of this gene therapy. ClinicalTrials.gov registration: NCT03652259 .


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Sarcoglicanopatias , Humanos , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/terapia , Sarcoglicanopatias/genética , Sarcoglicanopatias/metabolismo , Sarcoglicanopatias/terapia , Músculo Esquelético/metabolismo , Terapia Genética/efeitos adversos , Terapia Genética/métodos
2.
Brain ; 145(2): 596-606, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34515763

RESUMO

Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict a disease's severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 paediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty-seven per cent of the patients had consanguineous parents. Ninety-one per cent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in five patients (21.7%) and four patients (17.4%) required non-invasive ventilation. Sixty per cent of patients were wheelchair-bound since early teens (median age of 12.0 years). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Sarcoglicanopatias , Adulto , Criança , Humanos , Debilidade Muscular , Distrofias Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Estudos Retrospectivos , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Sarcoglicanas/metabolismo
3.
Neuromuscul Disord ; 31(10): 1021-1027, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34404573

RESUMO

Sarcoglycanopathies are the most severe forms of autosomal recessive limb-girdle muscular dystrophies (LGMDs), constituting about 10-25% of LGMDs. The clinical phenotype is variable, but onset is usually in the first decade of life. Patients present muscle hypertrophy, elevated CK, variable muscle weaknesses, and progressive loss of ambulation. Four subtypes are known: LGMDR3, LGMDR4, LGMDR5 and LGMDR6, caused, respectively, by mutations in the SGCA, SGCB,SGCG and SGCD genes. Their four coded proteins, α-SG, ß-SG, λ-SG and δ-SG are part of the dystrophin-glycoprotein complex (DGC) present in muscle sarcolemma, which acts as a linker between the cytoskeleton of the muscle fiber and the extracellular matrix, providing mechanical support to the sarcolemma during myofiber contraction. Many different mutations have already been identified in all the sarcoglycan genes, with a predominance of some mutations in different populations. The diagnosis is currently based on the molecular screening for these mutations. Therapeutic approaches include the strategy of gene replacement mediated by a vector derived from adeno-associated virus (AAV). Pre-clinical studies have shown detectable levels of SG proteins in the muscle, and some improvement in the phenotype, in animal models. Therapeutic trials in humans are ongoing.


Assuntos
Sarcoglicanopatias/genética , Dependovirus , Terapia Genética , Humanos , Músculo Esquelético/metabolismo , Mutação , Fenótipo , Sarcoglicanas/genética
4.
Clin Neuropathol ; 40(6): 310-318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34281632

RESUMO

AIM: Since the immune system plays a role in the pathogenesis of several muscular dystrophies, we aim to characterize several muscular inflammatory features in α- (LGMD R3) and γ-sarcoglycanopathies (LGMD R5). MATERIALS AND METHODS: We explored the expression of major histocompatibility complex class I molecules (MHCI), and we analyzed the composition of the immune infiltrates in muscle biopsies from 10 patients with LGMD R3 and 8 patients with LGMD R5, comparing the results to Duchenne muscular dystrophy patients (DMD). RESULTS: A consistent involvement of the immune response was observed in sarcoglycanopathies, although it was less evident than in DMD. LGMD R3-R5 and DMD shared an abnormal expression of MHCI, and the composition of the muscular immune cell infiltrate was comparable. CONCLUSION: These findings might serve as a rationale to fine-tune a disease-specific immunomodulatory regimen, particularly relevant in view of the rapid development of gene therapy for sarcoglycanopathies.


Assuntos
Distrofias Musculares , Miosite , Sarcoglicanopatias , Biópsia , Humanos , Músculo Esquelético , Sarcoglicanopatias/genética
5.
Skelet Muscle ; 11(1): 2, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33407862

RESUMO

BACKGROUND: A cohort of related miniature dachshund dogs with exercise intolerance, stiff gait, dysphagia, myoglobinuria, and markedly elevated serum creatine kinase activities were identified. METHODS: Muscle biopsy histopathology, immunofluorescence microscopy, and western blotting were combined to identify the specific pathologic phenotype of the myopathy, and whole genome SNP array genotype data and whole genome sequencing were combined to determine its genetic basis. RESULTS: Muscle biopsies were dystrophic. Sarcoglycanopathy, a form of limb-girdle muscular dystrophy, was suspected based on immunostaining and western blotting, where α, ß, and γ-sarcoglycan were all absent or reduced. Genetic mapping and whole genome sequencing identified a premature stop codon mutation in the sarcoglycan A subunit gene (SGCA). Affected dachshunds were confirmed on several continents. CONCLUSIONS: This first SGCA mutation found in dogs adds to the literature of genetic bases of canine muscular dystrophies and their usefulness as comparative models of human disease.


Assuntos
Doenças do Cão/genética , Distrofia Muscular do Cíngulo dos Membros , Sarcoglicanopatias , Animais , Cães , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Sarcoglicanopatias/genética , Sarcoglicanopatias/veterinária , Sarcoglicanas/genética
6.
Hum Gene Ther ; 32(7-8): 390-404, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33349138

RESUMO

Limb-girdle muscular dystrophy type 2D/R3 (LGMD2D/R3) is a progressive muscular dystrophy that manifests with muscle weakness, respiratory abnormalities, and in rare cases cardiomyopathy. LGMD2D/R3 is caused by mutations in the SGCA gene resulting in loss of protein and concomitant loss of some or all components of the dystrophin-associated glycoprotein complex. The sgca-null (sgca-/-) mouse recapitulates the clinical phenotype of patients with LGMD2D/R3, including dystrophic features such as muscle necrosis and fibrosis, elevated serum creatine kinase (CK), and reduction in the generation of absolute muscle force and locomotor activity. Thus, sgca-/- mice provide a relevant model to test the safety and efficacy of gene transfer. We designed a self-complementary AAVrh74 vector containing a codon-optimized full-length human SGCA (hSGCA) transgene driven by a muscle-specific promoter, shortened muscle creatine kinase (tMCK). In this report, we test the efficacy and safety of scAAVrh74.tMCK.hSGCA in sgca-/- mice using a dose-escalation design to evaluate a single systemic injection of 1.0 × 1012, 3.0 × 1012, and 6.0 × 1012 vg total dose compared with vehicle-treatment and wild-type mice. In sgca-/- mice, treatment with scAAVrh74.tMCK.hSGCA resulted in robust expression of α-sarcoglycan protein at the sarcolemma membrane in skeletal muscle at all doses tested. In addition, scAAVrh74.tMCK.hSGCA was effective in improving the histopathology of limb and diaphragm muscle of sgca-/- mice, as indicated by reductions in fibrosis, central nucleation, and normalization of myofiber size. These molecular changes were concomitant with significant increases in specific force generation in the diaphragm and tibialis anterior muscle, protection against eccentric force loss, and reduction in serum CK. Locomotor activity was improved at all doses of vector-treated compared with vehicle-treated sgca-/- mice. Lastly, vector toxicity was not detected in a serum chemistry panel and by gross necropsy. Collectively, these findings provide support for a systemic delivery of scAAVrh74.tMCK.hSGCA in a clinical setting for the treatment of LGMD2D/R3.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Sarcoglicanopatias , Animais , Terapia Genética , Humanos , Camundongos , Músculo Esquelético , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Sarcoglicanopatias/genética , Sarcoglicanopatias/terapia , Sarcoglicanas/genética
7.
Eur J Neurol ; 28(2): 660-669, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33051934

RESUMO

BACKGROUND AND PURPOSE: To describe a large series of patients with α, ß, and γ sarcoglycanopathies (LGMD-R3, R4, and R5) and study phenotypic correlations and disease progression. METHODS: A multicentric retrospective study in four centers in the Paris area collecting neuromuscular, respiratory, cardiac, histologic, and genetic data. The primary outcome of progression was age of loss of ambulation (LoA); disease severity was established according to LoA before or after 18 years of age. Time-to-event analysis was performed. RESULTS: One hundred patients (54 γ-SG; 41 α-SG; 5 ß-SG) from 80 families were included. The γ-SG patients had earlier disease onset than α-SG patients (5.5 vs. 8 years; p = 0.022) and ß-SG patients (24.4 years). Axial muscle weakness and joint contractures were frequent and exercise intolerance was observed. At mean follow-up of 22.9 years, 65.3% of patients were wheelchair-bound (66.7% α-SG, 67.3% γ-SG, 40% ß-SG). Dilated cardiomyopathy occurred in all sarcoglycanopathy subtypes, especially in γ-SG patients (p = 0.01). Thirty patients were ventilated and six died. Absent sarcoglycan protein expression on muscle biopsy and younger age at onset were associated with earlier time to LoA (p = 0.021 and p = 0.002). Age at onset was an independent predictor of both severity and time to LoA (p = 0.0004 and p = 0.009). The α-SG patients showed genetic heterogeneity, whereas >90% of γ-SG patients carried the homozygous c.525delT frameshift variant. Five new mutations were identified. CONCLUSIONS: This large multicentric series delineates the clinical spectrum of patients with sarcoglycanopathies. Age at disease onset is an independent predictor of severity of disease and LoA, and should be taken into account in future clinical trials.


Assuntos
Sarcoglicanopatias , Adolescente , Seguimentos , Homozigoto , Humanos , Músculo Esquelético , Estudos Retrospectivos , Sarcoglicanopatias/epidemiologia , Sarcoglicanopatias/genética , Sarcoglicanas/genética
8.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155735

RESUMO

Sarcoglycanopathies are rare limb girdle muscular dystrophies, still incurable, even though symptomatic treatments may slow down the disease progression. Most of the disease-causing defects are missense mutations leading to a folding defective protein, promptly removed by the cell's quality control, even if possibly functional. Recently, we repurposed small molecules screened for cystic fibrosis as potential therapeutics in sarcoglycanopathy. Indeed, cystic fibrosis transmembrane regulator (CFTR) correctors successfully recovered the defective sarcoglycan-complex in vitro. Our aim was to test the combined administration of some CFTR correctors with C17, the most effective on sarcoglycans identified so far, and evaluate the stability of the rescued sarcoglycan-complex. We treated differentiated myogenic cells from both sarcoglycanopathy and healthy donors, evaluating the global rescue and the sarcolemma localization of the mutated protein, by biotinylation assays and western blot analyses. We observed the additive/synergistic action of some compounds, gathering the first ideas on possible mechanism/s of action. Our data also suggest that a defective α-sarcoglycan is competent for assembly into the complex that, if helped in cell traffic, can successfully reach the sarcolemma. In conclusion, our results strengthen the idea that CFTR correctors, acting probably as proteostasis modulators, have the potential to progress as therapeutics for sarcoglycanopathies caused by missense mutations.


Assuntos
Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mutação , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Sarcoglicanopatias/tratamento farmacológico , Sarcoglicanas/metabolismo , Fibrose Cística , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Combinação de Medicamentos , Células HEK293 , Humanos , Fibras Musculares Esqueléticas/metabolismo , Sarcoglicanopatias/genética , Sarcoglicanopatias/metabolismo , Sarcoglicanopatias/patologia , Sarcoglicanas/genética
9.
Med Sci (Paris) ; 36 Hors série n° 2: 22-27, 2020 Dec.
Artigo em Francês | MEDLINE | ID: mdl-33427632

RESUMO

Sarcoglycanopathies are the third most common cause of autosomal recessive limb girdle muscular dystrophies (LGMD). They are the result of a deficiency in one of the sarcoglycans a, b, g, or d. The usual clinical presentation is that of a symmetrical involvement of the muscles of the pelvic and scapular girdles as well as of the trunk, associated with more or less severe cardio-respiratory impairment and a marked increase of serum CK levels. The first symptoms appear during the first decade, the loss of ambulation occurring often during the second decade. Lesions observed on the muscle biopsy are dystrophic. This is associated with a decrease or an absence of immunostaining of the sarcoglycan corresponding to the mutated gene and, to a lesser degree, of the other three sarcoglycans. Many mutations have been reported in the four incriminated genes and some of them are prevalent in certain populations. To date, there is no curative treatment, which does not prevent the development of many clinical trials, especially in gene therapy.


TITLE: Les sarcoglycanopathies - État des lieux et perspectives thérapeutiques. ABSTRACT: Les sarcoglycanopathies font partie des dystrophies musculaires des ceintures (LGMD) autosomiques récessives et représentent la troisième cause la plus fréquente d'entre elles. Elles sont consécutives à un déficit d'un des sarcoglycanes α, ß, γ, ou δ. La présentation clinique habituelle est celle d'une atteinte symétrique des muscles des ceintures pelvienne et scapulaire ainsi que du tronc, associée à une atteinte cardiorespiratoire plus ou moins sévère et une élévation franche des créatine-phospho-kinases (CPK). Les premiers symptômes apparaissent au cours de la première décennie, la perte de la marche survenant souvent au cours de la deuxième décennie. Les lésions sont de type dystrophique sur la biopsie musculaire. Il s'y associe une diminution ou une absence d'immunomarquage du sarcoglycane correspondant au gène muté, et dans une moindre mesure des trois autres sarcoglycanes associés. De nombreuses mutations ont été rapportées dans les quatre gènes impliqués et quelques-unes d'entre elles sont prépondérantes dans certaines populations. à ce jour, il n'existe pas de traitement curatif ce qui n'empêche pas de voir se développer de nombreux essais cliniques, notamment en thérapie génique.


Assuntos
Sarcoglicanopatias/terapia , Progressão da Doença , Humanos , Distrofia Muscular do Cíngulo dos Membros/classificação , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Mutação , Neurologia/métodos , Neurologia/tendências , Sarcoglicanopatias/diagnóstico , Sarcoglicanopatias/epidemiologia , Sarcoglicanopatias/genética , Terapias em Estudo/métodos , Terapias em Estudo/tendências
10.
J Clin Neurosci ; 72: 471-473, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31836381

RESUMO

Sarcoglycanopathies are a genetically heterogeneous group of autosomal recessive limb-girdle muscular dystrophies (LGMD) caused by mutations in sarcoglycan genes. We report a Portuguese patient with a very late-onset LGMD phenotype, whose muscle biopsy and immunostaining, in particular for α-sarcoglycan, were unrevealing. Muscle MRI showed a predominant, bilateral and symmetric involvement of the tight muscles and also, to a lesser extent, of the posterior compartment of lower legs muscles. Next generation sequencing (NGS) revealed a known homozygous c.850C > T (p.Arg284Cys) mutation in SGCA gene. Milder forms of α-sarcoglycanopathies could be a challenging diagnosis; particularly if muscle histopathology and α-sarcoglycan immunohistochemistry are unhelpful. NGS plays a crucial role not only for aiding in the establishment of a definite diagnosis, but also for expanding clinical presentations.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Sarcoglicanopatias/genética , Sarcoglicanopatias/patologia , Idoso , Biópsia , Humanos , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/patologia , Mutação , Fenótipo , Sarcoglicanas/genética
11.
Hum Gene Ther ; 30(7): 794-801, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30838895

RESUMO

In a previous limb-girdle muscular dystrophy type 2D (LGMD2D) clinical trial, robust alpha-sarcoglycan gene expression was confirmed following intramuscular gene (SGCA) transfer. This paved the way for first-in-human isolated limb infusion (ILI) gene transfer trial to the lower limbs. Delivery of scAAVrh74.tMCK.hSGCA via an intravascular route through the femoral artery predicted improved ambulation. This method was initially chosen to avoid safety concerns required for large systemic vascular delivery viral loads. ILI methods were adopted from the extensive chemotherapy experience for treatment of malignancies confined to the extremities. Six LGMD2D subjects were enrolled in a dose-ascending open-label clinical trial. Safety of the procedure was initially assessed in the single limb of a non-ambulant affected adult at a dose of 1 × 1012 vg/kg. Subsequently, ambulatory children (aged 8-13 years) were enrolled and dosed bilaterally with either 1 × 1012 vg/kg/limb or 3 × 1012 vg/kg/limb. The six-minute walk test (6MWT) served as the primary clinical outcome; secondary outcomes included muscle strength (maximum voluntary isometric force testing) and SGCA expression at 6 months. All ambulatory participants except one had pre- and post-treatment muscle biopsies. All four subjects biopsied had confirmed SGCA gene delivery by immunofluorescence, Western blot analysis (14-25% of normal), and vector genome copies (5.4 × 103-7.7 × 104 vg/µg). Muscle strength in the knee extensors (assessed by force generation in kilograms) showed improvement in two subjects that correlated with an increase in fiber diameter post gene delivery. Six-minute walk times decreased or remained the same. Vascular delivery of AAVrh74.tMCK.hSGCA was effective at producing SGCA protein at low doses that correlated with vector copies and local functional improvement restricted to targeted muscles. Future trials will focus on systemic administration to enable targeting of proximal muscles to maximize clinical benefit.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Sarcoglicanopatias/genética , Transgenes , Animais , Biomarcadores , Criança , Modelos Animais de Doenças , Feminino , Expressão Gênica , Vetores Genéticos/administração & dosagem , Humanos , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Transdução Genética , Resultado do Tratamento
12.
Orphanet J Rare Dis ; 14(1): 43, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30764848

RESUMO

BACKGROUND: Sarcoglycanopathies comprise four subtypes of autosomal recessive limb-girdle muscular dystrophy (LGMD2C, LGMD2D, LGMD2E, and LGMD2F) that are caused, respectively, by mutations in the SGCG, SGCA, SGCB, and SGCD genes. Knowledge about the clinical and genetic features of sarcoglycanopathies in Chinese patients is limited. The aims of this study were to investigate in detail the clinical manifestations, sarcoglycan expression, and gene mutations in Chinese patients with sarcoglycanopathies and to identify possible correlations between them. RESULTS: Of 3638 patients for suspected neuromuscular diseases (1733 with inherited myopathies, 1557 with acquired myopathies, and 348 unknown), 756 patients had next-generation sequencing (NGS) diagnostic panel. Twenty-five patients with sarcoglycanopathies (11.5%) were identified from 218 confirmed LGMDs, comprising 18 with LGMD2D, 6 with LGMD2E, and one with LGMD2C. One patient with LGMD2D also had Charcot-Marie-Tooth 1A. The clinical phenotypes of the patients with LGMD2D or LGMD2E were markedly heterogeneous. Muscle biopsy showed a dystrophic pattern in 19 patients and mild myopathic changes in 6. The percentage of correct prediction of genotype based on expression of sarcoglycan was 36.0% (4 LGMD2D, 4 LGMD2E, and one LGMD2C). There was a statistically significant positive correlation between reduction of α-sarcoglycan level and disease severity in LGMD2D. Thirty-five mutations were identified in SGCA, SGCB, SGCG, and PMP22, 16 of which were novel. Exon 3 of SGCA was a hotspot region for mutations in LGMD2D. The missense mutation c.662G > A (p.R221H) was the most common mutation in SGCA. Missense mutations in both alleles of SGCA were associated with a relative benign disease course. No obvious clinical, sarcoglycan expression, and genetic correlation was found in LGMD2E. CONCLUSIONS: This study expands the clinical and genetic spectrum of sarcoglycanopathies in Chinese patients and provides evidence that disease severity of LGMD2D may be predicted by α-sarcoglycan expression and SGCA mutation.


Assuntos
Sarcoglicanopatias/genética , Sarcoglicanopatias/patologia , Povo Asiático , Biópsia , Criança , Pré-Escolar , Éxons/genética , Feminino , Genótipo , Humanos , Imuno-Histoquímica , Masculino , Mutação/genética , Fenótipo
13.
Neuromuscul Disord ; 28(8): 633-638, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30007747

RESUMO

Mutations in the SGCA gene cause limb girdle muscular dystrophy type 2D (LGMD2D). We report a family with three affected siblings with a mild phenotype consisting of late onset glutei and axial muscle weakness produced by a new mutation in the SGCA gene leading to a partial expression of the alpha-sarcoglycan protein. The MRI showed muscle atrophy involving paraspinal, pelvic and thigh muscles and a dystrophic pattern was observed in the muscle biopsy. Exome sequencing revealed a homozygous intronic deletion of SGCA and mRNA analysis showed the presence of three different transcripts. The presence, though in a lower proportion, of wild type transcript leads to a milder presentation of the disease. Although clinical symptoms did not entirely correspond with a sarcoglycanopathy, a compatible muscle MRI drove us to look for changes in the sarcoglycan genes. These cases are an example of how clinical, radiological and pathological data enriches the interpretation of exome analysis.


Assuntos
Mutação , Fenótipo , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Adulto , Idade de Início , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sarcoglicanopatias/diagnóstico , Índice de Gravidade de Doença , Irmãos
14.
Hum Mol Genet ; 27(6): 969-984, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29351619

RESUMO

Limb-girdle muscular dystrophy type 2D (LGMD2D) is a rare autosomal-recessive disease, affecting striated muscle, due to mutation of SGCA, the gene coding for α-sarcoglycan. Nowadays, more than 50 different SGCA missense mutations have been reported. They are supposed to impact folding and trafficking of α-sarcoglycan because the defective polypeptide, although potentially functional, is recognized and disposed of by the quality control of the cell. The secondary reduction of α-sarcoglycan partners, ß-, γ- and δ-sarcoglycan, disrupts a key membrane complex that, associated to dystrophin, contributes to assure sarcolemma stability during muscle contraction. The complex deficiency is responsible for muscle wasting and the development of a severe form of dystrophy. Here, we show that the application of small molecules developed to rescue ΔF508-CFTR trafficking, and known as CFTR correctors, also improved the maturation of several α-sarcoglycan mutants that were consequently rescued at the plasma membrane. Remarkably, in myotubes from a patient with LGMD2D, treatment with CFTR correctors induced the proper re-localization of the whole sarcoglycan complex, with a consequent reduction of sarcolemma fragility. Although the mechanism of action of CFTR correctors on defective α-sarcoglycan needs further investigation, this is the first report showing a quantitative and functional recovery of the sarcoglycan-complex in human pathologic samples, upon small molecule treatment. It represents the proof of principle of a pharmacological strategy that acts on the sarcoglycan maturation process and we believe it has a great potential to develop as a cure for most of the patients with LGMD2D.


Assuntos
Sarcoglicanopatias/tratamento farmacológico , Sarcoglicanas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células HEK293 , Humanos , Contração Muscular , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Mutação de Sentido Incorreto , Estudo de Prova de Conceito , Sarcoglicanopatias/genética , Sarcoglicanopatias/metabolismo , Sarcoglicanas/genética
15.
Acta Myol ; 37(3): 210-220, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30838351

RESUMO

The aim of this study is to analyze the epidemiology of the clinical and genetic features of childhood-onset limb-girdle muscular dystrophies (LGMD) in the Aegean part of Turkey. In total fifty-six pediatric cases with LGMD followed in four different pediatric neurology departments in the Aegean region of Turkey were evaluated. Among them, LGMD2C was the most common followed by LGMD2A, LGMD2D, and LGMD2F with equal frequencies. In twenty-eight patients (50%) the diagnosis could be confirmed by genetic analysis, where SGCG proved to be disease-causing in most of the cases. About half of the patients were diagnosed with whole exome or targeted gene sequencing. A positive correlation between muscle biopsy and genetic findings were observed in 11% of the patients. We report one novel frameshifting mutation in TTN. Knowledge on frequencies of childhood-onset limb-girdle muscular dystrophies and related genes in Turkey will lead to a prompt diagnosis of these neuromuscular disorders.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/epidemiologia , Distrofia Muscular do Cíngulo dos Membros/genética , Adolescente , Idade de Início , Biópsia , Calpaína/genética , Criança , Pré-Escolar , Conectina/genética , Feminino , Testes Genéticos , Humanos , Lactente , Lamina Tipo A/genética , Masculino , Manosiltransferases/genética , Proteínas dos Microfilamentos , Proteínas Musculares/genética , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/complicações , Distrofia Muscular do Cíngulo dos Membros/patologia , Sarcoglicanopatias/epidemiologia , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Turquia/epidemiologia
16.
Skelet Muscle ; 7(1): 11, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587652

RESUMO

BACKGROUND: Sarcospan (SSPN) is a transmembrane protein that interacts with the sarcoglycans (SGs) to form a tight subcomplex within the dystrophin-glycoprotein complex that spans the sarcolemma and interacts with laminin in the extracellular matrix. Overexpression of SSPN ameliorates Duchenne muscular dystrophy in murine models. METHODS: Standard cloning approaches were used to identify nanospan, and nanospan-specific polyclonal antibodies were generated and validated. Biochemical isolation of skeletal muscle membranes and two-photon laser scanning microscopy were used to analyze nanospan localization in muscle from multiple murine models. Duchenne muscular dystrophy biopsies were analyzed by immunoblot analysis of protein lysates as well as indirect immunofluorescence analysis of muscle cryosections. RESULTS: Nanospan is an alternatively spliced isoform of sarcospan. While SSPN has four transmembrane domains and is a core component of the sarcolemmal dystrophin-glycoprotein complex, nanospan is a type II transmembrane protein that does not associate with the dystrophin-glycoprotein complex. We demonstrate that nanospan is enriched in the sarcoplasmic reticulum (SR) fractions and is not present in the T-tubules. SR fractions contain membranes from three distinct structural regions: a region flanking the T-tubules (triadic SR), a SR region across the Z-line (ZSR), and a longitudinal SR region across the M-line (LSR). Analysis of isolated murine muscles reveals that nanospan is mostly associated with the ZSR and triadic SR, and only minimally with the LSR. Furthermore, nanospan is absent from the SR of δ-SG-null (Sgcd-/-) skeletal muscle, a murine model for limb girdle muscular dystrophy 2F. Analysis of skeletal muscle biopsies from Duchenne muscular dystrophy patients reveals that nanospan is preferentially expressed in type I (slow) fibers in both control and Duchenne samples. Furthermore, nanospan is significantly reduced in Duchenne biopsies. CONCLUSIONS: Alternative splicing of proteins from the SG-SSPN complex produces δ-SG3, microspan, and nanospan that localize to the ZSR and the triadic SR, where they may play a role in regulating resting calcium levels as supported by previous studies (Estrada et al., Biochem Biophys Res Commun 340:865-71, 2006). Thus, alternative splicing of SSPN mRNA generates three protein isoforms (SSPN, microspan, and nanospan) that differ in the number of transmembrane domains affecting subcellular membrane association into distinct protein complexes.


Assuntos
Processamento Alternativo , Proteínas de Transporte/genética , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Sarcoglicanopatias/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Proteínas de Transporte/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Sarcoglicanopatias/genética , Sarcoglicanopatias/patologia , Sarcoglicanas/genética , Retículo Sarcoplasmático/ultraestrutura
17.
Mol Ther ; 25(4): 855-869, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28284983

RESUMO

Limb-girdle muscular dystrophy type 2E (LGMD2E), resulting from mutations in ß-sarcoglycan (SGCB), is a progressive dystrophy with deteriorating muscle function, respiratory failure, and cardiomyopathy in 50% or more of LGMD2E patients. SGCB knockout mice share many of the phenotypic deficiencies of LGMD2E patients. To investigate systemic SGCB gene transfer to treat skeletal and cardiac muscle deficits, we designed a self-complementary AAVrh74 vector containing a codon-optimized human SGCB transgene driven by a muscle-specific promoter. We delivered scAAV.MHCK7.hSGCB through the tail vein of SGCB-/- mice to provide a rationale for a clinical trial that would lead to clinically meaningful results. This led to 98.1% transgene expression across all muscles that was accompanied by improvements in histopathology. Serum creatine kinase (CK) levels were reduced following treatment by 85.5%. Diaphragm force production increased by 94.4%, kyphoscoliosis of the spine was significantly reduced by 48.1%, overall ambulation increased by 57%, and vertical rearing increased dramatically by 132% following treatment. Importantly, no adverse effects were seen in muscle of wild-type mice injected systemically with scAAV.hSGCB. In this well-defined model of LGMD2E, we have demonstrated the efficacy and safety of systemic scAAV.hSGCB delivery, and these findings have established a path for clinically beneficial AAV-mediated gene therapy for LGMD2E.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Sarcoglicanopatias/diagnóstico , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Animais , Biópsia , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Modelos Animais de Doenças , Ordem dos Genes , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacocinética , Humanos , Cifose/diagnóstico , Cifose/genética , Cifose/terapia , Camundongos , Camundongos Knockout , Atividade Motora , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Miocárdio/patologia , Recuperação de Função Fisiológica , Sarcoglicanopatias/terapia , Escoliose/diagnóstico , Escoliose/genética , Escoliose/terapia , Distribuição Tecidual , Transdução Genética , Microtomografia por Raio-X
19.
Neuromuscul Disord ; 26(6): 367-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27108072

RESUMO

A large mutation screening of 504 patients with muscular dystrophy or myopathy has been performed by next generation sequencing (NGS). Among this cohort of patients, we report a case with a severe form of muscular dystrophy with a proximal weakness in the limb-girdle muscles. Her biopsy revealed typical dystrophic features and immunohistochemistry for α- and γ-sarcoglycans showed an absent reaction, addressing the clinical diagnosis toward a sarcoglycanopathy. Considering that no causative point mutation was detected in any of the four sarcoglycan genes, we re-evaluated the NGS data by careful quantitative analysis of the specific reads mapping on the four sarcoglycan genes. A complete absence of reads from the sixth exon of the ß-sarcoglycan gene was found. Subsequent array comparative genomic hybridization (CGH) analysis confirmed the result with the identification of a novel 3.3 kb intragenic deletion in the SGCB gene. This case illustrates the importance of a multidisciplinary approach involving clinicians and molecular geneticists and the need for a careful re-evaluation of NGS data.


Assuntos
Sarcoglicanopatias/genética , Sarcoglicanas/genética , Deleção de Sequência , Criança , Hibridização Genômica Comparativa , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise em Microsséries , Sarcoglicanopatias/metabolismo , Sarcoglicanopatias/patologia , Sarcoglicanas/metabolismo
20.
Neurol Res ; 38(3): 220-3, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27093116

RESUMO

OBJECTIVE AND IMPORTANCE: The sarcoglycanopathies (SGPs) are a subgroup of autosomal recessive limb girdle muscular dystrophies. They are caused by mutations in gamma, alpha, beta, and delta sarcoglycans (SGs) genes. Alpha-SGPs are the most frequent form of SGPs. Muscle biopsy studies in patients with SGPs have indicated that loss of one SG subunit leads to instability of whole SG complex. Autozygosity mapping is a powerful gene mapping approach for rare recessive inherited disorders in consanguineous families. CLINICAL PRESENTATION: In the present study, proband was a 9 year old girl from consanguineous parents. She was diagnosed at the age of 5 when she had problems climbing stairs. Her creatine kinase level was 16428 U/L. Proximal weakness and ankle contracture were also observed in the patient. TECHNIQUES: Autozygosity mapping, using short tandem repeat (STR) markers linked to the SG genes, showed co-segregation of the phenotype with STR markers linked to the SGCA (Alpha-sarcoglycan) gene. Her muscle biopsy also suggested alpha sarcoglycanopathy. Mutation analyses revealed a novel homozygous deletion of 11 base pairs in exon 4 of this gene. This deletion introduces a premature termination codon after the 4th amino acid. This will eliminate the expression of the downstream part of the extracellular domain of the protein. This domain has a critical role by associating with other molecules of dystrophin-glycoprotein complexes. CONCLUSION: IHC (Immunohistochemistry) studies combined with autozygosity mapping and mutation screening is an efficient diagnostic method in the SGPs.


Assuntos
Mutação/genética , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Criança , Consanguinidade , Análise Mutacional de DNA , Saúde da Família , Feminino , Humanos , Irã (Geográfico)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA